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bstract

The mixed dissociation constants of four anticancer drugs – camptothecine, 7-ethyl-10-hydroxycamptothecine, 10-hydroxycamptothecine and
-ethylcamptothecine, including diprotic and triprotic molecules at various ionic strengths I of range 0.01 and 0.4, and at temperatures of 25 and
7 ◦C – were determined with the use of two different multiwavelength and multivariate treatments of spectral data, SPECFIT32 and SQUAD(84)
onlinear regression analyses and INDICES factor analysis. A proposed strategy for dissociation constants determination is presented on the
cid–base equilibria of camptothecine. Indices of precise modifications of the factor analysis in the program INDICES predict the correct number
f components, and even the presence of minor ones, when the data quality is high and the instrumental error is known. The thermodynamic
issociation constant pKT

a was estimated by nonlinear regression of {pKa, I} data at 25 and 37 ◦C: for camptothecine pKT
a,1 = 2.90(7) and 3.02(8),

KT
a,2 = 10.18(30) and 10.23(8); for 7-ethyl-10-hydroxycamptothecine, pKT

a,1 = 3.11(2) and 2.46(6), pKT
a,2 = 8.91(4) and 8.74(3), pKT

a,3 = 9.70(3)
nd 9.47(8); for 10-hydroxycamptothecine pKT

a,1 = 2.93(4) and 2.84(5), pKT
a,2 = 8.93(2) and 8.92(2), pKT

a,3 = 9.45(10) and 9.98(4); and for 7-
thylcamptothecine pKT

a,1 = 3.10(4) and 3.30(16), pKT
a,2 = 9.94(9) and 10.98(18). Goodness-of-fit tests for various regression diagnostics enabled
he reliability of the parameter estimates found to be proven. Pallas and Marvin predict pKa being based on the structural formulae of drug
ompounds in agreement with the experimental value.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In the field of industrial pharmacy perhaps the most impor-
ant physicochemical characteristics of drugs and excipients are
heir acidity or basicity expressed by their pKa values, their

ydrophobicity and it’s dependence on pH. Before the drug
an elicit an effect, for example if it is orally administered, it
sually has to pass through a series of barriers, e.g. biological

∗ Corresponding author. Tel.: +420 466037026; fax: +420 466037068.
E-mail address: milan.meloun@upce.cz (M. Meloun).
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embranes either by passive diffusion and/or carrier-mediated
ptake. Depending on the route of the administration of the
rug and the location of the target site, the pH of the environ-
ents that the compound is exposed to may vary considerably.
he affinity of the drug molecule for the target of interest and

ts ability to partition into a lipophilic environment at differ-
nt pH values has to be quantified for a proper prediction of
ts ability to interact with the biological target and hence to be

fficacious.

In previous work [1–9] the authors have shown that
he spectrophotometric method in combination with suitable
hemometric tools can be used for the determination of pro-

mailto:milan.meloun@upce.cz
dx.doi.org/10.1016/j.aca.2006.11.049
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onation constants βqr or acid dissociation constants pKa even
or barely soluble drugs. Protonation constants or acid dis-
ociation constants are very important both in the analysis
f drugs and in the interpretation of their mechanisms of
ction as they are key parameters for predicting the extent of
he ionisation of a molecule in solution at different pH. The
cid–base properties of drugs affect the toxicity and pharmaceu-
ical properties of organic acids and bases. Spectrophotometry
s a convenient method for pKa determination in very diluted
queous solutions (about 10−5 to 10−6 M), provided that the
ompound possesses pH-dependent light absorption due to
he presence of a chromophore in proximity to the ionisation
entre cf. Refs. [10–25]: a series of 5–8 solutions of the sam-
le with identical concentrations but with different pH can
lso be generated by titrating the sample solution alkalimet-
icaly, and the absorption spectra of the resulting solution of
djusted pH registered. When the components involved in the
rotonation equilibrium have distinct spectral responses their
oncentrations can be measured directly, and determination
f the protonation constant is trivial. In many cases, how-
ver, the spectral responses of two and sometimes even more
omponents overlap considerably, and analysis is no longer
traightforward.

Problems arise because of strong overlapping chemical com-
onents involved in the equilibrium, and uncertainties arising
rom the mathematical algorithms used to solve such prob-
ems. In such cases, much more information can be extracted
f multivariate spectrophotometric data are analyzed by means
f an appropriate multivariate data analysis method. Hard mod-
lling methods include traditional least-squares curve fitting
pproaches, based on a previous postulation of a chemical
odel, i.e. the postulation of a set of species defined by their sto-

chiometric coefficients and formation constants, which are then
efined by least-squares minimization. These mathematical pro-
edures require the fulfilment of the mass-balance equations and
he mass-action law. The most relevant algorithms are SQUAD
14–19] and SPECFIT [22–24,31]. On the other hand, soft mod-
lling techniques, such as multivariate curve resolution methods
ased on factor analysis, work without any assumption of a
hemical model, and do not have the requirement of compliance
ith the mass-action law.
In this study, we have tried to complete the information

n the protonation/dissociation constants for four anticancer
rugs considered barely soluble or insoluble: the parent
ompound, camptothecine, and three related compounds 7-
thyl-10-hydroxycamptothecine, 10-hydroxycamptothecine and
-ethylcamptothecine. Concurrently, the experimental deter-
ination of protonation constants was combined with their

omputational prediction based on a knowledge of chemical
tructures.

Camptothecine (CPT) is a nearly water-insoluble
onoterpene-derived indole alkaloid produced by the
hinese Camptotheca acuminatatree [26,27]. Camptothecine
chemically 4-ethyl-4-hydroxy-IH-pyrano(3′4′6′7) indolizino
1,2,-b) quinoline 3,14 (4H, 12H)-dione, CAS No. 7689-03-4,
olecular formula C20H16N2O4, molecular weight 348.36) is

f the structure d
ca Acta 584 (2007) 419–432

This pentacyclic alkaloid contains a quinoline ring system, a
yridone ring, and a terminal alpha-hydroxylactone ring. Above
H 7.4, solubility increases dramatically, with a slope of approxi-
ately 2 near pH 10, due to the ionization of the carboxylic group

n the E-ring opened species, but the E-ring opened species of
camptothecine analog are therapeutically inactive, have a sig-
ificantly shorter plasma half-life, and exhibit greater toxicity
han the lactone. The active lactone form predominates only in
cidic conditions [27]. Studies have also shown that the pH-
ependent equilibrium shifts towards the inactive carboxylate
orm in plasma in a species-dependent manner. Equilibrium shift
owards inactive carboxylate is favored in man, while equilib-
ium shift towards active lactone is favored in rodents.

