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The  resolving  power  of  multicomponent  spectral  analysis  and  the  computation  reliability  of the  stability
constants  and  molar  absorptivities  determined  for five  variously  protonated  anions  of  physostigmine
salicylate  by  the  SQUAD(84)  and  SPECFIT/32  programs  has  been  examined  with  the  use  of  simulated
and  experimental  spectra  containing  overlapping  spectral  bands.  The  reliability  of  the  dissociation  con-
stants of drug  was  proven  with  goodness-of-fit  tests  and  by examining  the  influence  of  pre-selected
noise  level  sinst(A)  in  synthetic  spectra  regarding  the  precision  s(pK)  and  also  accuracy  of the  estimated
dissociation  constants.  Precision  was  examined  as the linear  regression  model  s(pK)  =  ˇ0 +  ˇ1 sinst(A). In
all  cases  the  intercept  ˇ0 was  statistically  insignificant.  When  an instrumental  error  sinst(A) is small  and
less  than  0.5 mAU,  the  parameters’  estimates  are  nearly  the  same  as  the  bias  �pK  =  pKa,calc −  pKa,true is
hysostigmine salicylate quite  negligible.  In  all four dissociation  constants  the  bias  seems  to be quite  small  even  though  for  pKa4

it is  a little  bit higher,  i.e.,  +0.05  for sinst(A)  about  1.0  mAU.  In the  interval  of  sinst(A)  from  0.1 to  1.0  mAU
all  four  dissociation  constants  pKi are  accurate  enough.  Of the  various  regression  diagnostics  considered,
the  goodness-of-fit  is  the most  efficient  criterion  of whether  the  parameters  found  adequately  represent
the data.  The  magnitude  of instrumental  error  sinst(A)  only  slightly  affects  the  shape  of  a Cattel’s  scree
graph  sk(A)  = f(k)  to determine  the  true  number  of light-absorbing  species  in the  equilibrium  mixture.
. Introduction

The programs for multicomponent spectral analysis [1–8] can
acilitate the identification and resolution of individual compo-
ents of a mixture and also determine the protonation constants
nd molar absorptivities of variously protonated species in solu-
ion equilibria. Multi-wavelength spectrophotometric pH-titration
ata in general offer considerably more information than potentio-
etric titration data about chemical equilibria. As shown earlier,

QUAD(84) [4–6] and SPECFIT/32 [8–12] are particularly reliable
nd efficient diagnostic tools.

In their previous work [13–23] the authors have shown that the
pectrophotometric method in combination with suitable chemo-
etric tools can be used to determine protonation constants ˇr

r acid dissociation constants Ka even for barely soluble drugs.

pectrophotometry is a convenient method for Ka determination
n very diluted aqueous solutions (about 10−5–10−6 M),  providing
hat the compound possesses pH-dependent light absorption due

∗ Corresponding author. Tel.: +420 466037026; fax: +420 466037068.
E-mail address: milan.meloun@upce.cz (M.  Meloun).

386-1425/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.saa.2011.10.041
© 2011 Elsevier B.V. All rights reserved.

to the presence of a chromophore in proximity to the ionization
centre cf. Refs. [24–32].  There are many cases in which the spectral
responses of two and sometimes even more components overlap
considerably, and analysis is not straightforward [15]. Problems
arise because of strong overlapping chemical components involved
in the equilibrium, and uncertainties arising from the mathemat-
ical algorithms used to solve such problems [16]. In such cases,
much more information can be extracted if multivariate and mul-
tiwavelength spectrophotometric data are analyzed by means of
appropriate multivariate data-analysis software.

The most relevant algorithms are the hard-modelling pro-
gramme  SQUAD(84) [5–7] with the Newton–Raphson method
in nonlinear least-squares minimization and the soft-modelling
programme SPECFIT/32 [8–10,12] with the Levenberg–Marquardt
minimization method. The resolving power of these two  programs
has now been tested by estimating four dissociation constants of
physostigmine salicylate from spectral measurements; it should
be noted that the spectral bands of the individual variously pro-

tonated anions overlap. The reliability of determining dissociation
constants and molar absorptivity was examined using simulated
and experimental data; this was done as a function of the instru-
mental error of absorbance reading for mixtures in which some

dx.doi.org/10.1016/j.saa.2011.10.041
http://www.sciencedirect.com/science/journal/13861425
http://www.elsevier.com/locate/saa
mailto:milan.meloun@upce.cz
dx.doi.org/10.1016/j.saa.2011.10.041
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pecies involved in the protonation equilibria were of a similar
olour. The efficiency of both programs has been verified and a
trategy of efficient computation was used as described previously
14].

Recently, the alkaloid physostigmine salicylate, also
nown as eserine (C15H21N3O2) is the carbaminic acid
ster of 2-hydroxy-(3aS-cis)-1,2,3,3a,8,8a-hexahydro-1,3a,8-
rimethylpyrrolo[2,3-b]-indol was studied in our laboratory.
he actual drug in this case is the salicylate of physostigmine
physostigminium salicylicum) having a molecular weight of
13.46 and a melting point of 185–187 ◦C, Ref. [33].

The published dissociation constant is pKa = 8.27 at I = 0.1
NaClO4) and 25 ◦C, Ref. [17]. It belongs to the therapeutic cat-
gory – cholinergic (anticholinesterase), miotic. The protonation
cheme of physostigmine salicylate predicted with SPARC pro-
ramme  brings Fig. 1.

