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Abstract Dissociation constants of the multiprotic hemostyptic Eltrombopag determined

by pH-potentiometric and WApH-spectrophotometric titrations are compared.

Hemostyptic and hemostatic Eltrombopag treats low blood platelet counts in adults with

chronic immune idiopathic thrombocytopenia ITP. Eltrombopag has five protonatable sites

in a pH range of 2–10, where only two pK are well separated (ΔpK [ 3), while the other

three are near dissociation constants of overlapping equilibria. According to the MARVIN

prediction, in neutral medium Eltrombopag occurs in the slightly water soluble form LH3

that can be protonated to the soluble species LHþ
4 and LH2þ

5 The molecule LH3 can be

dissociated to still difficultly soluble species LH�
2 , LH

2� and L3�. Due to the limited

solubility of Eltrombopag above pH = 9.5 the protonation was studied up to pH = 10. Five

dissociation constants can be reliably determined with REACTLAB and SQUAD84

leading to the same values. From a dependence on ionic strength, the thermodynamic

dissociation constants were estimated at 25 °C: pKT
a1 = 2.69, pKT

a2 = 6.97, pKT
a3 = 7.13,

pKT
a4 = 7.65, pKT

a5 = 8.30. At pH values above 10 and pH below 5 a very fine precipitate of

Eltrombopag, forming a slight opalescence, was observed; thus measurements of the

potentiometric titration curve above pH = 9 and pH below 5 were excluded from the

regression analysis to estimate pKa2 = 6.59(01), pKa3 = 7.56(04), pKa4 = 8.48(59) and

pKa5 = 9.29(34) at 25 °C with ESAB.
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1 Introduction

Eltrombopag (formula C25H22N4O4, Fig. 1, molar mass 442.467 g·mol−1) is hemostyptic

and hemostatic and has been developed for conditions that lead to thrombocytopenia i.e.

abnormally low platelet counts. This hemostatic was discovered as a result of research

Fig. 1 Structural formula of Eltrombopag
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collaboration between GlaxoSmithKline and Ligand Pharmaceuticals [1]. Eltrombopag

(code named SB-497115-GR, CAS number 496775-61-2, 496775-62-3, ATC code

B02BX05, PubChem CID 9846180, ChemSpider 21106301) with the IUPAC name 3′-
[(2Z)-2-[1-(3,4-dimethylphenyl)-3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene]hy-
drazino]-2′-hydroxy-3-biphenylcarboxylic acid, is used to treat low blood platelet counts in

adults with chronic immune idiopathic thrombocytopenia ITP, when other medicines, or

spleen removal surgery, have not worked well enough. It works by causing the cells in the

bone marrow to produce more platelets, [2]. Eltrombopag also increases the number of

platelets in people who have hepatitis C, a viral infection [3] that may damage the liver so

that they can begin and continue treatment with interferon (Peginterferon, Pegintron,

others) and ribavirin (Rebetol).

Knowledge of the possible ionization states of a pharmaceutical substance, embodied in

the logarithm of the mixed acid dissociation constant pKa, is vital for understanding many

properties essential to drug development [4]. As the majority of drugs are weak acids and/

or bases, knowledge of the dissociation constant in each case helps in understanding the

ionic form a molecule will take across a range of pH values and the level of general interest

in such ionization phenomena is evident from the large number of recent publications on

the topic [5–11]. pKa values can be either experimentally measured or theoretically

predicted:

1. Many new substances are poorly soluble in aqueous solutions; conventional

potentiometric determination of dissociation constants of these compounds can often

be difficult [12]. Spectrophotometric pKa determination is an alternative method to

potentiometry provided that the compound is water soluble to the extent of 10−6

mol·dm−3 or more and provided the compound possesses pH-dependent light

absorption due to the presence of a chromophore in proximity to the ionization

center (cf. Ref. [13–17]). In previous work [18–27] the authors have shown that the

multiwavelength spectrophotometric pH-titration method in combination with suit-

able chemometric tools (called as the WApH-method by Tam [28]) can be used for the

determination of dissociation constants pKa even for barely soluble drugs. Spectra are

generally a superposition of spectra of the numerous compounds present. In many

cases, however, the spectral responses of two and sometimes even more components

overlap considerably and the analysis is no longer straightforward. Hard modelling

methods, e.g., SQUAD84 [16, 29, 30], include traditional least-squares curve fitting

approaches, based on a previous postulation of a chemical model, i.e., a set of species

defined by their stoichiometric coefficients and formation constants, which are then

refined by the least-squares minimization. The most relevant algorithms are

SQUAD84 and REACTLAB [31] or its previous version SPECFIT32 [32]. Soft

modelling techniques, as for example REACTLAB, such as multivariate curve

resolution methods based on factor analysis, work without any assumption of a

chemical model, and do not need to comply with the mass-action law. The molar

absorptivities are usually not required for analysis. However, explicit equations for the

equilibrium expression are necessary to rotate the eigenvectors to give the correct

concentration profiles. It may be difficult to generalize these explicit equations for

multistep ionization system [28].

2. Nine commercially available or free programs for predicting ionization constants were

compared [4]. Meloun et al. [27] used the REGDIA regression diagnostics algorithm

written in S-Plus [33] critically examine an accuracy of pKa predictions with four

programs ACD/pK [3, 6, 34, 35], Marvin Sketch [36, 37], PALLAS, and SPARC
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[38, 39] and the best were considered ACD/Labs™ [40] and pKa Predictor 3.0 [41].

Balogh et al. [42] found the most predictive and reliable predictors to be MARVIN-

Sketch and ACD/Percepta [34, 43, 44].

There are no systematic reports about the drug Eltrombopag concerning its UV–VIS

spectra, pKa values and the distribution diagram of variously protonated species. The aim

of our study was to examine and verify the UV-metric pKa determination (WApH-spec-

trophotometric titration) of the pH-absorbance matrix and to carry out the pH-metric pKa

determination (pH-potentiometric titration) of the protonation model to find suitable con-

ditions for a reliable regression determination of dissociation constants. Considering the

role of pKa predictions in early phase discovery, we concluded that the selection of

appropriate prediction tools for regular pharmaceutical chemistry use requires solid

benchmarking studies. We are reporting our obtained results that were evaluated by two

different LFER based pKa predictions tools, MARVIN-Sketch and ACD/pK software [42].

2 Theoretical

2.1 UV-metric pKa Determination (WApH-Spectrophotometric Titration)

The acid–base equilibrium of Eltrombopag studied is described in terms of the protonation

of the Brönsted base Lz−1 according to the equation Lz−1 + H+ ⇌ HLz [21]. The proto-

nation equilibria between the species L (the charges are omitted for the sake of simplicity)

of a drug and a proton H are considered to form a set of variously protonated species L,

LH, LH2, LH3…etc., with the general formula LHr in a particular chemical model and

which are represented by nc (the number of species), ri, i = 1,…, nc where index i indicates
their particular stoichiometry; the overall protonation (stability) constant of the protonated

species, βr, may then be expressed as

br ¼
LHr½ �
L½ � H½ �r ¼

c

lhr
ð1Þ

where the free concentration [L] = l, [H] = h and [LHr] = c, [21]. For dissociation at

constant ionic strength the “mixed dissociation constants” are defined as

Ka;j ¼
LHj�1

� �
aHþ

LHj

� � ð2Þ

As each species is characterized by its own spectrum, for UV–Vis experiments and the

ith solution measured at the jth wavelength, the Lambert–Beer law relates the absorbance,