7-Ethyl-10-hydroxycamptothecine is the pharmacologically
ctive metabolite of the anticancer drug irinotecan (the prodrug)
sed globally in the first line treatment of advanced metastatic
olorectal cancer. 7-Ethyl-10-hydroxycamptothecine (CAS No.
6639-52-3, molecular formula C22H20N2O5, molecular weight
92.40) is of the structure

10-Hydroxycamptothecine is a minor alkaloid isolated from
amptotheca acuminata, or manufactured by semisynthe-

is from camptothecine. 10-Hydroxycamptothecine (CAS No.
9685-09-7, molecular formula C20H16N2O5, molecular weight
64.4) is of the structure
7-Ethylcamptothecine is one of the first semi-synthetic alkyl-
erivatives of CPT [28,29]. It has been used as a model
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ompound, and as an intermediate for the preparation of other 7-
nd 10-substituted camptothecines. 7-ethylcamptothecine (syn.:
CPT, CAS No. 78287-27-1, molecular formula C22H20N2O4,
olecular weight 376.44) is of the structure

. Theoretical

.1. Procedure for the determination of the chemical model
nd protonation constants

An acid–base equilibrium of the drug studied is described in
erms of the protonation of the Brönstedt base Lz−1 according
o the equation Lz−1 + H+ � HLz characterized by the proto-
ation constant

H = aHLz

az−1
L aH+

= [HLz]

[Lz−1][H+]

yHLz

yLz−1yH+

nd in the case of a polyprotic species is protonated to yield a
olyprotic acid HJL:

z− + H+ � HL1−z; KH1

L1−z + H+ � H2L2−z; KH2

The subscript to KH indicates the ordinal number of the proto-
ation step. The direct formation of each protonated species from
he base Lz− can be expressed by the overall reaction Lz−1 +
H+ � HjLz and by the overall constant βHj = KH1KH2. . .KHj,
here j denotes the number of protons involved in the over-

ll protonation. The protonation equilibria between the anion L
the charges are omitted for the sake of simplicity) of a drug
nd a proton H are considered to form a set of variously proto-
ated species L, LH, LH2, LH3, . . ., etc., which have the general
ormula LqHr in a particular chemical model and which are rep-
esented by p the number of species, (q, r)i, i = 1, . . ., p, where
ndex i labels their particular stoichiometry; the overall protona-
ion (stability) constant of the protonated species, βqr, may then
e expressed as

qr = [LqHr]

[L]q[H]r
= c

lqhr

here the free concentration [L] = l, [H] = h and [LqHr] = c. For

issociation reactions realized at constant ionic strength the so-
alled “mixed dissociation constants” are defined as

a,j = [Hj−1L]aH+

[HjL]

a
d
d
(

ca Acta 584 (2007) 419–432 421

As each aqueous species is characterized by its own spectrum,
or UV/vis experiments and the ith solution measured at the jth
avelength, the Lambert–Beer law relates the absorbance, Ai,j,
eing defined as

i,j =
p∑

n=1

εj,ncn =
p∑

n=1

(εqr,jβqrl
qhr)

n

here εqr,j is the molar absorptivity of the LqHr species with the
toichiometric coefficients q, r measured at the jth wavelength.
he absorbance Ai,j is an element of the absorbance matrix A
f size (n × m) being measured for n solutions with known total
oncentrations of two basic components, cL and cH, and at m
avelengths.
Throughout this paper, it is assumed that the n × m

bsorbance data matrix A = εC containing the n recorded spec-
ra as rows can be written as the product of the m × p matrix
f molar absorptivities ε and the p × n concentration matrix C.
ere p is the number of components that absorb in the cho-

en spectral range. The rank of the matrix A is obtained from
he equation rank (A) = min[rank (ε), rank (C)] ≤ min(m, p, n).
ince the rank of A is equal to the rank of ε or C, whichever is the
maller, and since rank (ε) ≤ p and rank (C) ≤ p, then provided
hat m and n are equal to or greater than p, it is only necessary
o determine the rank of matrix A, which is equivalent to the
umber of dominant light-absorbing components [1,11,20,36].
ll spectra evaluation may be performed with the INDICES

lgorithm [1,36] in the S-Plus programming environment. Most
ndex methods are functions of the number of principal compo-
ents PC(k)’s into which the spectral data are usually plotted
gainst an integer index k, PC(k) = f(k), and when the PC(k)
eaches the value of the instrumental error of the spectropho-
ometer used, sinst(A), the corresponding index k* represents the
umber of light-absorbing components in a mixture, p = k*. In a
cree plot the value of PC(k) decreases steeply with increasing
Cs as long as the PCs are significant. When k is exhausted the

ndices fall off, some even displaying a minimum. At this point
= k* for all indices. The index values at this point can be pre-
icted from the properties of the noise, which may be used as a
riterion to determine p [1,36].

The multi-component spectra analysing program
QUAD(84) [16] may adjust βqr and εqr for a given absorption
pectra set by minimising the residual-square sum function, U,