. Theoretical

.1. Procedure for the determination of the
rotonation/dissociation constants

An acid–base equilibrium of the drug studied is described in
erms of the thermodynamic protonation of the Brönsted base Lz−1

ccording to the equation Lz−1 + H+ � HLz characterized by the pro-
onation constant

H = aHLz

az−1
L aH+

= [HLz]

[Lz−1][H+]

yHLz

yLz−1 yH+
(1)

here yHLz , yLz−1 , yH+ are the activity coefficients of particular
pecies. The protonation equilibria between the anion L (the
harges are omitted for the sake of simplicity) of a drug and a
roton H are considered to form a set of variously protonated
pecies L, HL, H2L, H3L, etc., which have the general formula HrL
n a particular chemical model and which are represented by nc the
umber of species, ri, i = 1, . . .,  nc where index i labels their partic-
lar stoichiometry; the overall protonation (stability) constant of
he protonated species, ˇr, may  then be expressed as

qr = [LqHr]

[Lq][H]r = c

lq hr
(2)

here the free concentration [L] = l, [H] = h and [LqHr] = c. For dis-
ociation reactions realized at constant ionic strength the so-called
mixed dissociation constants” are defined as

a,j = [Hj−1L]aH+

[HjL]
(3)

As each aqueous species is characterized by its own spectrum,
or UV/vis experiments and the ith solution measured at the jth
avelength, the Lambert–Beer law relates the absorbance, Ai,j,

eing defined as

ij =
nc∑

n=1

εj,ncn =
nc∑

n=1

(εr,jˇr lhr)
n

(4)

here εr,j is the molar absorptivity of the HrL species with the sto-

chiometric coefficient r measured at the jth wavelength and q = 1.
he absorbance Ai,j is an element of the absorbance matrix A of size
ns × nw) being measured for ns solutions with known total concen-
rations of nz = 2 basic components, cL and cH, at nw wavelengths.
ta Part A 86 (2012) 305– 314

2.2. Multicomponent spectral analysis

The multicomponent spectral analysis programs with exper-
imental and computational strategy were described previously
[13–16]. The parameters to be determined are (i) the stoichiomet-
ric indices, (ii) the protonation stability constants ˇr and molar
absorptivities εr and (iii) the free concentrations of all the species in
the estimated chemical model. A multicomponent spectral analysis
program can adjust �qr and εqr for absorption spectra by minimiz-
ing the residual-square sum function RSS denoted here as U(b),

tUb =
ns∑

i=1

nw∑
j=1

(Aexp,i,j − Acalc,i,j)
2 =

ns∑
i=1

nw∑
j=1

(
Aexp,i,j −

nc∑
k=1

εj,kck

)2

= minimum (5)

where Ai,j represents an element of the experimental absorbance
response-surface of size ns × nw and the independent variables ck
are the total concentrations of the basic components cL and cH being
adjusted in ns solutions. Unknown parameters are the best esti-
mates of the protonation constants, �qr,i, i = 1, . . .,  nc, which are
adjusted by the regression algorithm. At the same time, a matrix
of molar absorptivities (εqr,j, j = 1, . . .,  nw)k, k = 1, . . .,  nc, as non-
negative real numbers is estimated, based on the current values
of protonation constants. For a set of current values of �qr,i, the
free concentrations of ligand l for each solution are calculated, as
h is known from the pH measurement. Then, the concentrations of
all the species in the equilibrium mixture [LqHr]j, j = 1, . . .,  nc are
obtained; they represent ns solutions of the matrix C. If the agree-
ment is not considered satisfactory, new chemical models are tried
until a better fit with the experimental data is obtained. The present
communication deals with the situation in which the chemical
model is known and the reliability of parameter-determination by
spectral analysis is examined.

2.3. Errors in spectral data

To test the ability of the programs to find true parametric esti-
mates, the examination of simulated data is a useful tool, allowing
systematic evaluation of the effect of noise levels in the data.
Spectral data may  be subject to three kinds of error: (i) normally
distributed random errors, which cannot be eliminated from the
data, (ii) systematic errors, which are sometimes difficult to iden-
tify and eliminate, and (iii) gross errors. When simulated data
are used, wavelengths and concentrations are regarded as error-
free, and random errors generated in accordance with the selected
standard deviation of absorbance, sinst(A) are imposed on the pre-
cisely calculated error-free values of absorbances. In experimental
work, of course, random and systematic error can arise in both the
wavelength settings and the reagent concentrations, and cannot
usually be distinguished. The sources of systematic error in pH
measurement are well known and documented. Coloured impu-
rities in a drug may  have an acid–base character, in which case
the background colour will vary with pH. At low pH some species
may separate from the solution and/or be adsorbed in the cuvette
walls, and at higher concentrations oligomers and micelles of the
drug molecule may  be formed and changes in ionic strength or
reagent concentrations cause a systematic rather than a random
error. However, all statistical tests in the program are based on the
assumption that systematic errors are absent from the data.

2.4. Spectra modelling with simulated data
Multicomponent spectral analysis programs can also be applied
when an adequate chemical model is known and only resolution
of the spectra by use of different algorithms is to be investigated.
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Fig. 1. Deprotonation pathway of physostigmine salicylate is taken 

o characterize the program performance, simulated data can be
sed. Model spectra of a mixture of acid/base pairs are simulated
s the sum of Gaussian peaks, each generated from three arbitrary
onstants: the wavelength (�max), the molar absorptivity (εmax) at
his wavelength and the effective band-width (ı) at half-intensity.
hese characteristics also describe the degree of overlap of the
pectra of the individual species. This approach allows examina-
ion of (i) the effect of the overall spectrophotometric error sinst(A)
n the precision and accuracy of the parameter estimate, (ii) var-
ous regression algorithms, (iii) the sensitivity of each parameter
n the model, and also allows establishment of an optimum com-
utational strategy for efficient data treatment. The residuals are
nalyzed to test whether the refined parameters adequately rep-
esent the data, and should be randomly distributed about the
redicted regression curve. To analyze the residuals, the following
tatistics are compared with those of the generated random errors
n noise to find whether both distributions are Gaussian in nature:
he random errors mean m�,1 in comparison with the residual mean

e,l, the mean random error |�| in comparison with the mean resid-
al |e|, the standard deviation of random errors s(�) in comparison
ith that of the residuals s(e), the skewness of the random error set
�,3 in comparison with that of the residual set me,3, the kurtosis of

he random error set m�,4 in comparison with that of the residual
et me,4, and finally the Hamilton R-factor for relative fit, R(�) in
omparison with R(e).

