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Abstract 
Time series are typical data output from technological processes. Diagnostics of 
process data such as model change detection, outlier detection, etc. [1] are often 
of primary interest for quality management. For autocorrelated processes, many 
models and procedures have been suggested, many of them based on uni- and 
multivariate EWMA, AR, ARIMA, CUSUM. Two types of models for stationary 
univariate series were tested: linear partial least squares autoregresison (PLSAR) 
and nonlinear perceptron-type feed-forward neural network autoregression 
(ANNAR) with multistep prediction [5, 7, 8]. Here we describe mainly the ANN 
based models [2]. Lack of knowledge of statistical properties of prediction is 
solved by multiple overlay estimates, which makes it possible to assess and 
predict heteroscedastic variance and construct statistical models and control 
charts of processes with confidence intervals. It is shown that orthogonal PLSAR 
models are more stable than ANNAR and its parameters could be used to identify 
and classify different physical modes of processes. However, though neural 
network models often behave as unstable black boxes, our results suggest that the 
ANN solutions form nonconvex subspaces of a limited dimensionality that can be 
used to classify different types of time series using support vector machines 
(SVM) classifiers. Expansions of the proposed models for multivariate and non-
stationary data are also possible and allow to control and classify more complex 
processes in technology. Throughout this study, the commercial statistical 
software QCExpert 3.2 was used [13]. 
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1. Introduction 
 
Better understanding technological processes may provide useful information 
needed to improve economy and quality in industry. Extensive process studies 
were performed on dynamic processes in a sub-critical water based primary 
circuit of a nuclear power plant near Brno, Czech Republic, see Fig. 1. Process 
parameters data including temperature, pressure, flowrates, conductivity were 
collected in form of time series as illustrated on Fig. 2. These processes are 
highly turbulent and could not be well described by simple low order AR or 
ARIMA models. Moreover, the processes could switch between semi-stable 
physical states represented by different models. Better results were obtained 
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using nonlinear multilayer neural network k-th degree autoregression with 
sigmoidal activation function, 
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where x are the standardized time series data or their first or second differences to 
elliminate trends, α, β are linear coefficients (weights) and σ is the activation 
function, 
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Least squares objective function (3) and Gauss-Newton optimization was used to 
train the network (optimize parameters) using the series data, different set of 
parameters was assigned to each series. In situations where there are suspected 
outliers in the series or the distribution is expected to be highly non-normal, least 
squares may lead to biased prediction and 1 < r < 2 is recomended to be used 
instead of least squares with r = 2 to robustify the model. 
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where m is the series length, a, b are estimates of α and β respectively and r is the 
exponent, for least squares, r = 2. Number of the parameters α, β, namely 
p = l + lk is the dimension model parameter space. 
 

   
Figure 1: The power plant, measurement site and the measuring gauges 

arrangement 
 
 

2. ANN Time Series Modelling 
 
It is well known that optimized ANN parameters tend to be very unstable and 
their values depend e.g. on the optimization procedure tuning and starting 
parameter values [9]. It was expected however, that the parameters will behave 
similarly to the parameters of poorly conditioned (e.g. multicollinear) linear 
regression model, where they lie in a subspace of the parametric space (rather 
then in a point). To verify this idea expressed by (4), the parameters α, β were 
computed many times (typically 200 - 500) beginning with different random 
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starting values each time for a chosen series. Each time a totally different neural 
network was obtained as shown on Fig. 3. Principal component analysis was then 
applied to the set of these bootstrapped parameters. As shown on Fig. 4, 
significant drop in the scree plot and the dominating directions in the PCA-biplot 
strongly suggest that the dimensionality of solution space is substantially lower 
than that of the original model parameter space [6]. 
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Figure 2: Different time series data under analysis 
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Figure 3: Six optimized nets with very different parameters fitted to the same 
series with practically the same residual squares sum. Color of the radii 
correspond to the sign of a weight, thickness is proportional to its absolute value. 
 
 

  
Figure 4: Principal component analysis (scree plot and PCA Biplot) reveal 
substantially lower dimensionality of the solution. 
 
 

3. ANN Model Parameters as Classifiers 
 
Since It is suggested that the first significant principal components be used as 
classifiers. These components occupy a (possibly non-convex) subspace of a 
dimension p* < p in an original parameter space as illustrated on Fig. 5 and their 
orthogonality may provide good predictive properties. In this study, we used an 
SVM (Support Vector Machine) classification model with RBF (Radial Base 
Function) kernel (5) [3, 4, 8, 10, 11, 12] . Less then 10, typically 5, principal 
components were satisfactory to discriminate between different time series data 
from distinct technological situations. Even in the first two principal component 
from the misclassification rate was under 20%. For 5 principal components the 
misclassification rate was under 2% as illustrated on Table 1. 
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Figure 5: Subspace (red) of optimal ANN solutions of a time series data 

 
 
 

  
Figure 6: SVM classification model on projection in only the first two principal 
component in the transformed parameter space. Misclassification rate about 15 – 

20% 
 
 
Table 1: Typical classification results for a series from two technological states 

from the same gauge 

 

 

 
 

4. Conclusion 
 
Behaviour an applicability of the feedforward neural networks in industrial 
technological applications on time series models was investigated. It was shown 
that although the solution and parameters of the ANN model are often 
overdetermined and unstable, reducing dimension with a set of bootstrapped 
optimal parameter vectors using classical principal component analysis may 
dramatically stabilise the found solutions and make them usable for prediction of 
important states, discrimination between predefined risks, forecast possible semi-
random changes in technology and thus increase stability and reliability in 
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technology and quality management. SVM classifier proved to be a very suitable 
tool thanks to its ability to discriminate between linearly non-separable and non-
convex subsets. 
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