=
n∑

i=1

m∑
j=1

(Aexp,i,j − Acalc,i,j)2

=
n∑

i=1

m∑
j=1

(
Aexp,i,j −

p∑
k=1

εj,kck

)2

= minimum

here Ai,j represents the element of the experimental absorbance
esponse-surface of size n × m and the independent variables
k are the total concentrations of the basic components cL

nd cH being adjusted in n solutions. It means that the pre-
icted absorbance-response surface is fitted to given spectral
ata, with one dimension representing the dependent variable
absorbance), and the other two dimensions representing the
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ndependent variables, viz. the total component concentrations
or pH) of n solutions, at m wavelengths. The minimization
ay be done algorithmically or heuristically. The algorithmic

rocess usually finds a global minimum whereas the heuris-
ic process depends on human control. The user must decide
hether a local or global minimum is required. In computa-

ional strategy, restrictions and initial guesses for the parameters
nd minimization steps for particular parameters should be sup-
lied, and special care paid to parameters that are interdependent
n the proposed regression model. Which computational strat-
gy will prove optimal depends on the number of species,
revious knowledge of some species in the chemical model,
nd the experimental design for changing the basic compo-
ents in the equilibrium system, and therefore an ad hoc choice
s necessary. Unknown parameters to be determined may be
ivided into two equal groups: (1) a hypothetical chemical model
hich is supplied by the user and should contain (a) an esti-
ate of the number of light-absorbing species in solution, p,

nd (b) a list of variously protonated species of stoichiometry
ndices (q, r)i, i = 1,. . ., p; (2) the best estimates of the pro-
onation constants, βqr,i, i = 1, . . ., p, which are adjusted by
QUAD(84) regression Gauss–Newton and Newton–Raphson
lgorithms. At the same time, a matrix of molar absorptivities
εqr,j, j = 1, . . ., m)k, k = 1, . . ., p, as non-negative reals is esti-
ated, based on the current values of protonation constants.
or a set of current values of βqr,i, the free concentrations of

igand l, as h is known from pH measurement, for each solu-
ion is calculated, followed by the concentrations of all the
pecies in equilibrium mixture [LqHr]j, j = 1, . . ., p, forming
or n solutions the matrix C are obtained. SQUAD(84) pro-
ides the user with two algorithms for solving the system of
inear equations arising from Beer’s law. The multiple regression
lgorithm is used during the initial data refinement. If nega-
ive molar absorptivities are detected the data should be first
hecked for data-entry and/or experimental errors. All plausi-
le models are then tested to ascertain that the negative values
re not due to fitting the wrong model. However, should all
hese strategies fail to remove the negative values, then the user
ould switch to the nonnegative least-squares algorithm NNLS.
hen the estimated βqr and εqr values for the assumed chemical
odel have been refined, the agreement between the experi-
ental and predicted data can be examined. If the agreement

s not considered satisfactory, new chemical models are tried
ntil a better fit with the experimental data is obtained. Var-
ous hypotheses of chemical models with refined parameters
ave been proposed and tested and the statistical characteris-
ics describing the degree-of-fit of regression spectra through
xperimental points have been calculated. The residual are ana-
yzed to test whether the refined parameters adequately represent
he data, and should be randomly distributed about the pre-
icted regression curve. To analyze the residuals, the following
tatistics are calculated: the residual mean ē, the standard devi-
tion of the residuals s(e), the skewness of the residuals set
ˆ1(e), the kurtosis of the residuals set ĝ2(e) and the Hamil-
on R-factor for relative fit. The calculated standard deviation
f absorbance s(A) and the Hamilton R-factor are used as the
ost important criteria for a fitness test. If, after termination
ca Acta 584 (2007) 419–432

f the minimization process the condition s(A) ≈ sinst(A) or
(e) ≈ sinst(A) is met and the R-factor is less than 1%, the hypoth-
sis of the chemical model is taken as the most probable one and
s accepted.

Another popular program is the SPECFIT/32 [31], based on
ingular value decomposition and nonlinear regression modeling
sing the Levenberg–Marquardt method for the determination
f stability constants from spectrophotometric titration data. The
ethod referred to as “model-free” does not require any assump-

ion as to the chemistry of the system other than the number of
ctive complexes present, not any assumptions as to the nature of
bsorbing complexes, their stoichiometry or a thermodynamic
odel. The solution is retrieved using constraints such as non-

egativity for concentrations and absorptivities, closure (the sum
f the concentrations of some species should be equal to a known
uantity) and unimodality (only one maximum in the concen-
ration profiles). The latest version of SPECFIT/32 [31] makes
se of a multiwavelength and multivariate spectra treatment and
nables a global analysis for equilibrium and kinetic systems
ith singular value decomposition and nonlinear least-squares

egression modeling using the Levenberg–Marquardt method.
he method has proved to be superior in discrimination between
hemical models. Factor analysis is used as a powerful tool for
he determination of independent components in a given data

atrix is used.

.2. Procedure for protonation model building and testing

An experimental and computational scheme for protonation
odel building of a multi-component and multiwavelength sys-

em was proposed by Meloun et al., cf. page 226 in Ref. [11] or
efs. [16,30] and is here revised with regard to SPECFIT/32:

1) Instrumental error of absorbance measurements, sinst(A):
The INDICES algorithm cf. Refs. [1,36] should be used to
evaluate sinst(A). The Cartel’s scree plot of sk(A) = f(k) con-
sists of two straight lines intersecting at {s∗k(A); k∗} where k*

is the matrix rank for the system and the instrumental error
of the spectrophotometer used, sinst(A) = s∗1(A) reaching
a value of 0.25 mAU for the Cintra 40 (GBC, Australia)
spectrophotometer employed.

2) Experimental design: Simultaneous monitoring of
absorbance and pH during titrations is used in a titration,
when the total concentration of one of the components
changes incrementally over a relatively wide range, but
the total concentrations of the other components change
only by dilution. It is best to use wavelengths at which the
molar absorptivities of the species differ greatly, or a large
number of wavelengths spaced at equal intervals.

3) Number of light-absorbing species: A qualitative interpre-
tation of the spectra aims to evaluate of the quality of the
dataset and remove spurious data, and to estimate the min-

imum number of factors, i.e. contributing aqueous species,
which are necessary to describe the experimental data. The
INDICES [1,36] determine the number of dominant species
present in the equilibrium mixture.
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4) Choice of computational strategy: The input data should
specify whether βqr or log βqr values are to be refined
whether multiple regression (MR) or non-negative linear
least-squares (NNLS) are desired, whether baseline correc-
tion has to be performed, etc. In description of the model, it
should be indicated whether the protonation constants are to
be refined or held constant, and whether molar absorptivities
are to be refined.

5) Previously reported or theoretically predicted parameter
βqr estimates: It is wise before starting a regression to ana-
lyze actual experimental data, to search for scientific library
sources to obtain a good default for the number of ioniz-
ing groups, and numerical values for the initial guess as to
relevant stability (protonation) constants and the probable
spectral traces of all the expected components [37]. Two
programs, PALLAS [38] and MARVIN [39] provide a col-
lection of powerful tools for making a prediction of the pKa
values of any organic compound on the basis of base on the
structural formulae of the compounds, using approximately
300 Hammett and Taft equations. Depending on the nature
of the chemical structure and based on the hypothesis that the
ionization state of a particular group is dependent upon its
subenvironments constituted by its neighboring atoms and
bonds, a hierarchical tree is constructed from the ionizing
atom outward.

