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Abstract When drugs are poorly soluble then, instead of
the potentiometric determination of dissociation constants,
pH-spectrophotometric titration can be used along with
nonlinear regression of the absorbance response surface
data. Generally, regression models are extremely useful for
extracting the essential features from a multiwavelength set
of data. Regression diagnostics represent procedures for
examining the regression triplet (data, model, method) in
order to check (a) the data quality for a proposed model; (b)
the model quality for a given set of data; and (c) that all of
the assumptions used for least squares hold. In the
interactive, PC-assisted diagnosis of data, models and
estimation methods, the examination of data quality
involves the detection of influential points, outliers and
high leverages, that cause many problems when regression
fitting the absorbance response hyperplane. All graphically
oriented techniques are suitable for the rapid estimation of
influential points. The reliability of the dissociation con-
stants for the acid drug silybin may be proven with
goodness-of-fit tests of the multiwavelength spectrophoto-
metric pH-titration data. The uncertainty in the measure-
ment of the pKa of a weak acid obtained by the least
squares nonlinear regression analysis of absorption spectra
is calculated. The procedure takes into account the drift in
pH measurement, the drift in spectral measurement, and all
of the drifts in analytical operations, as well as the relative

importance of each source of uncertainty. The most
important source of uncertainty in the experimental set-up
for the example is the uncertainty in the pH measurement.
The influences of various sources of uncertainty on the
accuracy and precision are discussed using the example of
the mixed dissociation constants of silybin, obtained using
the SQUAD(84) and SPECFIT/32 regression programs.
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Introduction

Proton transfer is a vital part of many chemical and
biochemical processes and is determined by the acid
dissociation constants (pKa) of the chemicals involved.
The acid–base character of a xenobiotic is an important
property in the study of drug action, and in the development
of new human and veterinary drugs, crop protecting agents,
anticancer drugs, etc. Moreover, the pKa values of ionizable
drugs also affect their lipophilicity and permeability, which
are important physicochemical considerations when pre-
dicting bioavailability. Most of the aspects of computational
procedures used to estimate pKa values have been described
previously, such as software packages, descriptors, etc. (see
[1] and references therein). Well-defined experimental
methods used to estimate pKa values, such as potentiomet-
ric titration (the standard approach) and spectrophotometric
titrations (the alternative approach), as well as new
approaches such as capillary electrophoresis, are described
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in [2] and references therein. In previous work [1], the
authors have shown that the spectrophotometric method in
combination with suitable chemometric tools can be used to
determine protonation constants βqr or acid dissociation
constants pKa of even barely soluble drugs.

This paper describes a series of powerful general
diagnostics for detecting observations that differ from the
bulk of the data. These may be individual observations that
do not belong to the general model, i.e., influential points or
outliers. The identification of influential points and regres-
sion diagnostics is a relatively new topic in the chemo-
metric literature, but it is rapidly gaining recognition and
acceptance by practitioners as a supplement to the tradi-
tional analysis of residuals [3]. A single case approach to
the detection of outliers can, however, fail because of the
masking effect, in which outliers go undetected because of
the presence of another, usually adjacent, observation.
Regression diagnostics represent procedures for examining
the regression triplet (data, model, method) in order to
identify (a) the data quality for a proposed model; (b) the
model quality for a given set of data; and (c) whether all the
assumptions of least squares are fulfilled. The main
difference between the use of regression diagnostics and
that of classical statistical tests is that there is no need for an
alternative hypothesis; all kinds of deviations from the ideal
state are discovered. Our concept of exploratory regression
analysis is based on the fact that “the user knows more
about the data than the computer” [4].