Ai,j, defined as:

Ai;j ¼
Xnc
n¼1

ej;ncn ¼
Xnc
n¼1

ðer;jbrlhrÞn ð3Þ

where εr,j is the molar absorption coefficient of the LHr species with the stoichiometric

coefficient r measured at the jth wavelength. The absorbance Ai, j is an element of the

absorbance matrix A of size (ns 9 nw) being measured for ns solutions with known total

concentrations of nz = 2 basic components, cL and cH, at nw wavelengths [19]. The general

procedure used to build the protonation model with SPECFIT32, REACTLAB or

SQUAD84 was described previously [13, 21, 25, 45]. Determining the chemical model of
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the drug protonation equilibria by a regression analysis of potentiometric titration data or

by spectra seems to be dependent on user experience and the software used. A significant

role is played by resolution hypotheses of the proposed regression model and distin-

guishability of the spectra of differently protonated chromophores in the molecule. Two

different programs for the numerical analysis of spectra were used, REACTLAB and

SQUAD84. These programs found the consensus in numerical parametric estimates and in

a fitness of the predicted absorbance spectra through measured absorbance data.

2.2 pH-Metric pKa Determination (pH-Potentiometric Titration)

The overall protonation constant of the protonated species, βqr, Eq. 1, and the mixed

dissociation constants Ka, Eq. 2, are used whereas the mass balance equations are L ¼
lþPJ

j¼1

bHj
lh j and H ¼ h� Kw

h
þ j

PJ
j¼1

bHj
lh j. Potentiometric readings obtained with the

proton-sensitive glass and reference electrodes cell can be described by the equation:

Ecell ¼ E0 þ fRT ln 10

F
log10 aHþ þ jaaHþ � jbKW

aHþ
� Eref ¼ E00 þ S log10 h ð3Þ

where E0 is the standard potential of a glass electrode cell containing some other constants

of the glass electrode, including the asymmetry potential, etc., and aHþ ¼ Hþ½ �yHþ ¼ hyHþ ;

the liquid-junction potential Ej is expressed by the term Ej ¼ jaaHþ � jbKw=aHþ , and

S = (fRT ln10)/F is the slope of the glass electrode for a Nernstian response, Kw is the

operational ion product of water at temperature T [K], while the correction factor f, is taken
as an adjustable parameter.

An explicit equation for the titration curve at constant ionic strength expresses the

relationship between the volume of the added titrant Vi and the monitored emf Ecell,i or paH
+ with the vector of unknown parameters (b) being separated into the vector of common

parameters (Ka) and the vector of group parameters (p), i.e.

Vi ¼ f ðEcell;i; bÞ ¼ f ðEcell;i;Ka; pÞ. The vector of common parameters Ka = (Ka,1,…, Ka,m)

contains m dissociation constants of the acid LHj while a vector of group parameters

p = (E0′, S, Kw, ja, jb, L0, LT, H0, HT) containing the two constants of Nernst’s equation, E0′

and S, and the total ligand concentration, L0, and hydrogen ion concentration, H0, of the

titrand in the vessel, and the corresponding quantities of titrant, LT and HT in the burette

[46–48]. Group parameters p can be refined simultaneously with the common parameters

Ka. Two independent regression approaches to a minimization of the sum of squared

residuals have been applied:

(1) The program ESAB [46, 47] uses this strategy for treating paH+ data to find dis-

sociation constants that give the “best” fit to experimental data. As the primary data

contains the total concentration HT of proton from the burette and the measured paH+, one
could trust paH+ and minimize the residual sum of squares (Vexp − Vcalc)

2. The residual e is
formulated with the volume of added titrant V from burette so that ei = (Vexp,i − Vcalc,i) and

the resulting residual sum of squares U(b) is defined by:

UðbÞ ¼
Xn
i¼1

wiðVexp;i � Vcalc;iÞ2 ¼
Xn
i¼1

wie
2
i ð4Þ

where wi is the statistical weight usually set equal to unity while in ESAB it may be equal

to:

2018 J Solution Chem (2017) 46:2014–2037
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1

wi

¼ s2i ¼ s2E þ
dEi

dVi

� �2
s2V ð5Þ

and, with a good equipment, we have generally sE = 0.01 pH units and sV = 0.0001–

0.0005 cm3.

(2) In the program HYPERQUAD [49] the objective function is given in matrix notation

U = eTWe, where e is a vector of residuals measured in pH and W is a matrix of weights.

To minimize the objective function, the Gauss–Newton–Marquardt method is used. The

SIGMA criterion of a goodness-of-fit is defined as SIGMA =

ffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

wiei

n�m

s
where the weights,

w, are calculated from estimates of the error in pH and titer, the latter only being important

in regions where the titration curve slopes more steeply. Sigma squared is also a Chi

squared statistic.

2.3 Reliability of pKa Estimates Obtained

The detailed procedure of the graphical and numerical analysis of residuals is described in

[21, 25]. The vector of residuals in each spectrum and finally in the entire absorbance

matrix is statistically analyzed and the closest fit to the data is proven. The vector of

residuals should exhibit a Gaussian distribution and the average of the absolute values of

residuals should have a magnitude similar to the signal noise or instrumental standard

deviation of absorbance sinst(A). The adequacy of a proposed regression model with

experimental data and a reliability of found parameter estimates, bj, j = 1,…, m, may be

examined by the goodness-of-fit test, cf. page 101 in Ref. [33].

2.3.1 The Quality of the Parameter Estimates

The quality of the parameter estimates bj, j = 1,…, m [21] is considered according to their

confidence intervals or according to their variances D(bj). Often an empirical rule is used:

parameter bj is considered to be significantly different from zero when its estimate is

greater than 3 standard deviations, 3
ffiffiffiffiffiffiffiffiffiffiffi
DðbjÞ

p
\ bj

�� ��; j ¼ 1; . . .;m. Higher parameter vari-

ances are also caused by termination of a minimization process before reaching a minimum

[33].

2.3.2 The Quality of the Curve Fitting [21]

The adequacy of a proposed model and m parameter estimates found with n values of

experimental data is examined by the goodness-of-fit test based on the statistical analysis

of classical residuals. If a proposed model represents the data adequately, the residuals

should form a random pattern having a normal distribution N(0, s2) with the residual mean

equal to zero, EðêÞ ¼ 0, and the standard deviation of residuals sðêÞ being near the noise,

i.e. the experimental error ε. Systematic departures from randomness indicate that the

model and parameter estimates are not satisfactory. The following statistics of residuals

can be used for a numerical goodness-of-fit evaluation, cf. page 290 in Ref. [50]: (1) The

residual bias, which is the arithmetic mean of residuals EðêÞ, should be equal to zero. (2)

The mean of absolute values of residuals, E êj j, and the square-root of the residuals variance
s2ðêÞ ¼ UðbÞ=ðn� mÞ, known as the estimate of the residual standard deviation, sðêÞ,
should be both be of the same magnitude as the instrumental error of the regressed
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variable, absorbance A, sinst(A). Obviously, it should be also valid that sðêÞ ≈ sinst(A). (3)
The residual skewness, g1ðêÞ, for a symmetric distribution of residuals should be equal to

zero. (4) The kurtosis, g2ðêÞ), for normal distribution should be equal to 3.