.5. Signal-to-noise ratio SER

Direct results from experimental and instrumental operations
n a laboratory are always approximate, mainly because of the lim-
ted accuracy and precision of measuring instruments. The level of
experimental noise” should be used in the experiment as a critical
actor. Therefore, it is necessary to have a consistent definition of
he signal-to-noise ratio SNR so that the impact of this character-
stic can be critically assessed. Traditional approaches to SNR are
ypically based on the ratio of the maximum signal to maximum
oise value. As an alternative, the concept of instrumental error
as again employed and the signal-to-error ratio SER is defined
here the instrumental standard deviation of absorbance sinst(A)

s used for an error. The plot of small absorbance changes in the

pectrum when dissociation of the drug studied means that the
alue of the absorbance difference for the jth-wavelength of the
th-spectrum �ij = Aij − Ai,acid is divided by the instrumental stan-
ard deviation sinst(A), and the resulting ratios SER = �/sinst(A) are
 prediction programme SPARC (http://archemcalc.com/sparc/pKa/).

plotted in dependence of wavelength � for all absorbance matrix
elements, where Ai,acid is the initial spectrum of the acid form of
the drug being measured for the starting pH value of the pH range
studied. This SER ratio is then compared with the limiting SER value
to test if the absorbance changes are significantly larger than the
instrumental noise. The plot of the ratio e/sinst(A), i.e., the ratio of the
residuals divided by the instrumental standard deviation sinst(A)
depending on wavelength � for all the residual matrix elements is
for testing to ascertain if the residuals are of the same or similar
magnitude as the instrumental noise to prove the best curve fitting
achieved.

2.6. Reliability of estimated dissociation constants

The reliability of determined parameter estimates, bj, j = 1, . . .,
m, for m unknown parameters (dissociation constants and molar
absorption coefficients) may be examined by the goodness-of-fit
test also called the fitness test, cf. page 101 in Ref. [24]. A source
of problems may  be found in components of a regression triplet
[the data quality for a proposed model, the model for a given data
set, and the method of estimation based on fulfilment of all least-
squares assumptions] described previously [14].

3. Experimental

3.1. Chemicals and solutions

Hydrochloric acid, 1 M,  was prepared from conc. HCl (p.a.,
Lachema Brno) using redistilled water and standardized against
HgO and KI with reproducibility of less than 0.2%. Potassium
hydroxide, 1 M,  was prepared from pellets (p.a., Aldrich Chemical
Company) with carbon dioxide-free redistilled water and stan-
dardized against standardized HCl with a reproducibility of 0.1%.
The preparation of other solutions from analytical reagent-grade
chemicals has been described previously [30–32].  Physostigmine
salicylate 7 × 10−5 M,  was prepared from solid samples [17] using
redistilled water. The high purity of the substances (over 98%) was
guaranteed by the supplier.

3.2. Apparatus and pH-spectrophotometric titration procedure
The apparatus Cintra 40 (GBC, Australia) spectrophotometer
used and the pH-spectrophotometric titration procedure have been
described previously [15,17].  The experimental and computation

http://archemcalc.com/sparc/pKa/
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cheme for the determination of the protonation constants of the
ulticomponent system is taken from Meloun et al., cf. page 226

n Ref. [24] and the five-step procedure is described in details else-
here [15,16].

.3. Software used

Computation relating to the determination of dissociation con-
tants was performed by regression analysis of the UV/vis spectra
sing the SQUAD(84) [5] and SPECFIT/32 [8–10,12] programs. Most
f graphs were plotted using ORIGIN 8 [34] and S-Plus [35]. The
hermodynamic dissociation constant pKT

a was estimated with the
INOPT nonlinear regression programme in the ADSTAT statistical

ystem [36] (TriloByte Statistical Software, Ltd., Czech Republic). A
ualitative interpretation of the spectra with the use of the INDICES
rogram [19] aims to evaluate the quality of the dataset and remove
purious data, and to estimate the minimum number of factors,  i.e.,
ontributing aqueous species, which are necessary to describe the
xperimental data and determine the number of dominant species
resent in the equilibrium mixture.

.4. Supporting information available

Complete experimental and computational procedures, input
ata specimens and corresponding output in numerical and graph-

cal form for the programs INDICES, SQUAD(84) and SPECFIT/32 are
vailable free of charge on line at http://meloun.upce.cz and in the
OWNLOAD and DATA blocks.

. Discussion

.1. Analysis of laboratory data

Recently, physostigmine salicylate studied in our laboratory
epresents a drug acid which exhibits quite small changes in spec-
ra when pH changing. Other instrumental methods could not be
sed due to limited solubility in water. It is wise before starting

 regression to analyze actual experimental spectra, to search for
cientific library sources, to obtain a good default for the number of
onizing groups and numerical values for the initial guess as to the
elevant protonation constants and the probable spectral traces of
ll the expected components in protonation equilibria mixture.

pH-spectrophotometric titration enables absorbance-response
ata (Fig. 2a and b) to be obtained for analysis by the least-squares
onlinear regression, and the reliability of parameter estimates
pK’s and ε’s) can be evaluated on the basis of the goodness-of-fit
est of residuals. Some changes in spectra (Fig. 2c) are small within
eprotonation; in fact, both of the variously protonated species
H2 and LH3 exhibit quite similar absorption bands. The adjust-
ent of pH value from 2 to 11 causes the absorbance to change

nly by 0.150 of the A-pH curve, so that the monitoring of five
omponents L, LH, LH2, LH3 and LH4 of the protonation equilib-
ium is rather unsure (Fig. 2c and d). As the changes in spectra
re small, a very precise measurement of absorbance is neces-
ary for reliable detection of the protonation equilibrium studied.
espite the fact that potentiometric determination of dissocia-

ion constants of physostigmine salicylate leads to only one pKT
a =

.07(3), spectrophotometric determination enables an estimate of
our dissociation constants and molar absorption coefficients of five
ariously protonated species L, LH, LH2, LH3, and LH4 of physostig-
ine salicylate. The best curve fitting of experimental spectra set
ith the lowest residuals and the lowest value of the Hamilton R-
actor of relative fitness was achieved in the case of 5 species and
 dissociation constants (Table 1).