In this paper, an estimation of the uncertainty in the
measurement of the pKa of a weak acid (obtained by
multiwavelength spectrophotometric pH-titration) is pre-
sented. The procedure of pKa uncertainty estimation takes
into account various adjustable parameters such as the drift
in pH measurement, the drift in spectral measurement, and
all the drifts in analytical operations. The relative impor-
tances of various sources of uncertainty in terms of the
whole experimental strategy is investigated, and their
effects on the accuracy and precision of the dissociation
constants pKa are elucidated. By way of example, the
various dissociation constants of the acid drug silybin at
ionic strength I=0.30 and at a temperature of 25 °C are
estimated using two nonlinear regression programs,
SQUAD(84) [5–8] and SPECFIT/32 [9–12] (Scheme 1).

Theoretical

Nonlinear absorbance response hyperplane fitting is an
important tool for multiwavelength spectrophotometric pH-
titration data analysis. Before the advent of the nonlinear
regression program approach to pKa determination, linear
relationships were “graphically fitted,” with ruler and graph
paper. Nonlinear relations had to be linearized in some
appropriate way (a survey of this approach is provided by
[13–16]). Subsequent analysis involved a manual straight-
line fit, and slope and intercept were interpreted according
to the linearization used. While it is possible to computerize
this approach, it is inadequate to do so. Error analysis is
seriously hampered by the distortions imposed by the
linearization function used. Nonlinear least squares fitting
is superior, as there are no distortions of the noise structure
of the data.

Estimation of protonation constants by nonlinear least
squares regression

Computations related to the determination of protonation
constants βqr (or dissociation constants pKa) may be
performed by least squares regression analysis of multi-
wavelength spectra using versions of the SQUAD family of
programs [5–8] and SPECFIT/32 [9–12]; as has been
described in the tutorial [1]. The experimental and com-
putational schemes used to determine the protonation
constants of a multicomponent system are taken from
Meloun et al. [14–16]. Numerical details of the computer
data treatment, data inputs and corresponding outputs are
listed in the “Supporting information.”

In order to briefly to explain the methodology for the
analysis of sets of spectra of the complexity described
above, it is necessary to review the principles involved in
performing nonlinear least squares fitting of the absorbance
response hyperplane. The task is to determine the best set of
parameters βqr (or pKa) and molar absorptivities ɛqr for a
given sets of spectra, and a predefined protonation
equilibria model hypothesis.

If the protonation equilibria between the anion L (the
charges are omitted for the sake of simplicity) of a drug and
a proton H are considered to form a set of variously
protonated species L, LH, LH2, LH3, ...etc., which have the
general formula LqHr in a particular chemical model and
are represented by nc, the number of species, (q, r)i, i=1, ...,
nc, where index i labels their particular stoichiometry, then
the overall protonation (stability) constant of the protonated
species, βqr, may be expressed as

βqr ¼ LqHr

� ��
L½ �q H½ �rð Þ ¼c= lqhrð ÞScheme 1 Chemical structure of silybin
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where the free concentration [L]=l, [H]=h and [LqHr]=c. An
acid–base equilibrium of the drug studied is described in
terms of the protonation of the Brönstedt base Lz−1

according to the equation Lz−1+H+ ≈HLz, characterized by
the protonation constant

KH ¼ aHLz

aLz�1aHþ
¼ HLz½ �

Lz�1
� �

Hþ½ �
yHLz

yLz�1yHþ

and in the case of a polyprotic species this is protonated to
yield a polyprotic acid HjL:

Lz� þ Hþ � HL1�z; KH1

HL1�z þ Hþ � H2L
2�z; KH2

The subscript to KH indicates the ordinal number of the
protonation step. The direct formation of each protonated
species from the base Lz− can be expressed by the overall
reaction Lz−1+j H+ ≈HjL

z and by the overall constant
βHj=KH1KH2... KHj, where j denotes the number of protons
involved in the overall protonation. For dissociation
reactions realized at constant ionic strength, so-called
“mixed dissociation constants” are defined as

Ka;j ¼
Hj�1L
� �

aHþ

HjL
� �

Since each aqueous species is characterized by its own
spectrum, for UV/VIS experiments and the ith solution
measured at the jth wavelength, the Lambert–Beer law
relates to the absorbance, Ai,j, which is defined as

