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Abstract 

In this paper we discuss statistical tools for detection of change of an analytical signal 
caused by unexpected change of analyte concentration. To detect change it is advantageous to 
use methods based on cumulative sums and especially the CUSUM control chart technique 
was found to be useful. In a noisy signal however, it is hard to decide when in the time series 
the change took place and to locate the source or possible responsibility of the change. Here, 
we suggested a nonlinear regression model with a change-point parameter. The advantage of 
the described procedure is its capability to locate the time of the change with better accuracy 
and with statistical confidence intervals at a given confidence level. 
 
 
Introduction 

Change point detection is a very important problem in quality control and in any 
situation where one is to find, prove and analyse usually unexpected change in process. It is 
especially important when this change may lead to loss, damage, or dangerous situations. In 
analytical signal analysis we can distinguish two situations: (1) detection of instability of the 
measuring process itself due to technical malfunction or methodological mistakes in the 
analytical procedure or instrument and (2) change in the analytical signal due to change of 
analyte concentration in monitored process (such as waste water, environment, technological 
processes). 
 
Theoretical 
 
Cusum control charts 

Methods of statistical process control based on cumulative sums of deviations (cusum 
charts) have been used widely to diagnose departure from the target or mean value in 
normally distributed N(µ, σ2) manufacturing process signals. In 1956 the method was adopted 
by Page in cusum control charts, which was further modified by Lucas in Shewhart-like 
cusum control charts. Compared to classical Shewhart charts, the Cusum is much more 
sensitive to process shift, where process mean µ0 changes by a shift d at a time t0. For d = σ 
the cusum charts needs only 8 measurements to detect the shift compared to 44 measurements 
in a Shewhart chart. Detailed statistical procedures for cusum have been described elsewhere. 
The values plotted in the cusum chart are SH and SL, 
 

  (1) 
 
where k is the sensitivity of the chart to the shift in multiples of σ, usually k is set between 0.3 
and 1. If any of the values SH or SL exceed dessision bounds ±4 a shift of at least kσ is 
detected. Advantage of this procedure is relatively fast detection of the jump change in the 
process mean, 
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In case of slow graduate (say, linear or quadratic) deviation of the mean, 
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the cusum charts guarantee fast detection of the change in the time when the deviation exceed 
kσ, however, it is not possible to detect x0 when the process change took place. The 
knowledge of the time x0 may often be crucial for diagnosing the cause of the problem, 
specialy in cases when the departure of mean resulted in damages or injuries. For such cases, 
we suggested to use conditioned regression models. 
 
Conditioned regression models 

Let us have a continuous regression model in the form 
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with f1(x0) = f2(x0). 
 

For certain family of functions we find x0 using nonlinear regression. Estimated 
parameter x0 (using eg. least squres criterion) have then asyptotically normal distribution with 
variance taken from Hessian matrix of the second derivatives of the objective square sums 
function S(α), 
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where σR

2 is the residual variance. Therefore it is possible to estimate the confidence interval 
of x0 in which the process change took place with desired probability. 
 
 
Results 

The above described methods were applied to the data from simmulated processes A, 
B, C, where in process A a jump change (2) with β = 0.3σ took place, in process B was a 
linear trend with β = 0.03 according to (3) and in process C there is a quadratic growth (4) 
with β = 0.0015. All three processes had x0 = 43 and α = 5. The data are shown on Fig. 1a, b, c. 
Cusum control charts (1) indicated the shift at process S, however failed for gradually 
growing µ in processes B and C. The delay in process shift detection is sumarized in the 
following table and Fig. 2-4. 



 
Table 1 Delays in detecting process change by Cusum control chart 

 
Change type No of 

measurements 
Detected 

change time 
True change 

time 
A (jump) 11 54 43 
B (linear) 29 72 43 

C (quadratic) 29 72 43 
 
 

 
Fig 1a Signal A 

 
Fig. 1b Signal B 

 
Fig 1c Signal C 

 

 
Cusum charts in Figs 2 – 4 show responses (1) to signals A, B, C with k = 0.2 (upper 

row of plots) and k = 0.4 (lower row of plots). It can be seen that the reaction is significantly 
better for jump change. In case of gradually growing process mean the response is about three 
times slower and it is not possible to backtrace the original time of the change. 
 

   

 
Fig 2a 

 
Fig 3a 

 
Fig 4a 

 
Fig 2b 

 
Fig 3b 

 
Fig 4b 

 
With the regression models (2 – 4) it was possible to estimate the time of change (or 

change point) statistically using nonlinear regression. Estimates of the regression parameters 



are given in Tables 2, 3. Confidence intervals of the change point estimate (parameter P3) 
contain the true value x0 = 43 in both models. 
 

 
Fig 5 

 
Fig 6 

 
Table 2 
Linear trend analysis in QCExpert nonlinear regression module 
Model: [Signal_2] ~ LT([Time],p3)*p1+GE([Time],p3)*(p1-p2*p3+p2*[Time]) 
 
 Parametr estimate Std Deviation Lower CI Upper CI 
P1 4.9304 0.0806 4.7705 5.0903 
P2 0.0289 0.0058 0.0173 0.0404 
P3 51.8678 6.287 39.3899 64.3457 
 
Table 3 
Quadratic trend analysis in QCExpert nonlinear regression module 
Model: [Signal_3] ~ LT([Time],p3)*p1+GE([Time],p3)*(p1+p2*([Time]-p3)^2) 
 
 Parameter estimate Std Deviation Lower CI Upper CI 
P1 4.9188 0.0782 4.7637 5.0739 
P2 0.0014 0.0003 0.0008 0.0019 
P3 48.2574 4.4528 39.4198 57.095 
 
 
Conclusion 

The conditioned regression models suggested in this paper may offer a tool to detect 
the true time of critical change of process that could lead to damage or injury with statistical 
confidence intervals. The intervals are important in assigning cause to the change, and/or 
personal responsibility respectively. The suggested procedure is relatively simple with no 
need of extensive programming. The only tool needed to perform the analysis is a nonlinear 
regression package capable of inserting conditioned regression models. 
 
 
 
 