2.3.3 Quality of the Molar Absorption Coefficients

The numerical estimates of the molar absorption coefficients [21] of differently protonated

light-absorbing species in an equilibrium mixture as functions of wavelength λ represent

another important result of the spectra regression analysis.

2.3.4 The Distribution Diagram

The distribution diagram [21] presents the relative concentrations of differently protonated

light-absorbing species in the protonation equilibria and provides a specific image on the

protonation model. It allows for the chemical interpretation of a proposed regression

model, to perform its correction, to comment on the presentation of major and minor

species in an equilibrium mixture, and to reveal which protonated species are present in the

solution at a given pH. It represents the culmination of an interpretation of the regression

analysis of the spectra [51].

2.3.5 The Deconvolution of Each Experimental Spectrum

The deconvolution of each experimental spectrum [21] into the spectra for the individual

species shows whether the experimental design was efficient. If for a particular concen-

tration range the spectrum consists of just a single component, further spectra for that range

would be redundant though they should improve the precision. In ranges where many

components contribute significantly to the experimental spectrum, several spectra should

be measured.

3 Materials and Methods

3.1 Chemicals and Solutions

Eltrombopagwas donated byZENTIVAGROUP,Ltd. (Prague)with declared purity checked

by a HPLC method and alkalimetrically, was always [ 99%. This drug has been weighed

straight into a reaction vessel to reach a resulting concentration of about 0.001 mol·dm−3.

Hydrochloride acid, 1.044 mol·dm−3, was prepared by diluting concentrated HCl (p.a.,

Lachema Brno) with redistilled water and standardization against HgO and KI with a

reproducibility better than 0.2% according to the equation HgO + 4 KI + H2O ⇌ 2

KOH + K2[HgI4] and KOH + HCl⇌ KCl + H2O. Potassium hydroxide, 0.876 mol·dm−3,

was prepared from the exact weight of pellets p.a., Aldrich Chemical Company with carbon-

dioxide free redistilledwater. The solutionwas stored for several days in a polyethylene bottle

under argon. This solution was standardized against a solution of potassium bi-phthalate

using the derivative method with reproducibility 0.1%. All solutions were preserved from

atmospheric CO2 by means of soda lime traps. Mercury oxide, potassium iodide and potas-

sium chloride, p.a. Lachema Brno, were not extra purified. Grade A glassware and twice-

redistilled water were employed in the preparation of all the solutions.

2020 J Solution Chem (2017) 46:2014–2037
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3.2 Apparatus and Procedure

The apparatus used and the WApH-spectrophotometric titration procedure have been

described previously in detail [13, 25, 26]. The experimental and computation scheme to

determine of the protonation constants of the multi-component system is taken from

Meloun et al. (cf. page 226) in Ref. [33] and the five steps are described in detail elsewhere

[26].

The free hydrogen-ion concentration h was measured on the digital voltmeter (Hanna HI

3220) with a precision of ± 0.002 pH units, using a Theta HC 103-VFR combined glass

electrode. Titrations were performed in a water jacketed double-walled 100 mL glass

vessel, closed with a Teflon bung containing the electrodes, an argon inlet, a thermometer,

a propeller stirrer and the capillary tip from a micro-burette. All pH measurements were

carried out at (25.0 ± 0.1) °C. During the titrations, a stream of argon gas was bubbled

through the solution both for stirring and for maintaining an inert atmosphere. The argon

was passed through two vessels containing the titrand medium before entering the corre-

sponding titrant solution. All titrations were performed using standardized 1 mol·dm−3 HCl

or 1 mol·dm−3 KOH titrants. In general, sample solutions of 20 mL volumes were

preacidified to a relatively low pH value (ca. 2–3) and then titrated alkalimetrically to an

appropriate high pH value (ca. 10–11). The burettes used were syringe micro-burettes of

1250 μL capacity (META, Brno) with a 25.00 cm micrometer screw [52]. The potentio-

metric titrations of drugs with potassium hydroxide were performed using a hydrogen

activity scale. Standardization of the pH meter was performed using WTW standard

buffers values 4.006, 6.865 and 9.180 at 25°C.
The ESAB program [46, 47] estimated the total proton concentration in a burette HT and

the total concentration of the drug in the titration vessel L0 from the actual titration of a

mixture of the drug and hydrochloric acid with potassium hydroxide; some group

parameters are given in the input data for ESAB, including the Nernstian slope and pKw,

which are both accessible from the literature [53]. With ESAB, two group parameters, L0
and HT, were refined to give the best fit, while the fitness was examined by the goodness-

of-fit criteria.

3.3 Computation and Software

Computation relating to the determination of dissociation constants was performed by

regression analysis of the UV–Vis spectra using the SQUAD84 and REACTLAB pro-

grams. A qualitative interpretation of the spectra, with the use of the INDICES program

[51], aims to evaluate the quality of the dataset and remove spurious data and to estimate

the minimum number of factors (i.e. contributing aqueous species) that are necessary to

describe the experimental data and determine the number of dominant species present in

the equilibrium mixture. Computation of the dissociation constants was performed by

regression analysis of titration curves using the ESAB and HYPERQUAD programs [49].

Most graphs were plotted using ORIGIN 8 [50] and S-Plus [33]. ACD/pK [46] and

MARVIN [36, 54] are programs for predictions based on the structural formulae of drug

compounds. Entering the compound topological structure descriptors graphically, pKa

values of organic compound are predicted using hundreds of Hammett and Taft equations

and quantum chemistry calculus.
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4 Results and Discussion

4.1 Computational Prediction of the Protonation Scheme

The protonation scheme of the Eltrombopag has six functional groups (denoted with letters

A, B, C, D, E, F in graphical order in Fig. 2) that can be associated to dissociation

constants; two ionizations are associated to hydroxyl groups and other to the nitrogen atom.

In the following text the charges of ions are omitted for the sake of simplicity and ions are

denoted as variously protonated species.

The macro-dissociation constants of Eltrombopag were predicted according to the

chemical structure analyzed with the use of two reliable pKa prediction tools [42]: ACD/

Percepta [34, 43, 44] was run using the GALAS model, which uses an internal training set

of [ 31,000 individual pKa values for approximately 16,000 compounds in aqueous

solution [55]. Marvin pKa predictions are based on the calculated partial charge of the

atoms located in the analyzed structure, using Hammett–Taft’s approach. MARVIN and

ACD/Percepta [34, 43] showed similar performance on the dataset and provide pKa results

for all the recognized ionization sites. Predicted pKa values are assigned to the corre-

sponding ionization sites by both tools, which is essential for compounds with multiple

ionization sites (Fig. 2). The whole molecule of Eltrombopag was further subdivided into

four auxiliary fragments containing functional groups on which protonation occurred

(Fig. 2). These predicted pKa values served to compare with predicted values throughout

Fig. 2 Structural formula with protonated ionization sites in Eltrombopag. The whole molecule of
Eltrombopag was subdivided into four auxiliary fragments containing functional groups on which
protonation occurred. These predicted pKa values served to compare with predicted values throughout the
structure of the Eltrombopag molecule

2022 J Solution Chem (2017) 46:2014–2037
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the structure of the Eltrombopag molecule. In the ionization site B the predicted pKa of the

Eltrombopag molecule is close to the predicted pKa values of its auxiliary fragment. Other

ionization sites (A, C, D, E, F) are located at the site of the molecule that forms a rather

complex conformation. The fragments A, C, D, E contain sites which are not affected by

the strong electron field of the rest of Eltrombopag molecule, and therefore their predicted

pKa values differ significantly from those predicted for the whole Eltrombopag molecule

(Table 1).