The chemical model of four dissociation constants and five molar
bsorptivities of physostigmine salicylate was calculated for 26
ta Part A 86 (2012) 305– 314

wavelengths to constitute and estimate 5 + (5 × 26) = 135 unknown
parameters, which were estimated and refined by SQUAD(84)
or SPECFIT/32 programs in the first run. The reliability of the
parameter estimates found may  be tested using the following five
diagnostics of the regression triplet procedure:

The 1st diagnostic indicates whether all of the paramet-
ric estimates pKa,r and εr have physical meaning and reach
realistic values for 46 values of pH-spectra of physostigmine
salicylate measured at 26 wavelengths. The SQUAD(84) pro-
gramme  terminates with the parameter estimates pKa1 = 2.760(51),
pKa2 = 3.969(111), pKa3 = 8.281(53) and pKa4 = 10.960(69) at 25 ◦C
and ionic strength I = 0.023 M KCl with s(A) = 0.36 mAU while
the SPECFIT/32 program leads to estimates pKa1 = 2.759(55),
pKa2 = 3.969(41), pKa3 = 8.280(16), and pKa4 = 10.970(18) at 25 ◦C
and ionic strength I = 0.023 M KCl with s(A) = 0.40 mAU. As the
standard deviations s(pKa) of parameters pKa in brackets of each
pKa and s(εr) of parameters εr are significantly smaller than their
corresponding parameter estimates (Table 1), all the variously pro-
tonated species are statistically significant at a significance level

 ̨ = 0.05. The physical meaning of the dissociation constant pKa,r,
molar absorptivities εr, and stoichiometric indices r are examined
in searching the protonation equilibria model in Table 1. The 1st
hypothesis of the protonation model L, HL, is rejected, since poor
fitness was  achieved. The absolute values of s(pKa,j), s(εj) give infor-
mation about the last U-contour of the hyperparaboloid in the
neighbourhood of the pit, Umin. For well-conditioned parameters,
the last U-contour is a regular ellipsoid, and the standard deviations
are reasonably low. High s values are found with ill-conditioned
parameters and a “saucer”-shaped pit, cf. Ref. [24]. The relation
s(ˇj) × F� < ˇj should be met  where F� is equal to 3. The graph Fig. 2c
shows that the estimated molar absorptivities of all of the variously
protonated species εL, εLH, εLH2 , εLH3 and εLH4 of physostigmine sali-
cylate depending on wavelength are realistic. Some spectra overlap
and may  cause some resolution difficulties in regression analysis.
As some protonation models in the model search of Table 1 (1st
model: L, LH, 2nd model: L, LH, LH2, 3rd model: L, LH, LH2, LH3, 4th
model: L, LH, LH2, LH3, LH4) were tested, it may  be concluded that
regression spectra analysis can distinguish among these models,
and on the basis of a very good spectra fitting the model L, LH, LH2,
LH3, LH4 was  proven.

The 2nd diagnostic tests whether all of the calculated free
concentrations of the five variously protonated species on the
distribution diagram of the relative concentration expressed as a
percentage have physical meaning, which proved to be the case
(Fig. 2d). The calculated free concentration of the basic components
and variously protonated species of the protonation equilibria
model should show molarities down to about 10−8 M.  Expressed
in percentage terms, a species present at about 1% relative con-
centration or less in an equilibrium behaves as numerical noise
in a regression analysis. A distribution diagram of relative con-
centration shows the protonation equilibria of L, LH, LH2, LH3,
LH4 depending on pH in Fig. 2d and makes it easier to judge
quickly the contributions of individual species to the total concen-
tration. Since the molar absorptivities will generally be in the range
103–105 l mol−1 cm−1, species present at less than ca.  0.1% relative
concentration will affect the absorbance significantly only if their
ε is extremely high.

The 3rd diagnostic of the number of light-absorbing species was
estimated using the INDICES algorithm [19] (Table 1, row k* and
sk(A)). The number of light-absorbing species k* can be predicted
from the index function values by finding the point k* = k where
the slope of index function PC(k) = f(k) changes, or by comparing

PC(k) values to the instrumental error sinst(A). Very low value of
sinst(A) in Table 1 proves that a sufficiently precise spectrophotome-
ter and efficient experimental technique were used. The position
of the break point on the sk(A) = f(k) curve in the factor analysis

http://meloun.upce.cz/
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Table 1
The search for a protonation model LHr of physostigmine salicylate with dissociation constants pKa,r using the SQUAD nonlinear regression analysis at the ionic strength
I  = 0.046 and 25 ◦C. The standard deviations of the parameters estimated in the last digits are in brackets. The charges are for case of simplicity omitted. Because of working
tool  three decimal places of pK were used here.

q, r pKqr pKqr pKqr pKqr

1, 0 – – – –
1,  1 7.973(28) 7.516(214) 3.065(61) 2.529(53)
1,  2 – 10.645(176) 7.768(56) 4.307(37)
1,  3 – – 10.976(49) 7.864(25)
1,  4 – – – 10.887(20)
s(A)  [mAU] 7.54 7.09 1.16 0.54
sk(A) [mAU] and k* 5.99 and 2 0.84 and 3 0.26 and 4 0.17 and 5
|e|  [mAU] 4.76 3.73 0.68 0.31
g1(e) 0.23 0.26 −0.95 0.32

6.18
4.22
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g2(e) 4.86 

R-factor [%] 4.63 

Hypothesis of model is Rejected 

cree plot is calculated and gives k = 5 with the corresponding co-
rdinate s5(A) = 0.17 mAU, which may  also be taken as the actual
nstrumental error sinst(A) of the spectrophotometer used, Fig. 6d.