6) Diagnostic criteria indicating a correct chemical model:
When the minimization process of a regression spectra anal-
ysis terminates, some diagnostic criteria are examined to
determine whether the results should be accepted. An incor-
rect hypothesis on the chemical model leads to divergency,
cyclization, or the failure of the minimization. To attain a
good chemical model, the following diagnostics should be
considered:

1st diagnostic—the physical meaning of the parametric esti-
mates: The physical meaning of the protonation constants,
associated molar absorptivities, and stoichiometric indices is
examined: βqr and εqr should be neither too high nor too low,
and εqr should not be negative. The empirical rule that is often
used is that a parameter is considered to be significant when
the relation s(βj) × Fσ < βj is met and where Fσ is equal to 3.
2nd diagnostic—the physical meaning of the species con-
centrations: There are some physical constraints which are
generally applied to concentrations of species and their molar
absorptivities: concentrations and molar absorptivities must be
positive numbers. Moreover, the calculated distribution of the
free concentration of the basic components and the variously
protonated species of the chemical model should show realistic
molarities, i.e. down to about 10−8 M.
3rd diagnostic—parametric correlation coefficients: Partial
correlation coefficients, rij, indicate the interdependence of two
parameters, i.e. stability constants βi and βj, when others are
fixed in value.

4th diagnostic—goodness-of-fit test: To identify the “best” or
true chemical model when several are possible or proposed, and
to establish whether or not the chemical model represents the
data adequately, the residuals e should be carefully analyzed.

i
f
j
p

ca Acta 584 (2007) 419–432 423

The goodness-of-fit achieved is easily seen by examination
of the differences between the experimental and calculated
values of absorbance, ei = Aexp,i,j − Acalc,i,j. One of the most
important statistics calculated is the standard deviation of the
absorbance, s(A), calculated from a set of refined parameters
at the termination of the minimization process. This is usually
compared with the standard deviation of absorbance calculated
by the INDICES program [1,36] sk(A) and the instrumental
error of the spectrophotometer used sinst(A) and if it is valid
that s(A) ≤ sk(A), or s(A) ≤ sinst(A), then the fit is considered
to be statistically acceptable. Some realistic empirical limits
are employed: for example, when sinst(A) ≤ s(A) ≤ 0.002, the
goodness-of-fit is still taken as acceptable, while s(A) > 0.005
indicated that a good fit has not been obtained. Alternatively,
the statistical measures of residuals e can be calculated to exam-
ine the following criteria: the residual mean (known as the
residual bias) ē should be a value close to zero; the mean
residual |ē| and the residual standard deviation s(e) being
equal to the absorbance standard deviation s(A) should be close
to the instrumental standard deviation sinst(A); the residual
skewness g1(e) should be close to zero for a symmetric distri-
bution of residuals; the residual kurtosis g2(e) should be close
to 3 for a Gaussian distribution of residuals; a Hamilton R-
factor of relative fit, expressed as a percentage, (R × 100%),
of <0.5% is taken as an excellent fit, but a value of >2% is
taken to be a poor one. The R-factor gives a rigorous test of
the null hypothesis H0 (giving R0) against the alternative H1
(giving R1).
5th diagnostic—deconvolution of spectra: Resolution of each
experimental spectrum into spectra of the individual species
proves whether the experimental design is efficient enough. If
for a particular concentration range the spectrum consists of
just a single component, further spectra for that range would
be redundant. In ranges where many components contribute
significantly to the spectrum, several spectra should be mea-
sured.

The details for the computer data treatment are collected in
he Supporting Information.

.3. Determination of the thermodynamic
rotonation/dissociation constants

The nonlinear estimation of the thermodynamic dissociation
onstant KT

a = aH+aL−/aHL, is simply a problem of optimiza-
ion in the parameter space in which the pKa and I are known
nd given values, while the parameters pKa, å and C of the
ebye–Hückel equation are the unknown variables to be esti-
ated [11,30].

.4. Reliability of the estimated dissociation constants

The adequacy of a proposed regression model with exper-

mental data and the reliability of parameter estimates pKa,i
ound, being denoted for the sake of simplicity as bj, and εij,
= 1, . . ., m, may be examined by the goodness-of-fit test, cf.
age 101 in Ref. [32] or a previous paper [30].
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. Experimental

.1. Chemicals and solutions

The camptothecine, 7-ethyl-10-hydroxycamptothecine, 10-
ydroxycamptothecine and 7-ethylcamptothecine were pur-
hased from Molcan Corporation, Canada, with a purity of 92.4,
8.2, 98.5 and 98.2%, respectively (HPLC). Two of their char-
cteristics which may mostly affect the protonation behaviour,
nd thus, the HPLC-purity and residual amount of inorganic
ompounds, are summarized below:

Camptothecine: Batch No. 050611, Exp. date 2007-06-10,
PLC purity 94.3%, assay (on dried basis) 92.4%, residue
n ignition 0.2%. 7-Ethyl-10-hydroxycamptothecine: Batch No.
50709, Exp. date 2007-07-09, HPLC purity 98.5%, residue
n ignition 0.2%. 10-Hydroxycamptothecine: BatchNo.050818,
xp. date 2007-08-18, HPLC purity 98.2%, residue on igni-

ion 0.5%. 7-ethylcamptothecine: Batch No. 050819, Exp. date
007-08-19, HPLC purity 98.2%, residue on ignition 0.6%.

Perchloric acid, 1 M, was prepared from conc. HClO4
p. a., Lachema Brno) using redestilled water and stan-
ardized against HgO and NaI with reproducibility of less
han 0.20%. Sodium hydroxide, 1 M, was prepared from
ellets (p. a., Aldrich Chemical Company) with carbondiox-
defree redistilled water and standardized against a solution of
otassium hydrogen-phthalate using the Gran Metod with a
eproducibility of 0.1%. Mercuric oxide, sodium iodide, and

odium perchlorate (p. a., Lachema Brno) were not further
urified. The preparation of other solutions from analyti-
al reagent-grade chemicals have been described previously
30].

d
g
a
h

ig. 1. The 3D-absorbance-response-surface representing the measured mul
ydroxycamptothecine, (c) 10-hydroxycamptothecine and (d) 7-ethylcamptothecine
ca Acta 584 (2007) 419–432

.2. Apparatus and pH-spectrophotometric titration
rocedure

The apparatus used and the pH-spectrophotometric titration
rocedure have been described previously [30].