4.2 UV-Metric pKa Determination

Many drug compounds are sparingly soluble in water and a precise determination of their

pKa values pose a challenging problem for potentiometric titration, since the accuracy of

this method is restricted by its detection limit of about 10−4 mol·dm−3 [56]. Spectroscopic

titration has been utilized as an alternative to determine pKa values of substances with large

molar absorptivities, because of its high sensitivity at concentrations of substance as low as

10−6 mol·dm−3 [56]. The strategy for an efficient determination of dissociation constants

followed by spectral data treatment, as described in [26], was used. Eltrombopag contains

the complicated molecular structure shown in Figs. 1 and 2 and several protonation

equilibria were monitored spectrophotometrically to analyze a spectra set in two steps:

first, the spectral data in the form of a data matrix were subjected to principal component

analysis to determine the number of independent light absorbing species using the

INDICES algorithm [51], (Fig. 3).

The INDICES indicates the position of break points on the sk(A) = f(k) curve in the

scree plot using the three most reliable approaches (Kankare´s s(A), RSD and RSM, cf.

Ref. [51]) and gives k* = 6 with corresponding co-ordinate s6*(A) = 0.4 mAU. This value

also represents the actual instrumental error sinst*(A) = 0.4 mAU and log10 (sinst*
(A)) = − 3.4 of the spectrophotometer CINTRA 5 (GBC, Australia). The number of light-

absorbing species is an aid to the establishment of a protonation model. It means that five

dissociation constants will be preferred and six species LH2þ
5 , LHþ

4 , LH3, LH
�
2 , LH

2− and

L3− are assumed to be present. Due to the large variations in the indicator values, these

Table 1 Predicted dissociation constants at the suggested ionization sites A through F of the molecule
Eltrombopag with the use of the program MARVIN

Tautomer, protonated
ionization sites

pKa1 pKa2 pKa3 pKa4 pKa5 pKa6

1 A, B, C 0.13 3.97 9.36 – 13.13 –

2 A, B, C, D 4.70 3.61 9.40 – 14.56 –

3 B, C, D 0.51 3.97 7.20 6.22 – –

4 B, C, F – 3.94 12.17 1.53 – 5.23

5 B, C −0.80 3.97 7.68 – – –

6 B, C, D, F 1.05 3.96 7.78 10.15 – 5.54

7 B, C, D – 4.00 7.68 2.89 – –

Auxiliary fragments For B is
4.08

For E is
5.22

For A is
7.06

For D is
8.1

For C is
9.71

Not found

Site in molecule of
Eltrombopag

For B is
3.97

For E is
6.87

For A is
13.84

For D is
10.55

For C is
8.88

For F is
5.23
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Fig. 3 The 3D-absorbance-response-surface for 71 measured absorption spectra for 9.5 9 10−5 mol·dm−3

Eltrombopag at 25 °C, reflecting the dependence of protonation equilibria on pH. This represents the input
for the SQUAD84 and SPECFIT/32 programs (upper part). The Cattel’s scree plot of the Wernimont–
Kankare procedure for the determination of the rank of the absorbance matrix of Eltrombopag k* = 6 leads
to six light-absorbing species in the mixture, nc = 6, with the use of Kankare´s s(A), RSD and RSM (lower
part)

2024 J Solution Chem (2017) 46:2014–2037
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latter graphs are plotted on a logarithmic scale (Fig. 3) and the number of light absorbing

species p can be predicted from the index function by finding the point p = k* where the

slope of index function PC(k) = f(k) changes, or by comparing PC(k) values with the

instrumental error sinst*(A) = 0.4 mAU when log10 sinst*(A) = − 3,4. This is common

criterion for determining p. Low values of sinst*(A) prove the reliability of the spec-

trophotometer and experimental technique used [26].

In the spectra set in Fig. 4, the five analytical wavelengths (a) through (e) were those at

which the absorbance-pH curves were analyzed. Six following graphs on Fig. 4 show the

consecutive deprotonation response in the spectra, when each spectrum was deconvoluted

into the spectra of differently protonated species. At pH = 3.10 the species LH2þ
5

accompanied by species LHþ
4 predominates in the solution. At pH = 6.14, together with

the molecule LH3, two species LH
�
2 , LH

þ
4 exhibit absorption bands at the same wavelength

of absorption maximum λmax. At pH = 7.61 the experimental spectrum is decomposed to

three absorption bands concerning the species LH3 which dissociate to species LH�
2 and

LH2−. At pH = 8.85 and 9.16 the species L3− occurs with LH2−, while the concentration of

L3− increases up to pH 10.02.

Attention should be paid to the sensitivity of the analytical wavelengths chosen to

determine the pKa values when overlapped pKa values are observed in compounds in which

the ionizable groups are in symmetrical positions and do not interact. Figure 5 shows four

sets of pH-spectrophotometric titration spectra, monitored at various wavelengths, in which

chromophore(s) are sensitive on pH change. The results of search for the best chemical

model containing either 4 or 5 dissociation constants are shown in Table 2. Four useful

wavelength ranges and the overall range were examined to determine the spectral range in

which the actual chromophore is active and reflects protonation/dissociation of the

molecule. The best regression model was determined by testing two working protonation

models: the first involving four and the other with five dissociation constants. Criterion of

reliability was the goodness-of-fit test. At the same time the estimates of the dissociation

constants using SQUAD84 and REACTLAB were compared. The standard deviation of

residuals and Hamilton R-factor of a relative fitness generally showed that the better fit of

the calculated spectra was always for the protonation model with five dissociation

constants.

Five dissociation constants pKa1, pKa2, pKa3, pKa4, pKa5 and six molar absorptivities of

Eltrombopag eL, eLH, eLH2
, eLH3

, eLH and eLH5
were estimated using SQUAD84 and

REACTLAB in the first run. The reliability of the parameter estimates may be tested with

the following diagnostics:

The first diagnostic value indicates whether all of the parametric estimates βr and ɛr
have physical meaning and reach realistic values. As the standard deviations s(log10 βr) of
log10 βr and s(ɛr) of ɛr are significantly smaller than their corresponding parameter esti-

mates, all the variously protonated species are statistically significant at a significance level

α = 0.05. The absolute values of s(βr), s(ɛr) gives information about the last RSS-contour of
the hyperparaboloid in the neighborhood of the pit, RSSmin. For well-conditioned param-

eters, the last RSS-contour is a regular ellipsoid, and the standard deviations are reasonably

low. High s values are found with ill-conditioned parameters and a “saucer”-shaped pit.

The relation s(βj) 9 Fσ \ βj should be met where Fσ is equal to 3. The set of standard

deviations of ɛr for various wavelengths, s(ɛr) = f(λ), should have a Gaussian distribution;

otherwise, erroneous estimates of ɛr are obtained. Upper part of Fig. 6 shows the estimated

molar absorptivities of all of the protonated species, eL, eLH, eLH2
, eLH3

, eLH and eLH5
, of

Eltrombopag as functions of wavelength. Three species LH�
2 , LH

2− and L3− exhibit similar

spectra at λmax = 440 nm; the intensities of which decrease with increasing protonation.

J Solution Chem (2017) 46:2014–2037 2025

123



Fig. 4 In a spectra set, the five analytical wavelengths (a) through (e) were selected at which the
absorbance-pH curves were plotted. The six following figures from pH= 3.10 through pH = 10.02 show the
consecutive deprotonation response in spectra, when each spectrum was deconvoluted to the spectra of the
differently protonated species present. At pH = 3.10 the species LH2þ

5 predominates accompanied by LHþ
4 .