Ai;j ¼
Xnc
n¼1

"j;n cn ¼
Xnc
n¼1

"qr;j bqr l
q hr

� �
n

where ɛqr, j is the molar absorptivity of the LqHr species
with the stoichiometric coefficients q, r measured at the jth
wavelength and an optical pathlength equal to unity. The
absorbance Ai, j is an element of the absorbance matrix A of
size (ns×nw) that is measured for ns solutions with known
total concentrations of two (i.e., nz=2) basic components, cL
and cH, at nw wavelengths. A multicomponent spectra
analyzing program can adjust βqr and ɛqr for absorption
spectra by minimizing the residual square sum function
RSS, denoted here as U(b),

U bð Þ ¼
Xns
i¼1

Xnw
j¼1

Aexp;i;j � Acalc;i;j

� �2
¼
Xns
i¼1

Xnw
j¼1

Aexp;i;j �
Xnc
k¼1

"j;kck

 !2

¼ minimum

where Ai, j represents an element of the experimental
absorbance response surface of size ns×nw, and the
independent variables ck are the total concentrations of the
basic components cL and cH that are adjusted in ns

solutions. The unknown parameters are the best estimates
for the protonation constants, βqr,i, i=1, ..., nc, which are
adjusted by the regression algorithm. At the same time, a
matrix of molar absorptivities (ɛqr, j, j=1, ..., nw)k, k=1, ...,
nc is estimated as non-negative reals, based on the current
values of the protonation constants. For a set of current
values of βqr,i, the free concentrations of ligand l for each
solution are calculated, as h is known from pH measure-
ments. Then, the concentrations of all the species in the
equilibrium mixture [LqHr]j, j=1, ..., nc are obtained; they
represent ns solutions of the matrix C.

The least squares (LS) method does not ensure that the
model is fully acceptable from the statistical and physico-
chemical points of view. One source of problems may be
found in the components of a regression triplet:

quality of fit ¼ f Data; Model; Method of estimationð Þ
The LS method provides accurate estimates only when

all assumptions about the data and about the regression
model are fulfilled [3]. When some assumptions are not
fulfilled, the LS method is inconvenient. The quality of the
fit is usually defined using regression diagnostics, as the
sum of squared residuals between the measured data and
their computationally modeled representation. The least
squares estimates b for the regression parameters β are
obtained by finding the minimal length of the residual
vector be ¼ A� bAp, where bAp is the predictor vector. When
determining the statistical properties of random vectors bAp,be, and b, some basic assumptions are necessary for the least
squares method to be valid [17]. (1) The regression
parameters β are not bounded, although in chemometric
practice, there are some restrictions on the parameters,
based on their physical meaning. (2) The regression model
is linear or nonlinear in its parameters, and an additive
model for the measurement of errors is valid. (3) The
matrix of nonrandom controllable values of the explanatory
variable X has a column rank equal to m. (4) The mean
value of the random errors ɛi is zero; E(ɛi)=0. (5) The
random errors ɛi have constant and finite variance,
E "2i
� � ¼ s2, and the data are therefore said to be

homoscedastic. (6) The random errors ɛi are uncorrelated
and therefore cov(ɛi, ɛi)=E(ɛi, ɛi)=0. This corresponds to
independence of the measured absorbances Ai. (7) The
random errors ɛi have a normal distribution N(0,σ2).