The 4th diagnostic concerns the goodness-of-fit (Table 1). The
oodness-of-fit achieved is easily seen by examination of the
ifferences between the experimental and calculated values of
bsorbance, ei = Aexp,i,j − Acalc,i,j. Examination of the spectra and of
he graph of the predicted absorbance response-surface through
ll the experimental points should reveal whether the results cal-
ulated are consistent and whether any gross experimental errors
ave been made in the measurement of the spectra. One of the
ost important statistics calculated is the standard deviation of

bsorbance, s(A), calculated from a set of refined parameters at
he termination of the minimization process. Although this sta-
istical analysis of residuals gives the most rigorous test of the

egree-of-fit, realistic empirical limits must be used. The statistical
easures of all residuals e prove that the minimum of the elliptic

yperparaboloid U is reached with SQUAD(84): the residual stan-
ard deviation s(e) = 0.32 mAU  always has sufficiently low values.

ig. 2. (a) The 3D-absorbance-response-surface representing the measured multiwave
epending on pH at 25 ◦C, (b) Absorption spectra of 7 × 10−5 M physostigmine depending
s.  wavelengths � [nm] for the variously protonated species L, HL, H2L, H3L and H4L; (d) di
,  HL, H2L H3L and H4L of physostigmine depending on pH at 25 ◦C, (SPECFIT/32, ORIGIN)
 6.05 5.84
 0.67 0.30
cted Rejected Accepted

Presentation of the residuals in Table 1 assists the detection of an
outlier spectrum point, a trend in the spectrum residuals, or an
abrupt shift of level in the spectra. The statistical measures of all the
residuals prove that the minimum of the elliptic hyperparaboloid is
reached: the mean residual

∣∣ē∣∣ = 0.31 mAU  and the residual stan-
dard deviation s(e) = 0.54 mAU have sufficiently low values. The
skewness g1(e) = 0.32 is close to zero and proves a symmetric distri-
bution of the residuals set, while the kurtosis g2(e) = 5.84 is proving
a symmetric Laplace distribution. The Hamilton R-factor of rela-
tive fitness is 0.30% calculated with SQUAD(84) only, thus proving
an excellent achieved fitness, and the parameter estimates may
therefore be considered quite reliable. If the Hamilton R-factor of
relative fit, expressed as a percentage is <0.5%, the fit is excellent.
The criteria of resolution used for the hypotheses were: (1) a fail-
ure of the minimization process in a divergence or a cyclization; (2)

an examination of the physical meaning of the estimated param-
eters to ensure that they were both realistic and positive; and (3)
the residuals should be randomly distributed about the predicted
regression spectrum, and systematic departures from randomness

length absorption spectra of protonation equilibria for physostigmine salicylate
 on pH at 25 ◦C; (c) pure spectra profiles of molar absorptivities ε [mol−1 dm3 cm−1]
stribution diagram of the relative concentrations of all variously protonated species
. The charges of species are omitted for the sake of simplicity.
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Table 2
Thermodynamic dissociation constants for physostigmine salicylate at 25 ◦C and
37 ◦C. The standard deviations of the parameters estimated in the last digits are in
brackets.

25 ◦C 37 ◦C

pKa1 2.93(8) 2.61(13)
pKa2 3.95(8) 3.79(2)
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pKa3 8.43(2) 8.05(2)
pKa4 10.04(6) 10.54(7)

ere taken to indicate that either the chemical model or the param-
ter estimates were unsatisfactory.

To express and analyze small changes of absorbance in the
pectral set, the absorbance differences for the j-th wavelength
f the i-th spectrum �i = Aij − Ai,acid were calculated so that the
bsorbance value of the acidic form was subtracted from the
bsorbance value of the spectrum measured at the actual pH. The
bsorbance difference �i was then divided by the actual instru-
ental standard deviation sinst(A) of the spectrophotometer used,

nd the resulting value represents the signal-to-error value SER.
ig. 3a shows a graph of the SER depending on wavelength in
he measured range for the drug used. When the SER is larger
han 10, a factor analysis is sufficiently able to predict the correct
umber of light-absorbing components in the equilibrium mix-
ure. To prove that non-linear regression also can analyze such
ata of small absorbance changes, the residuals set was  compared
ith the instrumental noise sinst(A). If the ratio e/sinst(A) is of sim-

lar magnitude, i.e., nearly equal to one, it means that sufficient
urve fitting was achieved by the non-linear regression of the
pectra set and that the minimization process found the mini-
um  of the residual-square-sum function Umin. Fig. 3b shows a

omparison of the ratio e/sinst(A) depending on wavelength for
hysostigmine salicylate measured. From the figure it is obvious
hat most of the residuals are of the same magnitude as the instru-

ental noise and thus indicates that changes of absorbance are 100
imes larger and therefore sufficient reliability of the regression
rocess is proven.

The thermodynamic dissociation constants of 4 unknown
arameters pKT

a at 25 ◦C and 37 ◦C were estimated by applying a
ebye–Hückel equation to the data of Fig. 4; Table 2 shows point
stimates of four thermodynamic dissociation constants with stan-
ard deviation in brackets of the physostigmine salicylate. Because
f the narrow range of ionic strengths, the ion-size parameter å and
he salting-out coefficient C could not be estimated.

.2. Analysis of simulated data

The performance of SQUAD(84) [5–7] and SPECFIT/32 [8–10]
as first tested with a simulated data set of physostigmine

alicylate, which allowed systematic variation of the spectral,
quilibrium and noise characteristics. The primary study was  to
etermine the effect of the precision of the absorbance data
inst(A) on the precision s(pK) and accuracy �pK = pKa,calc − pKa,true

f the estimated parameters pKa,i. Higher imprecision of the
bsorbance data would be expected to result in a poorer fit. Esti-
ation of the parameters would be inaccurate due to uncertainty

n the pit co-ordinates, as the hyperparaboloid response-surface
ould have a broad and indefinite minimum. The paramet-

ic precision is related to the D-boundary, by the super-curve,
 = Umin + s2(A). The standard deviation of each parameter b, defined
y s(bi) = max[(bD − bmin),] can be calculated as the maximum dif-

erence between the value for bi, at any point on the D-boundary,
nd the value for bi at the minimum. There is then a rather large
llipse as the last U contour of the D-boundary, the parametric
tandard deviations are larger, and the precision poorer.
ta Part A 86 (2012) 305– 314