At pH = 6.14, together with the species LH3 two species LH2þ
5 , LHþ

4 exhibit absorption bands at the same
wavelength of absorption maximum λmax. At pH = 7.61 the experimental spectrum is decomposed to three
absorption bands for the species LH3 which dissociate to species LH�

2 and LH2−. At pH = 8.85 and 9.16 the
species L3− occurs with species LH�

2 and LH2−, and concentration of L3− in the solution increases up to
pH = 10.02
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The species L3− exhibits the highest value ɛmax at λmax = 440 while the species LH�
2 has

the lowest value ɛmax. The species LH3 exhibits a hypsochromic shift relative to LH�
2 to a

lower value of λmax = 420 nm, which is the result of further protonation. Further proto-

nation to the species LH4
+ results in a significant decrease in ɛmax at the same λmax as LH3.

Further acidification to pH = 2 or 1 leads to species LH2þ
5 whose spectrum increases.

Interestingly, the spectra of LH�
2 , LH

2− and L3− are similar with a common λmax = 440 nm

and the spectra of LH3 LHþ
4 and LH2þ

5 are similar in shape with the common

λmax = 420 nm.

The second diagnostic examines whether all of the calculated relative concentrations of

the variously protonated species in the distribution diagram have physical meaning, which

proved to be the case (lower part of Fig. 6) [13]. The calculated free concentrations of the

basic components and variously protonated species of the chemical model should show

molarities down to about 10−8 mol·dm−3. Expressed in percentage terms, a species present

at about 1% relative or less in an equilibrium behaves as numerical noise in a regression

analysis. The distribution diagram in Fig. 6 makes it easier to judge the contributions of

individual species to the total concentration. Since the molar absorptivities will generally

be in the range 103–105 L·mol−1·cm−1, species present at less than ca. 0.1% relative

concentration will affect the absorbance significantly only if their ɛ is extremely high. The

distribution diagram shows the protonation equilibria of LH2þ
5 , LHþ

4 , LH3, LH
�
2 , LH

2− and

L3−. At neutral pH (5–8) Eltrombopag is predominantly LH3 and from pH = 6 to pH = 9,

in the form of species LH�
2 . In the pH range of 6–10 the species LH3 deprotonates to the

species LH�
2 and LH2− and finally to L3−. Acidification of LH3 solution gives firstly LHþ

4 ,

which in solutions of pH = 3–7 predominates reaching 90% relative concentration. Further

acidification from pH = 4 to pH = 1 yields the species LH2þ
5 . At concentrations of 10−4 to

Fig. 5 Four wavelength regions of the 2D-absorbance-pH response spectra set for 9.5 9 10−5 mol·dm−3

Eltrombopag at 25 °C

J Solution Chem (2017) 46:2014–2037 2027

123



T
ab

le
2

T
h
e
se
ar
ch

fo
r
th
e
b
es
t
p
ro
to
n
at
io
n
m
o
d
el

o
f
E
lt
ro
m
b
o
p
ag

in
th
e
p
H

ra
n
g
e
fr
o
m

2
to

1
1
le
ad
s
to

fi
v
e
d
is
so
ci
at
io
n
co
n
st
an
ts

p
K
a
1
,
p
K
a
2
,
p
K
a
3
,
p
K
a
4
,
p
K
a
5
w
it
h

S
Q
U
A
D
8
4
an
d
R
E
A
C
T
L
A
B
at

2
5
°C

W
av
el
en
g
th

o
f
sp
ec
tr
a
ra
n
g
e
u
se
d

3
3
0
–
4
0
0
n
m

4
0
0
–
5
0
0
n
m

3
0
0
–
4
5
0
n
m

4
5
0
–
6
0
0
n
m

3
0
0
–
6
0
0
n
m

C
at
te
l´
s
sc
re
e
p
lo
t
in
d
ic
at
in
g
th
e
ra
n
k
o
f
th
e
ab
so
rb
an
ce

m
at
ri
x
(I
N
D
IC
E
S
)

N
u
m
b
er

o
f
sp
ec
tr
a
m
ea
su
re
d
,
n s

4
3

4
3

4
3

4
3

4
3

N
u
m
b
er

o
f
w
av
el
en
g
th
s,
n w

1
6
5

2
3
5

3
5
2

3
4
3

7
5
0

N
u
m
b
er

o
f
li
g
h
t-
ab
so
rb
in
g
sp
ec
ie
s,
k*

4
o
r
5

4
o
r
5

5
o
r
6

4
o
r

5
o
r

R
es
id
u
al

st
an
d
ar
d
d
ev
ia
ti
o
n
,
s k*
(A
)
(m

A
U
)

0
.9
1
o
r
0
.5
7

1
.3
2
o
r
0
.6
7

0
.9
6
o
r
0
.5
1

0
.9
8
o
r
0
.5
4

0
.9
0
o
r
0
.5
7

D
is
so
ci
at
io
n
co
n
st
an
t

P
ro
g
ra
m

F
o
u
r
p
K

F
iv
e
p
K

F
o
u
r
p
K

F
iv
e
p
K

F
o
u
r
p
K

F
iv
e
p
K

F
o
u
r
p
K

F
iv
e
p
K

F
o
u
r
p
K

F
iv
e
p
K

E
st
im

at
es

o
f
d
is
so
ci
at
io
n
co
n
st
an
ts
in

th
e
se
ar
ch
ed

p
ro
to
n
at
io
n
m
o
d
el

p
K
a
1
(s
1
),

H
5
L
⇌

H
+

H
4
L

S
Q
U
A
D
8
4

3
.0
9
(0
1
)

3
.0
9
(0
6
)

3
.1
4
(0
0
)

3
.1
3
(0
6
)

3
.1
3
(0
0
)

3
.1
2
(0
4
)

3
.0
9
(0
0
)

3
.0
9
(.
2
)

3
.1
3
(0
0
)

3
.1
2
(0
2
)

R
ea
ct
L
ab

3
.1
0
(0
0
)

3
.0
9
(0
0
)

3
.1
4
(0
0
)

3
.1
3
(0
0
)

3
.1
3
(0
0
)

3
.1
2
(0
0
)

3
.0
9
(0
0
)

3
.1
0
(0
0
)

3
.1
2
(0
0
)

3
.1
1
(0
0
)

p
K
a
2
(s
2
),
H
4
L
⇌

H
+

H
3
L

S
Q
U
A
D
8
4

6
.5
0
(0
1
)

6
.5
2
(0
6
)

6
.4
7
(0
0
)

6
.4
9
(0
6
)

6
.4
9
(0
0
)

6
.5
1
(0
4
)

6
.5
1
(0
0
)

6
.4
9
(0
2
)

6
.4
9
(0
0
)

6
.5
0
(0
2
)

R
ea
ct
L
ab

6
.5
1
(0
0
)

6
.5
3
(0
0
)

6
.4
8
(0
0
)

6
.4
9
(0
0
)

6
.5
0
(0
0
)

6
.5
1
(0
0
)

6
.5
2
(0
0
)

6
.4
9
(0
0
)

6
.4
9
(0
0
)

6
.5
0
(0
0
)

p
K
a
3
(s
3
),
H
3
L
⇌

H
+

H
2
L

S
Q
U
A
D
8
4

7
.7
3
(0
1
)