Reliability of βqr or pKa estimates obtained
by the goodness-of-fit test

Regression diagnostics detect and assess the quality and
reliability of a regression model. The goal of diagnostics is
twofold: to recognize important phenomena resulting from
outliers rather than the bulk of the data, and to suggest
appropriate remedies in order to find a better regression
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model. Regression diagnostics are performed to narrow the
gap between theoretical assumptions and observed data. In
contrast to robust regression, which solves this problem by
dampening the effect of outliers, regression diagnostics
identify the outliers and deal with them directly. They look
for model misspecification, departure from the normality
assumption and from homoscedasticity of the residuals,
collinearity in the predictor variables and influential
observations. Residual analysis, comprising numerical and
graphical analysis of the ordinary and various derived
residuals, is one of the most important parts of regression
diagnostics [3]. A collection of statistics known as influence
analysis measures how well a protonation model fits the
multiwavelength and multivariate data, e.g., how well a
regression model accounts for the variance of the response
variable. Examination of data quality involves the detection of
the influential points, which cause many problems in
regression analysis by shifting the parameter estimates or
increasing the variance of the parameters. The influential
points may instead be classified according to data location as
follows. (i) Outliers, which differ from the other points in
value on the absorbance axis and are separated from the bulk
of the data. These may distort statistics calculated from such
a sample. Outliers must be detected and tested to determine
whether they should be discarded before modeling. (ii) High-
leverage points, also called extremes, which differ from the
other points in value on the pH axis. (iii) Both outliers and
leverages. Outlier identification by examination of the
residuals is relatively simple, and can be done once the
regression model has been constructed.

Graphical analysis of residuals

Residual analysis is based on examining residuals from a
regression model via graphical and/or numerical diagnos-
tics in order to check the quality of nonlinear models. A
variety of residual plots, such as the bar plot, box-and-
whisker plot, dot plot, midsum plot, symmetry plot, kurtosis
plot, differential quantile plot, quantile-box plot, frequency
polygon, histogram, quantile plot, quantile-quantile plot,
rankit plot, scatter plot, and autocorrelation plot, have been
widely used by Cook and Weisberg [18], Atkinson [19],
Chatterjee and Hadi [20], Anscombe [21], Draper and
Smith [22], Carrol and Ruppert [23] and others. The
resulting graphs are used for goodness-of-fit tests and the
identification of influential points, cf. page 289 in [4].
Systematic departures of residuals from randomness also
indicate that the model is not satisfactory. The following
plots seem to be the most important:

(1) The residual index plot provides an initial impression
of the absorbance residuals using interactive computer
graphics, enabling detection of outliers, detection of a

trend in the residuals, detection of a sign change, and
detection of an abrupt shift of level in the experiment.
This scatter plot is also used to verify the normality
and homoscedasticity assumptions for the residual.
The ideal plot shows a horizontal band of points with
constant vertical scatter from left to right. A similar
analysis is performed by a scatter plot of residuals vs.
independent variables and a scatter plot of the residual
vs. the prediction, which indicate suspicious points
that could be influential.

(2) The kernel estimation of the probability density plot
and histogram detect an actual sample distribution.

(3) The rankit Q–Q plot has the quantile of the standard-
ized normal distribution uPi for Pi=i/(n+1) on the x-
axis and the ordered residuals on the y-axis, i.e.,
increasingly ordered values of various types, but
mostly classical residuals. To examine the normality
of a residual distribution, the rankit plot, also called
the normal probability plot, may be applied. Data
points lying along a straight line indicate distributions
of similar shape. The intercept of the line indicates a
difference in location, while a slope shows a difference
in scale. This plot enables the classification of a
sample distribution according to its skewness, kurtosis
and tail length. A convex or concave shape indicates a
skewed sample distribution. A sigmoidal shape indi-
cates that the tail lengths of the sample distribution
differ from those of a normal one.

(4) The halfsum plot gives information about the symme-
try of a distribution. For a symmetric distribution, the
halfsum plot forms a horizontal line y=M (median).

(5) The quantile-box plot is a universal tool for examining
the statistical features of data: for symmetrical dis-
tributions, the sample quantile function has a sigmoid
shape, whereas for an asymmetrical one the quantile
function is convex or concave-increasing. A symmet-
ric unimodal distribution contains individual boxes
arranged symmetrically inside one another, and the
value of relative skewness is close to zero. Outliers are
indicated by a sudden increase in the quantile function
outside the quartile F box, and the slope may approach
infinity. Departure from the normal straight line
indicates non-normality or model misspecification; an
opposite curvature at the ends indicates long or short
tails, while a convex or concave curvature is related to
asymmetry.