For pre-selected (“true”) values of parameters (i.e., 4 dissocia-
tion constants pKa1 = 3.00, pKa2 = 6.10, pKa3 = 7.90, pKa4 = 10.50, and
the matrix of molar absorption coefficients of all five variously
protonated species L, LH, LH2, LH3 and LH4 of physostigmine sal-
icylate depending on wavelength, the “theoretical spectra points”
along the exact curves set were calculated. Each theoretical point
was then transformed into an “experimental” one, also called
the “simulated point”, by the addition of a random error (having
obviously a normal distribution) obtained with the aid of a random-
number generator according to the optioned instrumental error
of absorbance expressing the noise of spectrophotometer used,
sinst(A), and being chosen in the range from 10−8 and 0.1 mAU up
to 1.0 mAU. All such resulting “experimental points” were thus cor-
rupted with a random error �. The error set � can be then tested
statistically for Gaussian distribution, independence and homo-
geneity. The statistical measures of random errors mentioned in
residual analysis, E(�), |�|, s(�), g1, g2 RSC, Hamilton R-factor are
tested in the 1st column of Table 3.

For the set of 46 pH values, absorbance spectra for 26 wave-
lengths from 274 to 362 nm were calculated, then corrupted with
random errors. In Table 3 statistical measures of generated instru-
mental noise for each pre-selected sinst(A) value are in the first
column to prove that a set of random errors exhibit normal dis-
tribution. Corrupting the spectra points according to sinst(A) with
generated the high random error � may, however, decrease the
accuracy and precision of the parameter estimated (Fig. 5). When
4 dissociation constants are to be refined or ill-conditioned param-
eters in the model (i.e., molar absorption coefficients of species
exhibiting quite similar ε = f(�) curve) are to be adjusted, spectra
with a low precision sinst(A) may  result in erroneous values (so-
called biased values in mathematical terminology) of the parameter
estimates even if a reliable regression method is applied. In cases
when the corruption sinst(A) is small, the parameters minimizing
the least-squares criterion are nearly the same as the pre-selected
values and the bias �pK = pKa,calc − pKa,true is therefore small,
though for very ill-conditioned models the bias �pK can be high
(Table 3).

In the regression analysis of A-pH spectra, the reliability of
regression process and estimates found can be classified mostly
according to the precision of parameters estimated and also based
on the goodness-of-fit achieved (Fig. 5). To test when the regres-
sion algorithm has found the best estimates of parameters without
significant bias, the residuals should be randomly distributed about
the predicted regression curve as the systematic departures from
randomness indicate that the parametric estimates are not satis-
factory. To analyze residuals, their statistics are compared with
the statistics of imposed corrupting random errors; it is checked
“whether both distributions are Gaussian in nature and/or sign”.
Even the degree-of-fit achieved by all regression methods is good
enough and the minimization process was assumed to have termi-
nated successfully as shown in Fig. 5.

The purpose of this paper is to demonstrate the procedure
of investigating the reliability of the parameter estimation and
how much two various minimization methods in SQUAD(84) and
SPECFIT/32 affect the precision and accuracy of the parameter
estimates when other conditions are strictly equal. The system-
atic deviation from its pre-selected and true value pKa,true or bias
�pK = pKa,calc − pKa,true is used to classify an accuracy of the param-
eter estimates caused by inaccuracy of data. In all four dissociation
constants the bias seems to be quite small even though for pKa4 it
is higher, i.e., +0.05 for sinst(A) about 1.0 mAU. However, it is true
that rarely such low precision spectra are analyzed. The accuracy

of the pKi estimates was  therefore investigated on the basis of bias
�pKi, i = 1, . . .,  4, being expressed in the linear regression model
�pKi = ˇ0 + ˇ1 sinst(A) as a function of the instrumental standard
deviation sinst(A). In the investigated interval of sinst(A) from 0.1 to
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Table 3
Determination of mixed dissociation constants of variously protonated forms of physostigmine salicylate by the nonlinear regression of simulated spectra set when the parametric deviation or the bias estimated by SQUAD(84)
and  SPECFIT are �pKa = pKa,calc − pKa,true in pH units, k* = 5 components for all values of sinst(A), nw = 26, ns = 46, nc = 5. Because of working tool for a comparison of two  programs four decimal places of �pK were used here.

sinst(A) [mAU] SQUAD(84) SPECFIT SQUAD(84) SPECFIT SQUAD(84) SPECFIT SQUAD(84) SPECFIT SQUAD(84) SPECFIT
1.00E−08  0.1 0.2 0.3 0.4

Errors
analysis

Residuals
analysis

Errors
analysis

Residuals
analysis

Errors
analysis

Residuals
analysis

Errors
analysis

Residuals
analysis

Errors
analysis

Residuals
Analysis

�pK1 0.0000 0.000 −4.00E−04 0.000 −0.0008 −0.0010 −0.0012 −0.0010 −0.0016 −0.0020
�pK2 0.0000 0.000 −1.70E−03 −0.002 −0.0035 −0.0040 −0.0055 −0.0060 −0.0076 −0.0080
�pK3 0.0000 0.000 8.00E−04 0.001 0.0015 0.0020 0.0023 0.0020 0.0030 0.0030
�pK4 0.0000 0.000 2.80E−03 0.003 0.0055 0.0050 0.0081 0.0080 0.0107 0.0100

s(pK1) 0.0000 1.362E−04 0.0088 3.040E−03 0.0176 0.0061 0.0264 0.0091 0.0351 0.0121
s(pK2) 0.0000 2.361E−04 0.0082 5.262E−03 0.0164 0.0105 0.0245 0.0157 0.0326 0.0208
s(pK3) 0.0000 5.732E−05 0.0065 1.278E−03 0.0130 0.0025 0.0195 0.0038 0.0260 0.0051
s(pK4) 0.0000 3.275E−04 0.0061 7.317E−03 0.0123 0.0146 0.0184 0.0219 0.0245 0.0292

sk(A) [mAU] 0.00 0.088 0.176 0.264 0.352

s(A)[mAU] 0.00 0.00 0.00 0.10 0.09 0.05 0.20 0.19 0.10 0.30 0.28 0.15 0.40 0.38 0.19