7
.6
2
(0
6
)

7
.6
2
(0
0
)

7
.5
9
(0
6
)

7
.7
8
(0
0
)

7
.6
4
(0
4
)

7
.7
1
(0
0
)

7
.6
0
(0
2
)

7
.7
0
(0
0
)

7
.6
0
(0
2
)

R
ea
ct
L
ab

7
.7
4
(0
0
)

7
.6
1
(0
1
)

7
.6
2
(0
0
)

7
.5
9
(0
1
)

7
.7
9
(0
0
)

7
.6
6
(0
1
)

7
.7
1
(0
0
)

7
.6
0
(0
0
)

7
.7
1
(0
0
)

7
.5
8
(0
0
)

p
K
a
4
(s
4
),

H
2
L
⇌

H
+

H
L

S
Q
U
A
D
8
4

9
.0
0
(0
0
)

8
.5
5
(0
6
)

9
.4
6
(0
0
)

8
.9
7
(0
6
)

9
.1
7
(0
0
)

8
.6
4
(0
3
)

9
.5
0
(0
0
)

8
.7
8
(0
2
)

9
.3
3
(0
0
)

8
.6
9
(0
2
)

R
ea
ct
L
ab

9
.0
0
(0
1
)

8
.5
1
(0
1
)

9
.4
6
(0
1
)

8
.9
1
(0
3
)

9
.2
0
(0
1
)

8
.6
2
(0
2
)

9
.5
0
(0
0
)

8
.7
5
(0
1
)

9
.3
5
(0
0
)

8
.5
7
(0
1
)

p
K
a
5
(s
5
),
H
L
⇌

H
+

L
S
Q
U
A
D
8
4

–
1
0
.0
6
(0
4
)

–
1
0
.0
8
(0
4
)

–
9
.9
9
(0
2
)

–
9
.7
7
(0
1
)

–
9
.9
0
(0
1
)

R
ea
ct
L
ab

–
9
.8
9
(0
2
)

–
9
.9
8
(0
4
)

–
9
.9
5
(0
3
)

–
9
.7
5
(0
1
)

–
9
.7
5
(0
1
)

G
o
o
d
n
es
s-
o
f-
fi
t
te
st
w
it
h
th
e
st
at
is
ti
ca
l
an
al
y
si
s
o
f
re
si
d
u
al
s

M
ea
n
re
si
d
u
al

E
│

ē│
(m

A
U
)

S
Q
U
A
D
8
4

1
.8
4

1
.6
2

2
.4
9

2
.2
9

2
.1
1

1
.8
4

1
.7
0

1
.3
5

1
.9
3

1
.6
5

R
ea
ct
L
ab

0
.9
9

0
.9
4

1
.2
2

1
.0
7

1
.3
7

1
.1
8

1
.2
4

0
.9
9

1
.7
5

1
.2
9

S
ta
n
d
ar
d
d
ev
ia
ti
o
n
o
f
re
si
d
u
al
s
s(
ê)

(m
A
U
)

S
Q
U
A
D
8
4

2
.5
9

2
.2
9

3
.2
8

3
.1
2

2
.9
6

2
.6
5

2
.3
8

1
.9
0

2
.7
3

2
.3
9

R
ea
ct
L
ab

1
.2
1

1
.1
4

1
.4
2
3

1
.2
5

1
.6
3

1
.3
8

1
.4
6

1
.1
8

2
.0
7

1
.5
3

S
ig
m
a
fr
o
m

R
ea
ct
L
ab

(m
A
U
)

S
Q
U
A
D
8
4

–
–

–
–

–
–

–
–

–
–

R
ea
ct
L
ab

2
.5
6

2
.2
4

3
.2
4

3
.0
7

2
.9
3

2
.6
1

2
.3
5

1
.8
4

2
.8
5
9

2
.2
8

2028 J Solution Chem (2017) 46:2014–2037

123



T
ab

le
2

co
n
ti
n
u
ed

R
es
id
u
al
-s
q
u
ar
e-
su
m

fu
n
ct
io
n
R
SS

S
Q
U
A
D
8
4

0
.0
4
2
1
3

0
.0
3
2
0
8

0
.0
9
5
9
3

0
.0
8
4
3
5

0
.1
1
7
0
0

0
.0
9
1
2
0

0
.0
7
4
0
8

0
.0
4
5
0
0

0
.2
1
2
5
0

0
.1
5
8
3
0

R
ea
ct
L
ab

0
.0
4
2
1
6

0
.0
3
2
2
4

0
.0
9
5
9
0

0
.0
8
4
1
3

0
.1
1
8
0
3

0
.0
9
0
8
1

0
.0
7
3
9
5

0
.0
4
5
5
0

0
.2
3
9
1
4

0
.1
4
7
6
5

H
am

il
to
n
R
-f
ac
to
r
fr
o
m

S
Q
U
A
D
8
4
(%

)
S
Q
U
A
D
8
4

0
.4
8

0
.4
2

0
.4
7

0
.4
4

0
.5
0

0
.4
4

0
.5
8

0
.4
5

0
.5
5

0
.4
7

R
ea
ct
L
ab

–
–

–
–

–
–

–
–

–
–

S
o
lu
ti
o
n
o
f
9
.5

9
1
0
−
5
m
o
l·
d
m

−
3
E
lt
ro
m
b
o
p
ag

at
I
=

0
.0
0
0
1
m
o
l·
d
m

−
3
at
2
5
°C

,
fo
r
n s

sp
ec
tr
a
m
ea
su
re
d
at
n w

w
av
el
en
g
th
s
fo
r
n z

=
2
b
as
ic
co
m
p
o
n
en
ts
L
an
d
H
fo
rm

s
n c

=
6

v
ar
io
u
sl
y
p
ro
to
n
at
ed

sp
ec
ie
s.
T
h
e
st
an
d
ar
d
d
ev
ia
ti
o
n
s
o
f
th
e
p
ar
am

et
er

es
ti
m
at
es

ar
e
in

th
e
la
st
v
al
id

d
ig
it
s
in

p
ar
en
th
es
es
.
T
h
e
re
so
lu
ti
o
n
cr
it
er
io
n
an
d
re
li
ab
il
it
y
o
f
p
ar
am

et
er

es
ti
m
at
es

fo
u
n
d
ar
e
p
ro
v
en

w
it
h
g
o
o
d
n
es
s-
o
f-
fi
t
st
at
is
ti
cs
:
th
e
re
si
d
u
al

st
an
d
ar
d
d
ev
ia
ti
o
n
b
y
fa
ct
o
r
an
al
y
si
s
s k
(A
)
(m

A
U
),
th
e
m
ea
n
re
si
d
u
al

E
│
ē│

(m
A
U
),
th
e
st
an
d
ar
d

d
ev
ia
ti
o
n
o
f
ab
so
rb
an
ce

af
te
r
te
rm

in
at
io
n
o
f
th
e
re
g
re
ss
io
n
p
ro
ce
ss

s(
ê)

(m
A
U
),
th
e
si
g
m
a
s(
A
)
(m

A
U
)
fr
o
m

R
E
A
C
T
L
A
B
,
th
e
re
si
d
u
al
sq
u
ar
e
su
m

R
SS
,
th
e
H
am

il
to
n
R
-f
ac
to
r

o
f
re
la
ti
v
e
fi
tn
es
s
(%

)
fr
o
m

S
Q
U
A
D
8
4

J Solution Chem (2017) 46:2014–2037 2029

123



10−6 mol·dm−3, Eltrombopag is sufficiently soluble that all of its dissociation constants can

be spectrophotometrically determined.