.3. Software used

Computation relating to the determination of dissociation
onstants were performed by regression analysis of the UV/vis
pectra using the SQUAD(84) [16] and SPECFIT/32 [31] pro-
rams. Most of graphs were plotted using ORIGIN 7.5 [33] and
-Plus [35]. The thermodynamic dissociation constant pKT

a was
stimated with the MINOPT nonlinear regression program in the
DSTAT statistical system (TriloByte Statistical Software, Ltd.,
zech Republic), [34]. A qualitative interpretation of the spec-

ra with the use of the INDICES program [36] aims to evaluate
he quality of the dataset and remove spurious data, and to esti-

ate the minimum number of factors, i.e. contributing aqueous
pecies, which are necessary to describe the experimental data
nd determines the number of dominant species present in the
quilibrium mixture.

.4. Supporting information available
ata specimen and corresponding output in numerical and
raphical form for the programs, INDICES, SQUAD(84)
nd SPECFIT/32 are available free of charge on line at
ttp://meloun.upce.cz and in the block DATA.

tiwavelength absorption spectra of (a) camptothecine, (b) 7-ethyl-10-
in dependence on pH at 25 ◦C (S-Plus).

http://meloun.upce.cz/
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. Results and discussion

.1. Camptothecine

The deprotonated camptothecine LH form exhibits two sharp
sosbestic points in spectra, and these two points indicate one
imple equilibrium. pH-spectrophotometric titration enables
bsorbance-response data (Fig. 1a) to be obtained for analysis by
onlinear regression, and the reliability of parameter estimates
pK’s and ε’s) can be evaluated on the basis of the goodness-of-
t test of residuals. The A–pH curves at 251, 373, 363, 352 and
92 nm show that the dissociation constant of camptothecine
ay be indicated. As the changes in spectra are quite small

ithin deprotonation, however, both of the variously protonated

pecies L and LH exhibit quite similar absorption bands. The
hift of a band maximum to lower wavelengths in the spectra set
ay also be indicated (left and middle graph in the upper row of

s
t
n
b

ig. 2. Regression analysis of the protonation equilibria model of camptothecine in de
easured for various pH values (left), pure spectra profiles of molar absorptivities vs.

iagram of the relative concentrations of all of the variously protonated species L,
RIGIN). 2nd row: Cartel’s scree plot for determination of the number of light-ab

pectrophotometer used s∗3(A) = 0.52 mAU and Kankare’s residual standard deviati
rror RMS (right). 3rd row: The derivatives detection criteria of some indices funct
hree light-absorbing species (INDICES in S-Plus).
ca Acta 584 (2007) 419–432 425

ig. 2). The adjustment of pH value from 8.5 to 11.0 causes the
bsorbance to change by 0.022 of the A–pH curve only, so that
he monitoring of both components L and LH of the protonation
quilibrium is rather unsure. As the changes in spectra are very
mall, a very precise measurement of absorbance is necessary
or a reliable detection of the deprotonation equilibrium studied.

In the first step of the regression spectra analysis, the number
f light-absorbing species was estimated using the INDICES
lgorithm [36] (Fig. 2). The position of the break point on
he sk(A) = f(k) curve in the factor analysis scree plot is cal-
ulated and gives k* = 3 with the corresponding co-ordinate
∗
k(A) = 0.52 mAU, which may also be taken as the actual
nstrumental error sinst(A) of the spectrophotometer used. All

ix selected methods of modified factor analysis estimate the
hree light-absorbing components L, LH and LH2 of the proto-
ation equilibrium. The number of light-absorbing species p can
e predicted from the index function values by finding the point

pendence on pH at 25 ◦C (SPECFIT, ORIGIN): 1st row: The absorption spectra
wavelengths for variously protonated species L, LH, LH2 (middle), distribution
LH, LH2, of camptothecine in dependence on pH at 25 ◦C (right) (SPECFIT,
sorbing species in mixture k* = 3 leads to the actual instrumental error of the
on sk(A) (left), residual standard deviation R.S.D. (middle), root mean square
ions SD(s(A)), SD(R.S.D.), SD(RMS) applied to the absorbance data indicate
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Table 1
The best chemical model found for protonation equilibria of camptothecine
using double checked nonlinear least squares regression analysis of multiwave-
lengths and multivariate pH-spectra with SQUAD(84) and SPECFIT/32 for
ns = 18 spectra measured at nw = 39 wavelengths for nz = 2 basic components
L and H forming nc = 3 variously protonated species

LqHr Protonation constants
estimated with SQUAD(84)
and SPECFIT/32

Partial correlation
coefficients

log βqr s (log βqr) L1H1 L1H2

L1H1 10.77, 10.55 0.04, 0.051 1 –
L1H2 13.61, 13.39 0.04, 0.012 0.9576 1

Determination of the number of light-absorbing species by factor analysis

SQUAD(84) SPECFIT/32

Number of light-absorbing species k* 3 3
Residual standard deviation s∗

k
(A) 0.52 Not estimated

Goodness-of-fit test by the statistical analysis of residuals

Residual mean ē [mAU] −9.52 × 10−8 1.21 × 10−8

Mean residual |ē| [mAU] 0.6 0.57
Standard deviation of residuals s(e) [mAU] 0.83 0.62
Residual skewness g1(e) 0.29 −0.27
Residual kurtosis ĝ2(e) 2.8 3.61
Hamilton R-factor [%] 0.17 Not estimated

ε (all species) vs. λ are Realistic Realistic

The charges of the ions are omitted for the sake of simplicity and the standard
deviations of the parameter estimates are in the last valid digits in brackets.
The resolution criterion and reliability of parameter estimates found is proven
with goodness-of-fit statistics such as the residual square sum RSS, the standard
deviation of absorbance after termination of the regression process, s(A) [mAU],
the residual standard deviation by factor analysis sk(A) [mAU], the mean resid-
ual e, the residual standard deviation s(e), the residual skewness g1(e) and the
residual kurtosis g2(e) proving the Gaussian distribution; Hamilton R-factor [%]
and nonnegative and realistic estimates of calculated molar absorptivities of all
variously protonated species ε vs. λ.