E(ê)  −3.80E−10 2.73E−19 1.37E−10 −3.80E−06 3.36E−17 3.20E−11 −7.59E−06 −1.95E−18 3.11E−10 −1.14E−05 1.05E−17 8.38E−11 −1.52E−05 1.03E−17 3.83E−10
|ē|  [mAU] 0.00 0.00 0.00 0.08 0.07 0.04 0.15 0.14 0.08 0.23 0.21 0.11 0.30 0.28 0.15
s(e)  [mAU] 0.00 0.00 0.00 0.10 0.09 0.05 0.20 0.19 0.10 0.30 0.28 0.15 0.40 0.38 0.19
g1 −0.19 −0.02 0.06 −0.19 −0.07 −0.14 −0.19 −0.07 −0.14 −0.19 −0.07 −0.13 −0.19 −0.07 −0.10
g2 2.46 2.02 12.83 2.68 2.63 0.43 2.68 2.63 0.39 2.68 2.63 0.34 2.68 2.63 0.76
RSC 1.08E−13  8.76E−11 5.73E−09 1.08E−05 9.34E−06 2.86E−06 4.30E−05 3.74E−05 1.14E−05 9.68E−05 8.41E−05 2.55E−05 1.72E−04 1.50E−04 4.53E−05
R-factor  [%] 0.00 0.00 – 0.07 0.07 – 0.14 0.13 – 0.21 0.20 – 0.28 0.26 –

sinst(A) [mAU] SQUAD(84) SPECFIT SQUAD(84) SPECFIT SQUAD(84) SPECFIT SQUAD(84) SPECFIT
0.5  0.6 0.8 0.1

Errors
analysis

Residuals
analysis

Errors
analysis

Residuals
analysis

Errors
analysis

Residuals
analysis

Errors
analysis

Residuals
analysis

�pK1 −0.0020 −0.0020 −0.0025 −0.0030 −0.0065 −0.0030 −0.0046 −0.0040
�pK2 −0.0099 −0.0100 −0.0122 −0.0130 −0.0174 −0.0180 −0.0226 0.0200
�pK3 0.0037 0.0040 0.0043 0.0050 0.0056 0.0060 0.0069 0.0080
�pK4 0.0132 0.0130 0.0157 0.0150 0.0207 0.0210 0.0260 0.0440

s(pK1) 0.0438 0.0153 0.0524 0.0184 0.0692 0.0248 0.0857 0.0268
s(pK2) 0.0407 0.0261 0.0487 0.0314 0.0644 0.0419 0.0797 0.0450
s(pK3) 0.0324 0.0064 0.0389 0.0077 0.0515 0.0103 0.0639 0.0110
s(pK4) 0.0306 0.0366 0.0367 0.0441 0.0486 0.0592 0.0604 0.0650

sk(A) [mAU] 0.440 0.528 0.701 0.871

s(A)  [mAU] 0.50 0.47 0.24 0.60 0.56 0.29 0.65 0.75 0.40 1.00 0.93 0.43

E(ê)  −1.90E−05 3.63E−17 8.00E−11 −2.28E−05 −2.00E−17 5.38E−12 −3.01E−05 −1.99E−17 3.12E−10 −4.10E−05 3.97E−18 2.28E−10
|ē|  [mAU] 0.38 0.35 0.18 0.45 0.42 0.22 0.60 0.56 0.30 0.75 0.70 0.32
s(e)  [mAU] 0.50 0.47 0.24 0.60 0.56 0.29 0.80 0.75 0.40 1.00 0.93 0.43
g1 −0.19 −0.07 0.00 −0.19 −0.07 −0.01 −0.20 −0.08 0.02 −0.21 −0.09 −0.14
g2 2.68 2.63 1.41 2.68 2.63 1.26 2.68 2.63 1.34 2.67 2.64 1.19
RSC  2.70E−04 2.34E−04 7.15E−05 3.87E−04 3.36E−04 1.04E−04 6.86E−04 5.96E−04 1.88E−04 1.07E−03 9.26E−04 2.19E−04
R-factor [%] 0.36 0.33 0.43 0.40 0.57 0.53 0.71 0.66
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Fig. 3. (a) The plot of small absorbance changes in the spectrum of physostigmine salicylate means that the value of the absorbance difference for the jth-wavelength of the
ith-spectrum �ij = Aij − Ai,acid is divided by the instrumental standard deviation sinst(A), and the resulting ratios SER = �/sinst(A) are plotted in dependence of wavelength �
for  all absorbance matrix elements, where Ai,acid is the limiting spectrum of the acid form of the drug measured. This ratio is compared with the limiting SER value for the
physostigmine salicylate to test if the absorbance changes are significantly larger than the instrumental noise. (b) The plot of the ratio e/sinst(A), i.e., the ratio of the residuals
divided by the instrumental standard deviation sinst(A) depending on wavelength � for all the residual matrix elements for physostigmine salicylate tests if the residuals are
of  the same magnitude as the instrumental noise, (SPECFIT/32, ORIGIN).

Fig. 4. Dependence of four mixed dissociation constants pKa,i , i = 1, . . .,  4 of physostigmine salicylate on the square root of ionic strength at 25 ◦C and 37 ◦C which leads to
thermodynamic dissociation constants in Table 2.