The next diagnostic concerns the goodness-of-fit [20]. The goodness-of-fit achieved is

easily seen by examination of the differences between the experimental and calculated

absorbance values, ei = Aexp,i,j − Acalc,i,j. Examination of the spectra and of the graph of the

predicted absorbance response surface through all the experimental points should reveal

whether the results calculated are consistent and whether any gross experimental errors

have been made in the measurement of the spectra. One of the most important statistics

calculated is the standard deviation of absorbance s(A), calculated from a set of refined

parameters at the termination of the minimization process. Although this statistical analysis

of residuals [26] gives the most rigorous test of the degree-of-fit, realistic empirical limits

must be used. The statistical measures of all residuals e prove that the minimum of the

elliptic hyperparaboloid RSS is reached (Table 2): the residual standard deviation s(ê)
always has sufficiently low values, lower than 3 mAU, which is less than 0.2% of measured

absorbance value.

Fig. 6 The graphs of the molar absorption coefficients of six variously protonated species of Eltrombopag
against wavelength (upper part). Corresponding distribution diagram of the relative concentration of the six
variously protonated species for Eltrombopag (lower part), (SPECFIT, ORIGIN)
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Dissociation constants estimated with SQUAD84 and REACTLAB are in a good

agreement. The SQUAD approach has the great advantage in rigorous goodness-of-fit test

made by the statistical analysis of residuals. Reproducibility of four experimental spectra

sets with the use of two regression programs shows that pKa3 = 7, pKa4 = 7.5 and

pKa5 = 9.3 are well-conditioned in the regression model and therefore their numerical

evaluation is quite reliable. The first two dissociation constants pKa1 = 3.1 and pKa2 = 6.5

are ill-conditioned in the regression model; the hyperparaboloid on these two parameters is

rather saucer shaped without a distinctive minimum. Numerical enumeration of all coor-

dinates of this minimum is more difficult and the parameter estimates are therefore less

reliable. Acidifying the solution of a species LH3 leading to species LH
þ
4 and LH2þ

5 may be

disturbed by precipitation of Eltrombopag, which manifests itself especially at higher

concentrations in potentiometric determination. For this reason, it may not be at

0.0001 mol·dm−3, because Eltrombopag in acidic solution precipitates. Both programs

gave the same estimates of all five dissociation constants and identical results for the

goodness-of-fit test.

4.3 Potentiometric Titration Data Analysis

The potentiometric titration of a mixture of HCl and Eltrombopag with potassium

hydroxide was carried out at 25 °C at a constant ionic strength (Fig. 7). The initial tentative

value of the dissociation constant of the drug, corresponding to the midpoint value in each

plateau of the potentiometric titration curve, was refined using the ESAB and the

HYPERQUAD programs.

Because Eltrombopag exhibits four close dissociation constants, their numerical esti-

mation is rather difficult and impossible without the use of a computer assisted nonlinear

regression. A regression analysis was employed with the use of a plateau of the middle part

titration curve, for alkalized Eltrombopag titrated with hydrochloric acid, followed by a

subsequent retitration with potassium hydroxide. The assessed titration curve was calcu-

lated as well the Bjerrum formation protonation curve function, which is shown in the

graph in Fig. 7. On the Bjerrum formation curves the estimates of three or four dissociation

constants pKa2, pKa3, pKa4, pKa5 are plotted. Since at pH above 9 and pH below 5

Eltrombopag forms a fine precipitate, which is observed as a slight opalescence, the

titration data for pH above 9 and below 5 were not used in the regression analysis.

Because it is difficult, in regression analysis, to estimate such close overlapping dis-

sociation constants, two computer programs, ESAB and HYPERQUAD, were used and the

resulting pK estimates were compared. The programs differ in the definition of the sum of

the squares of residuals. While in the ESAB the residuals are defined as the difference

between the experimental and calculated titrant volume, in the HYPERQUAD the residuals

are defined as differences between the experimental and calculated values of pH. The

assumptions of the least-squares method require that the independent variable is not subject

to significant random errors and that the regression analysis is of the dependent variable,

which is carries random experimental errors. This assumption is met only with the program

HYPERQUAD.

Table 3 shows the results of the ESAB and HYPERQUAD regression analyses of a

selected part of the titration curve when the minimization process terminates. Both the

common and the group parameters are refined and the best curve-fitting is proven by the

results of a statistical analysis of the residuals. The reliability of the dissociation constant

may be determined from the goodness-of-fit test in which an increasing number of group

parameters are refined, a better fit is achieved and therefore a more reliable estimate of
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dissociation constants results. As further group parameters are refined the fit is improved. A

quite sensitive criterion of the reliability of the dissociation constant is the mean of

absolute values of residuals E êj j. Comparing residuals with the instrumental noise, sinst(y),
represented here by either sinst(y) = s(V) = 0.0001 mL or sinst(y) = s(pH) = 0.01, an

excellent fit is confirmed because the mean E êj j and the residual standard deviation sðêÞ are
nearly the same and lower than the experimental noise sinst(y). Here, E êj j = 0.0001 mL and

sðêÞ = 0.0002 mL are similar and both are lower than the microburette error s
(V) = 0.0001 mL. As the bias EðêÞ is equal to −2.6 9 10−6 in ESAB, which may be taken

as near to zero, no systematic error in curve fitting is expected. All residuals oscillate

between lower −0.0002 mL and upper 0.0001 mL Hoaglin´s inner bounds and therefore no

outlying residuals lay outside these bounds. Residuals exhibit a normal distribution as

confirmed by the Jarque–Berra normality test for combined sample skewness and kurtosis

(cf. page 80 in Ref. [57]), and also by the skewness g1ðêÞ is near 0 (which is proving a

Fig. 7 Protonation equilibria of Eltrombopag analyzed with ESAB: the pH-potentiometric titration curve of
acidified Eltrombopag plus HCl titrated with KOH is plotted with the Bjerrum protonation function
indicating pK values (upper part). The distribution diagram of a relative presentation of variously protonated
species L3−, LH2−, LH�

2 , LH3 and LHþ
4 of Eltrombopag as functions of pH at 25 °C (lower part) (ESAB,

HYPERQUAD, ORIGIN)
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symmetric distribution), and the kurtosis g2ðêÞ is near 3 (which proves a symmetric normal

distribution). Excellent fitness is indicated and the regression parameter estimates are

considered sufficiently reliable. ESAB has reached constantly better fitness than

HYPERQUAD and therefore it can be concluded that estimates of the dissociation con-

stants estimated by ESAB are more reliable. The individual pair of one dissociation

constant estimated with ESAB and HYPERQUAD, in which the same points of titration

curve were used, differ mostly on the second decimal place. The curve-fitting is signifi-

cantly improved using the refinement of the group parameter L0, the concentration of the

titrated drug Eltrombopag.