T
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E

q

1
1
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= k where the slope of index function PC(k) = f(k) changes, or
y comparing PC(k) values to the instrumental error sinst(A).
his is the common criterion for determining p (the second and

hird rows in Fig. 2). Very low values of sinst(A) prove that a
ufficiently precise spectrophotometer and efficient experimen-
al technique were used. The two dissociation constants and
hree molar absorptivities of camptothecine calculated for 39
avelengths constitute 2 + (3 × 39) = 119 unknown parameters,
hich are estimated and refined by SQUAD(84) or SPECFIT/32

n the first run. The reliability of the parameter estimates may
e tested using the following diagnostics:

The 1st diagnostic indicates whether all of the parametric
stimates βqr and εqr have physical meaning and reach realis-
ic values. As the standard deviations s(log βqr) of parameters
og βqr and s(εqr) of parameters εqr are significantly smaller
han their corresponding parameter estimates (Table 1), all the
ariously protonated species are statistically significant at a sig-
ificance level α = 0.05. The physical meaning of the protonation
onstant βqr, molar absorptivities εqr, and stoichiometric indices
, r are examined in a search of the protonation equilibria model
n Tables 2 and 3. The 2nd and 5th hypotheses of the protonation

odel are rejected, as the standard deviations of the parameter
stimates are too large, and a poor fitness was achieved. The
bsolute values of s(βj), s(εj) give information about the last U-
ontour of the hyperparaboloid in the neighbourhood of the pit,
min. For well-conditioned parameters, the last U-contour is a

egular ellipsoid, and the standard deviations are reasonably low.
igh s values are found with ill-conditioned parameters and a

saucer”-shaped pit. The relation s(βj) × Fσ < βj should be met
here Fσ is equal to 3. The set of standard deviations of εqr

or various wavelengths, s(εqr) = f(λ), should have a Gaussian
istribution; otherwise, erroneous estimates of εqr are obtained.
he middle graph in the upper row of Fig. 2 shows that the
stimated molar absorptivities of all of the variously protonated
pecies εL, εLH and εLH2 of camptothecine in dependence on

avelength are realistic. Some spectra quite overlap and may

ause some resolution difficulties in regression analysis. As the
hree protonation models in the model search of Tables 2 and 3
1st model: L, LH, LH2, 3rd model: L, LH, L2H and 4th model:

able 2
he search for a protonation equilibria model of camptothecine using nonlinear least-squares regression analysis of multiwavelength pH-spectra of Table 1

stimated log βqr using a hypothesis of

, r 1st model 2nd model 3rd model 4th model 5th model

, 1 10.767(41) 6.771(146) 5.886(14) – –
, 2 13.609(44) – – 9.953(34) –
, 1 – – 15.115(69) 15.096(65) 8.500(3804)
, 2 – 14.500(2745) – – 11.500(3642)

egree-of-fit test by the statistical analysis of residuals as the resolution criterion, sk(A) = 0.52 [mAU], p = 3

(A) or s(e) [mAU] 0.83 2.5 0.83 0.79 1.6
¯ 0.6 1.43 0.59 0.56 1.11

1(e) 0.29 1.28 0.14 0.26 −0.17

2(e) 2.8 9.7 2.8 3.13 2.58
-factor [%] 0.17 0.52 0.17 0.16 0.33
(all species) vs. λ are Realistic Realistic Realistic Realistic Realistic
odel hypothesis is Accepted Rejected Accepted Accepted Rejected
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Table 3
Dependence of the mixed dissociation constants of camptothecine on ionic strength using regression analysis of pH-spectrophotometric data with SPECFIT and SQUAD, with the standard deviations of the parameter
in the last valid digits in brackets

Ionic strength

0.003 0.006 0.011 0.012 0.027 0.057 0.065 0.073 0.081

Estimated dissociation constants pKa,1 and pKa,2 at 25 ◦C
SPECFIT

pKa,1 2.893(19) 2.840(12) 2.912(11) 2.605(23) 2.475(38) 2.613(28) 2.632(18)
pKa,2 10.55(5) 9.450(58) 9.844(66) 9.550(49) 9.562(63) 9.720(66) 9.492(54)
s(A) [mAU] 0.68 0.62 0.73 0.81 0.62 0.61 0.77 0.71 0.71

SQUAD
pKa,1 2.890(16) 2.842(44) 2.607(78) 2.465(73) 2.607(92) 2.624(79)
pKa,2 10.77(41) 9.340(51) 9.792(73) 9.858(55) 9.702(61) 9.586(87) 9.578(77)
s(A) [mAU] 0.87 0.83 0.99 0.98 0.79 0.83 0.94 0.92 0.88

Ionic strength

0.002 0.004 0.026 0.034 0.041 0.042 0.048 0.050 0.056 0.071 0.078 0.08 0.096 0.119

Estimated dissociation constants pKa,1 and pKa,2 at 37 ◦C
SPECFIT

pKa,1 3.009(13) 3.023(24) 2.881(11) 3.062(24) 2.981(24)
pKa,2 10.16(2) 10.43(3) 10.46(3) 10.25(3) 10.44(4) 10.46(2) 10.27(3) 10.46(3) 10.45(3) 10.32(3) 10.63(1) 0.75
s(A) [mAU] 0.46 0.46 0.39 0.56 0.33 0.59 0.41 0.85 0.35 0.44 0.47 0.46 0.66