F
e
a

ig. 5. The parametric bias in accuracy �pKi = 100(pKi,calc − pKi,true) denoted with circle
stimates of four dissociation constants of physostigmine salicylate by regression analysi
nd  SPECFIT/32. The arrow denotes an experimental standard deviation (exp) estimated 
s of the point estimates and precision denoted with line segments of the interval
s of simulated spectra sets. The parametric deviations are estimated by SQUAD(84)
from the absorbance data matrix with a Kankare’s approach.
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Fig. 6. The influence of the instrumental error sinst(A) on a goodness-of-fit represented with the statistical analysis of random errors � and residuals e with the use of (a)
s ion

∣
ε̄
∣ ∣ ∣

a tigmin
d of the 

1
s
a

d
n
m
t
t
n
t
c

e
T
s
t
d
a
c

o
b
P
e
S

d
fi
t
m
M
s
i
a
m
z

tandard deviation of random errors s(�) and of residuals s(e), (b) the mean deviat
bsorbance sk(A) depending on the number of the light-absorbing species in physos
etail  view on the Cattel’s scree plot enabling an evaluation from simulated spectra 

.0 mAU  it is valid that both parameter estimates b0 and b1 are not
tatistically significant, and so the dissociation constants pKi are
ccurate for all values of sinst(A).

Precision was examined according to the estimated standard
eviation of the dissociation constant s(pK) depending on the
oise level sinst(A), being also expressed as the linear regression
odel s(pK) = ˇ0 + ˇ1 sinst(A). In all cases the intercept was statis-

ically insignificant. While parameter pK1 is well-conditioned in
he regression model as pK1 is sensitive enough to the absorbance
oise, the other three parameters pK2, pK3 and pK4 are less sensitive
o the magnitude of random errors, and are therefore worse-
onditioned in the regression model (Table 3).

The noise level sinst(A) has an influence on the precision of the
stimated parameters pKi when close overlapping equilibria exist.
his is the case when LH2 and LH3 species exhibit overlapping
pectra, and therefore the estimation of pK2 is more difficult and
he estimate’s precision depends on the noise level of the spectral
ata. In Table 3 the bias in accuracy and uncertainty of the dissoci-
tion constants is given for the noise level sinst(A) = 0.3 mAU, which
orresponds to common experimental data.

In Fig. 5 an arrow (exp) denotes a realistic experimental noise
f the spectrophotometer used in our laboratory. In such case the
ias in all four dissociation constants is about ±0.01 pH units.
arameters precision is considered from the standard deviation of
stimates. Estimated standard deviation s(pKai) is about ±0.02 for
QUAD(84) while for the SPECFIT/32 it is usually a little bit smaller.

Goodness-of-fit test in Table 3 and Fig. 6c and d analyses ran-
om errors � and residuals e and indicates that a sufficiently close
t was achieved. As the statistical measures of residuals are close
o those of random errors, the minimization procedure always ter-

inated in the global minimum of the residual sum of squares.
oreover, the residual standard deviation s(e) = 0.30 mAU  are of the

ame magnitude as the instrumental error sinst(A) = 0.3 mAU  lead-

ng to s(pKa,i) = 0.02. Certain underlying assumptions of regression
nalysis as an independence of random errors and residuals, nor-
al  distribution for errors and residuals as the skewness should be

ero and the kurtosis should be 3. The residuals should possess all
and residuals ē , (c) the Cattel’s scree plot of the residual standard deviation of
e salicylate equilibria mixture for nine various levels of instrumental noise (d). The
actual instrumental standard deviation sinst(A) for five components k* = 5, (ORIGIN).

these statistics that agree or at least do not refute characteristics of
errors. The Hamilton R-factor of relative fitness also enabling the
monitoring of the regression process quality is in agreement with
the errors and residuals magnitude.

Programme SQUAD(84) starts with data-smoothing of the spec-
tra set, followed by factor analysis FA608, Ref. [2]. The position
of a break on the sk(A) = f(k) curve is calculated, and gives k* = 5,
with the corresponding co-ordinate s∗

5(A) value (Fig. 6c and d). To
determined the instrumental error of the spectrophotometer used,
sinst(A), the Wernimont–Kankare method [24] was applied. If there
are five components in the solution, this means that the true rank
of the absorbance matrix is equal to five, k* = 5, and the correspond-
ing residual standard deviation of absorbance sk(A) being estimated
from the graph sk(A) = f(k) for k = 5 is equal to sinst(A) as shown in
Fig. 6d. The magnitude of instrumental error of spectrophotome-
ter used slightly affects the shape of the graph sk(A) = f(k) and also
moderately the location of the break on this curve.

SPECFIT/32 gave the same results for the parametric estimates
and, though it does not offer all the diagnostics that SQUAD(84)
does, the degree-of-fit achieved proved the sufficient reliability of
the estimates and the agreement with SQUAD(84). As a realistic
experimental noise of the spectrophotometer used in our labora-
tory is about 0.3 mAU, the bias in all four dissociation constants
is then about ±0.01 pH units. The estimated standard deviation
s(pKa,i) is about ±0.02 for SQUAD(84) while for the SPECFIT/32 it is
usually a little bit smaller.

5. Conclusions

The reliability of the dissociation constants of the drug
physostigmine salicylate studied may  be proven with regression
diagnostics of goodness-of-fit tests of the absorption spectra at vari-
ous pH. Regression diagnostics represent procedures for examining

the regression triplet (data, model, method) for the identification of
(a) the data quality for a proposed model; (b) the model quality for a
given set of data; and (c) the fulfilment of all least-squares assump-
tions. When an instrumental error sinst(A) is small, the parameters



3 ica Ac

m
s
q
b
a
f
e
s
a
I
t
C
a

A

N
M

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

14 M. Meloun et al. / Spectrochim

inimizing the least-squares criterion are nearly the same as pre-
elected values and the bias �pK = pKa,calc − pKa,true is therefore
uite negligible. In all four dissociation constants the bias seems to
e quite small even though for pKa4 it is higher, i.e., +0.05 for sinst(A)
bout 1.0 mAU  and in the interval of sinst(A) from 0.1 to 1.0 mAU  all
our dissociation constants pKi are accurate enough. Precision was
xamined according to the estimated standard deviation of the dis-
ociation constant s(pK) depending on the noise level sinst(A), being
lso expressed as the linear regression model s(pK) = ˇ0 + ˇ1 sinst(A).
n all cases the intercept was statistically insignificant. The magni-
ude of instrumental error sinst(A) slightly affects the shape of a
attel’s scree graph sk(A) = f(k) to determine the number of light-
bsorbing species in equilibrium mixture.
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