The ESAB program minimizing residuals ei = (Vexp,i − Vcalc,i) reaches 0.1 or 0.2

microliters and HYPERQUAD minimizing ei = (pHexp,i − pHcalc,i) reaches SIGMA value

about 1 or less, thus proving an excellent fit. It may be concluded that the reliability of the

dissociation constants of Eltrombopag was proven even when group parameters L0, HT

were ill-conditioned in a model. Their determination is uncertain and might lead to false

estimate of common parameters pKa and therefore make the computational strategy

important. These group parameters can have great influence on a systematic error in the

estimated pKa and they should be refined together with common parameters pKa. External

calibration of pH of the glass electrode cell performed during titration is sufficiently

accurate. Comparing two computational approaches, the ESAB and the HYPERQUAD

programs, ESAB led to a better fitness of the potentiometric titration curve. The goodness-

Table 3 Four dissociation constants pKa2, pKa3, pKa4, pKa5 of Eltrombopag when their standard deviations
in last valid digits are in parentheses

HYPERQUAD ESAB

Number of points n 39 39

pKa2 (s1), H4L ⇌ H+ + H3L 6.60(13) 6.59(01)

pKa3 (s2), H3L ⇌ H+ + H2L
− 7.38(12) 7.56(04)

pKa4 (s3), H2L ⇌ H+ + HL 8.46(09) 8.48(59)

pKa5 (s4), HL ⇌ H+ + L 8.77(07) 9.29(34)

L0 concentration of drug (mol·dm−3) 4.6 9 10−4 1.7 9 10−4

Goodness of fit test by the statistical analysis of residuals in pH (HYPERQUAD) or in V (mL) (ESAB)

Sigma in pH units (HYPERQUAD) 0.615 pH units *

Bias, arithmetic mean of residuals E(ê) −9.05 9 10−3 pH units 6.9 9 10−5 mL

Residual mean, E│ē│ 0.0228 pH units 0.0001 mL

Standard deviation of residuals, s(ê) 0.0335 pH units 0.0004 mL

Residual skewness, g1(ê) 1.08 0.14

Residual kurtosis, g2(ê) 8.42 3.39

Jarque–Bera normality test Rejected Accepted

The reliability of parameter estimation is proven with a goodness-of-fit statistics: the sigma in pH units from
HYPERQUAD, the bias or arithmetic mean of residuals E(ê) (mL), the residual mean E│ē│ (mL), the
standard deviation of residuals s(ê) (mL), the residual skewness g1(ê) and the residual kurtosis g2(ê) proving
a Gaussian distribution and Jarque-Berra normality test. ESAB and HYPERQUAD refinement of common
and group parameters for a titration of Eltrombopag with HCl and KOH were performed

Common parameters refined: pKa2, pKa3, pKa4, pKa5. Group parameters refined: L0. Constants: HT-

= − 0.8138 mol·dm−3, t = 25.0 °C, pKw = 13.9799, V0 = 20.22 mL, s(V) = sinst(y) = 0.0001 mL, s
(pH) = sinst(y) = 0.01, I0 = 0.004 (in vessel), IT = 0.8138 (in burette KOH) or 1.0442 (in burette HCl)

* Means that statistics is not available in the program’s output
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of-fit proved sufficient reliability of parameter estimates for four dissociation constants of

drug Eltrombopag at 25 °C.

5 Conclusion

Spectrophotometric and potentiometric pH-titration allowed the measurement of five

dissociation constants of Eltrombopag, but low solubility at pH above 9 and below 5, at

micromolar Eltrombopag concentrations, limits the estimation of the pKa above pH = 10

and in potentiometry lower than 5.

(1) At neutral pH, Eltrombopag occurs in the sparingly soluble form LH3, which can be

protonated to form the soluble species LHþ
4 . The species LH3 can also dissociate into the

water soluble species L3−. Acid–base titration of the triprotic molecule LH3 with KOH

leads to a mixture of six species H3O
+, OH−, LH3, LH

�
2 , LH

2−, L3− and K+. The graph of

molar absorption coefficients of variously protonated species against wavelength shows

that the spectra of species LH3 and LH�
2 are of only slightly different. The same is true for

the chromophores LH2− to LH�
2 , while protonation of chromophore LH�

2 to LH3 has

greater influence on chromophores in Eltrombopag and results in considerable spectral

change.

(2) We have proven that in the range of pH = 2–10 five dissociation constants can be

reliably estimated from the spectra when concentration of Eltrombopag are less than 10−4

mol·dm−3. Although the change of pH somewhat less affected changes in the chromophore,

five mixed dissociation constants at an ionic strength I = 0.005 mol·dm−3 can be reliably

determined with REACTLAB and SQUAD84 reaching the similar values with both pro-

grams. From a dependence on ionic strength the thermodynamic dissociation constants

were estimated at 25 °C (Fig. 8): pKT
a1 = 2.69, pKT

a2 = 6.97, pKT
a3 = 7.13, pKT

a4 = 7.65, and

pKT
a5 = 8.30

(3) Four dissociation constants of Eltrombopag in concentration of 5 μmol·dm−3 were

determined by regression analysis of potentiometric titration curves without adjusting the

ionic strength I = 0.005 mol·dm−3 and using ESAB and HYPERQUAD, reaching the

Fig. 8 Dependence of the mixed dissociation constants of Eltrombopag on the square root of the ionic
strength for five dissociation constants at 25 °C
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similar values with both programs pKa2 = 6.59(01), pKa3 = 7.56(04), pKa4 = 8.48(59),

pKa5 = 9.29(34) at 25 °C (Table 3). The standard deviations in the last valid unit number

are in the parentheses.

(4) Prediction of the dissociation constants of Eltrombopag was performed using the

MARVIN program to specify protonation locations to give the values in Table 1. Com-

paring two predictive with two experimental techniques it may be concluded that the

prediction programs often vary considerably in the estimation of pKa. It was proven that

the most reliable regression estimate of the dissociation constants comes from the reliable

experimental data. In the case of close dissociation constants a higher degree of uncertainty

in estimates should be expected and therefore usually two independent instrumental

methods should be to applied and the results calculated using several independent pro-

grams to compare.
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27. Meloun, M., Bordovská, S.: Benchmarking and validating algorithms that estimate pKa values of drugs
based on their molecular structures. Anal. Bioanal. Chem. 389, 1267–1281 (2007). doi:10.1007/s00216-
007-1502-x

28. Tam, K.Y., Hadley, M., Patterson, W.: Multiwavelength spectrophotometric determination of acid
dissociation constants, Part IV. Water-insoluble pyridine derivatives. Talanta 49, 539–546 (1999)

29. Leggett, D.J.: Numerical analysis of multicomponent spectra. Anal. Chem. 49, 276–281 (1977)
30. Leggett, D.J., Kelly, S.L., Shiue, L.R., Wu, Y.T., Chang, D., Kadish, K.M.: A computational approach

to the spectrophotometric determination of stability constants-II. Application to metalloporphyrin-axial
ligand interactions in non-aqueous solvents. Talanta 30, 579–586 (1983). doi:10.1016/0039-9140(83)
80136-2

31. Maeder, M., King, P.: Analysis of chemical processes, determination of the reaction mechanism and
fitting of equilibrium and rate constants. In: Varmusa, K. (ed): Chemometrics in Practical Applications.
Intech (2012). https://www.intechopen.com/books/chemometrics-in-practical-applications/analysis-of-
chemical-processes-determination-of-the-reaction-mechanism-and-fitting-of-equilibrium-an. Accessed
1 Oct 2017

32. Gampp, H., Maeder, M., Meyer, C.J., Zuberbuhler, A.D.: Calculation of equilibrium constants from
multiwavelength spectroscopic data–II: SPECFIT: two user-friendly programs in basic and standard
FORTRAN 77. Talanta 32, 257–264 (1985)
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