SQUAD
pKa,1 3.013(36) 3.018(19) 2.890(31) 2.821(35) 3.025(36) 2.978(26)
pKa,2 10.33(18) 10.54(32) 10.48(28) 10.49(34) 10.39(31) 10.49(22) 10.55(23) 10.58(21) 10.57(23) 10.65(17)
s(A) [mAU] 0.60 0.63 0.63 0.78 0.64 0.77 0.65 0.99 0.52 0.53 0.62 0.52 0.91 0.88
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, LH2, L2H) are accepted, it may be concluded that regression
pectra analysis cannot distinguish among these three models.
ll of these models also attain a very good spectra fitting.
The 2nd diagnostic tests whether all of the calculated free

oncentrations of the three variously protonated species on the
istribution diagram of the relative concentration expressed as
percentage have physical meaning, which proved to be the

ase (the right graph in Fig. 2). The calculated free concentra-
ion of the basic components and variously protonated species of
he protonation equilibria model should show molarities down
o about 10−8 M. Expressed in percentage terms, a species
resent at about 1% relative concentration or less in an equi-
ibrium behaves as numerical noise in a regression analysis.

distribution diagram makes it easier to judge the contribu-
ions of individual species to the total concentration quickly.
ince the molar absorptivities will generally be in the range 103

o105 L mol−1 cm−1, species present at less than ca. 0.1% rela-
ive concentration will affect the absorbance significantly only
f their s is extremely high. The diagram shows the protonation
quilibria of L, LH and LH2.

The 3rd diagnostic concerning the matrix of correlation coef-
cients in Table 1 proves that there is an interdependence of one
air of protonation constants of camptothecine r (β11 versus
12).

The 4th diagnostic concerns the goodness-of-fit and indicates
ine outlying spectra. The goodness-of-fit achieved is easily
een by examination of the differences between the experimen-
al and calculated values of absorbance, ei = Aexp,i,j − Acalc,i,j.
xamination of the spectra and of the graph of the predicted
bsorbance response-surface through all the experimental points
hould reveal whether the results calculated are consistent and
hether any gross experimental errors have been made in the
easurement of the spectra. One of the most important statis-

ics calculated is the standard deviation of absorbance, s(A),
alculated from a set of refined parameters at the termination
f the minimization process. This is usually compared to the
tandard deviation of absorbance calculated by the INDICES
rogram [35], sk(A), and if s(A) ≤ sk(A), or s(A) ≤ sinst(A), the
nstrumental error of the spectrophotometer used, the fit is con-
idered to be statistically acceptable (Table 1). This proves that
he s3(A) value is equal to 0.52 mAU and is close to the standard
eviation of absorbance when the minimization process termi-
ates, s(e) = 0.83 mAU (or 0.62 mAU SPECFIT). Although this
tatistical analysis of residuals gives the most rigorous test of
he degree-of-fit, realistic empirical limits must be used. After
emoval of outlying spectra, the statistical measures of all resid-
als e prove that the minimum of the eliptic hyperparaboloid U
s reached: the residual standard deviation s(e) always has suffi-
iently low values, below than 1 mAU. The statistical measures
f all the residuals prove that the minimum of the eliptic hyper-
araboloid is reached: the residual mean e = −9.52 × 10−8 (or
.21 × 10−8 SPECFIT) proves that there is no bias or systematic
rror in the spectra fitting. The mean residual |ē| = 0.60 mAU

or 0.57 mAU SPECFIT) and the residual standard deviation
(e) = 0.83 mAU (or 0.62 mAU SPECFIT) have sufficiently low
alues. The skewness g1(e) = 0.29 (or −0.27 SPECFIT) is close
o zero and proves a symmetric distribution of the residuals set,

l
P
t
l

ca Acta 584 (2007) 419–432

hile the kurtosis g2(e) = 2.80 (or 3.61 SPECFIT) is close to 3
roving a Gaussian distribution. The Hamilton R-factor of rela-
ive fitness is 0.17% calculated with SQUAD(84) only, proving
o an excellent achieved fitness, and the parameter estimates may
herefore be considered reliable. The criteria of resolution used
or the hypotheses were: (1) a failure of the minimization pro-
ess in a divergency or a cyclization; (2) an examination of the
hysical meaning of the estimated parameters to ensure that they
ere both realistic and positive; and (3) the residuals should be

andomly distributed about the predicted regression spectrum,
nd systematic departures from randomness were taken to indi-
ate that either the chemical model or the parameter estimates
ere unsatisfactory.
The 5th diagnostic, the spectra deconvolution shows the

econvolution of the experimental spectrum into spectra of
he individual variously protonated species to examine whether
he experimental design is efficient. Spectrum deconvolution
eems to be quite an useful tool in the proposal of an efficient
xperimentation strategy. Such a spectrum provides sufficient
nformation for a regression analysis which monitors at least two
pecies in equilibrium, where none is a minor species. A minor
pecies has a relative concentration in a distribution diagram of
ess than 5% of the total concentration of the basic component cL.

hen, on the other hand, only one species prevails in solution,
he spectrum yields quite poor information into the regression
nalysis, and the parameter estimate is somewhat uncertain, and
efinitely not reliable enough. To test the reliability of protona-
ion constants at different ionic strengths, a goodness-of-fit test
s applied with the use of a statistical analysis of the residuals,
nd the results are given in Tables 1–3. For the drug studied,
he most efficient tools, such as the Hamilton R-factor, the mean
esidual and the standard deviation of residuals, are applied: as
he R-factor in all cases reaches a value of less than 0.2%, an
xcellent fitness and reliable parameter estimates are indicated.
he standard deviation of absorbance s(A) after termination of

he minimization process is always better than 1.0 mAU, and the
roposal of a good protonation equilibria model and of reliable
arameter estimates is proven.

.2. Other derivatives of camptothecine

Using the experimental and evaluation strategy, the proto-
ation equilibria of 7-ethyl-10-hydroxycamptothecine (Figs. 1b
nd 3), 10-hydroxycamptothecine (Figs. 1c and 4) and 7-ethyl-
amptothecine (Figs. 1d and 5) were also examined. To test
he reliability of the protonation/dissociation constants at dif-
erent ionic strengths, a goodness-of-fit test with the use of
tatistical analysis of the residuals was applied, and the results
re given in Tables 2 and 3. For all four drugs studied the
ost efficient tool, such as the standard deviation of residu-

ls, was applied. The standard deviation of absorbance s(A)
fter termination of the minimization process is always better
han 1 mAU, and the proposal of a good protonation equi-

ibria model and reliable parameter estimates is thus proven.
allas and Marvin [38,39] are both a collection of powerful

ools for making predictions based on the structural formu-
ae of drug compounds. Entering the compound topological
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Fig. 3. 1st row: The search for a chemical model of protonation equilibria in solution of 7-ethyl-10-hydroxycamptothecine: Absorption spectra measured for various
pH values (left), pure spectra profiles of molar absorptivities vs. wavelengths for variously protonated species L, LH, LH , LH (middle), distribution diagram of
t 2, L
d D(RM
i

s
p
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b
(
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F
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d
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he relative concentrations of all of the variously protonated species L, LH, LH
erivatives detection criteria of some indices functions SD(sk(A)), SD(R.S.D.), S
n S-Plus).

tructure descriptors graphically, pKa values of organic com-

ound are predicted using approximately hundreds Hammett and
aft equations and quantum chemistry calculus. The correlation
etween theory (the predicted value of pKa) and experiment
the experimentally determined pKa value) for the pKa cal-

l
y
t
s

ig. 4. 1st row: The search for a chemical model of protonation equilibria in solution o
left), pure spectra profiles of molar absorptivities vs. wavelengths for variously prot
oncentrations of all of the variously protonated species L, LH, LH2, LH3 in depen
etection criteria of some indices functions SD(sk(A)), SD(R.S.D.), SD(RMS) appli
-Plus).
2 3

H3 in dependence on pH at 25 ◦C (right) (SPECFIT, ORIGIN). 2nd row: The
S) applied to the absorbance data indicate 4 light-absorbing species (INDICES

ulation is quite high. Fitting the points to the equation of a

ine pKa,exp = 1.33 (s(β0) = 0.48) + 1.01 (s(β1) = 0.07) pKa,predict
ields values of the slope β1 = 1.01 with its standard devia-
ion s(β1) = 0.07, intercept β0 = 1.33 with its standard deviation
(β1) = 0.48, correlation coefficient R = 0.9822 and the determi-

f 10-hydroxycamptothecine: absorption spectra measured for various pH values
onated species L, LH, LH2, LH3 (middle), distribution diagram of the relative
dence on pH at 25 ◦C (right) (SPECFIT, ORIGIN). 2nd row: The derivatives
ed to the absorbance data indicate four light-absorbing species (INDICES in
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Fig. 5. 1st row: The search for a chemical model of protonation equilibria in solution of 7-ethyl-camptothecine: absorption spectra measured for various pH values
( sly p
c ence o
c the ab

n
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e
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F
p

left), pure spectra profiles of molar absorptivities vs. wavelengths for variou
oncentrations of all of the variously protonated species L, LH, LH2, in depend
riteria of some indices functions SD(sk(A)), SD(R.S.D.), SD(RMS) applied to

ation coefficient R2 100% = 96.47% and standard deviation of
ependent variable s(pKa) = 0.55. It is clear that both algorithms

allas and Marvin [38,39] have an exceptionally close fit of
xperimental and predicted values. The high R and R2 100%
alues indicate very good fit and good predictive capability for
Ka estimate.

p
e
r

ig. 6. Dependence of the mixed dissociation constant pKa of four drugs of the cam
KT

a , at 25 ◦C.
rotonated species L, LH, LH2 (middle), distribution diagram of the relative
n pH at 25 ◦C (right) (SPECFIT, ORIGIN). 2nd row: The derivatives detection
sorbance data indicate 3 light-absorbing species (INDICES in S-Plus).

.3. Thermodynamic dissociation constants
The thermodynamic dissociation constants of the unknown
arameter pKT

a were estimated by applying a Debye–Hückel
quation to the data in Tables 1–3, and Fig. 6 according to the
egression criterion [33]; Table 4 shows point estimates of the

pthothecine family on the square root of ionic strength, leading to parameter
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Table 4
Thermodynamic dissociation constants for four anticancer drugs camptothecine, 7ethyl-10-hydroxycamptothecine, 10-hydroxycamptothecine and 7-
ethylcamptothecine at two temperatures 25 and 37 ◦C

SPECFIT SQUAD Predicted with MARVIN Predicted with PALLAS

Value at 25 ◦C Value at 37 ◦C Value at 25 ◦C Value at 37 ◦C

Camptothecine
pKT

a,1 2.90(7) 3.02(8) 2.83(9) 2.92(8) 3.07 4.17
pKT

a,2 10.18(30) 10.23(8) 10.11(36) 10.43(3) 8.63 10.64

7-Ethyl-10-hydroxycamptothecine
pKT

a,1 3.11(2) 2.46(6) 3.04(5) 2.30(6) 3.92 5.66
pKT

a,2 8.91(4) 8.74(3) 8.90(3) 8.84(3) 8.24 9.06
pKT

a,3 9.70(3) 9.47(8) 9.71(5) 9.53(10) 9.12 10.65

10-Hydroxycamptothecine
pKT

a,1 2.93(4) 2.84(5) 2.92(4) 2.77(5) 3.17 4.56
pKT

a,2 8.93(2) 8.92(2) 8.93(3) 8.90(2) 8.41 8.88
pKT

a,3 9.45(10) 9.98(4) 9.46(9) 10.02(7) 9.14 10.64

7-Ethylcamptothecine
pKT

a,1 3.10(4) 3.30(16) 2.94(3) 3.26(22) 3.86 5.27
1
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pKT
a,2 9.94(9) 10.98(18) 9.73(9)

he standard deviations in the last valid digits are in brackets.

hermodynamic dissociation constants of the four drugs at two
emperatures. Because of the narrow range of ionic strengths,
he ion-size parameter å and the salting-out coefficient C could
ot be estimated.

. Conclusions

When drugs are very poorly soluble then pH-
pectrophotometric titration may be used with the non-linear
egression of the absorbance-response-surface data instead
f a potentiometric determination of dissociation constants.
he reliability of the dissociation constants of the four drugs

i.e. camptothecine, 7-ethyl-10-hydroxycamptothecine, 10-
ydroxycamptothecine and 7-ethylcamptothecine) may be
roven with goodness-of-fit tests of the absorption spectra
easured at various pH. Goodness-of-fit tests for various

egression diagnostics enabled the reliability of the parameter
stimates to be determined.
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[7] M. Meloun, T. Syrový, A. Vrána, The thermodynamic dissociation con-
stants of losartan, paracetamol, phenylephrine and quinine by the regression
analysis of spectrophotometric data, Anal. Chim. Acta 533 (2005) 97–110.
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