(6) The autocorrelation trend plot detects one important
violation of basic assumptions for least squares and
checks for evidence of any serial process fluctuation
dependence or trend in an observed time series. If the
process is stationary, the trend in residuals does not
depend on time.
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Statistical analysis of residuals

The plots recommended are visual techniques for easy
checking of some of the basic assumptions of the least
squares method and the proposed model. Certain statistics
provide a numerical measure of some of the discrepancies
previously described. If the proposed model represents the
data adequately, the residuals should form a random pattern
that has a normal distribution N(0, s2) with the residual
mean equal to zero, E beð Þ ¼ 0, and the standard deviation of
residuals s beð Þ being near to the noise ɛ, i.e., near to the
experimental error sinst(A). Systematic departures from
randomness indicate that the model and parameter estimates
are not satisfactory. Statistical analysis of residuals is the
main diagnostic tool used to search for the “best” model
when more than one is possible or proposed. The goodness-
of-fit test analyzes the set of residuals, and examines the
following criteria [4]. (1) The residual bias is the arithmetic
mean of residuals E beð Þ and should be equal to zero
E beð Þ ¼ 0; all residual values lying outside the modified
Hoaglin’s inner bounds BL* and BU* (cf. page 81 in [17])
are considered to be outliers. (2) The mean of absolute
values of residuals E bej j, and the square root of the residual
variance s2 beð Þ ¼ U bð Þ= n� mð Þ, known as the estimate of
the residual standard deviation, s beð Þ, should both be of the
same magnitude as the instrumental error of the regressed
variable absorbance A, i.e., sinst(A). Obviously it is also
valid that s beð Þ � sinst Að Þ. (3) The residual skewness, g1 beð Þ,
for a symmetric distribution of residuals should be equal to
zero. (4) The residual kurtosis, g2 beð Þ, for a normal
distribution should be equal to 3. (5) The determination
coefficient D calculated from the relationship D ¼ 1� U bð Þ=Pn
i¼1

Aexp;i � Aexp

� �2
multiplied by 100% is called the regres-

sion rabat, and is equal to the percentage of points which
correspond to the proposed regression model. (6) The
Hamilton R-factor of relative fitness is often used in the
chemical laboratory, and is expressed by the relationship

R� factor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U bð Þ

�Pn
i¼1

A2
i

s
. There is an empirical rule

of a fitness classification with the use of the Hamilton
R-factor: for a good fitness, the Hamilton R-factor
reaches a value ≤1%, and for excellent fitness it is lower
than 0.5%. (7) The Akaike information criterion AIC is
appropriate for distinguishing between various models. It
is defined by the relationship AIC ¼ �2L bð Þ þ 2m, or

AIC ¼ n pt ln UðbÞ
n

h i
þ 2m, where n is the number of data

points and m is the number of estimated parameters. The
best regression model is considered to be that for
which this criterion reaches a minimal value. The most
suitable model is the one which gives the lowest values
for the mean quadratic error of prediction MEP and
Akaike information criterion AIC and the highest value of the

regression rabat D, but not all software is able to provide
these as outputs.

Procedure used to build and test the protonation model

The adequacy of a proposed regression model with
experimental data, and the reliability of the parameter
estimates βqr,j or pKa,j found (denoted for the sake of
simplicity as bj, j=1, ..., m and ɛij, j=1, ..., nw), may be
examined by the goodness-of-fit test.

(1) The quality of the parameter estimates bj, j=1, ..., m
found is depends on their variances D(bj). An
empirical rule is often used: parameter bj differs
significantly from zero when its estimate is greater

than three standard deviations, 3
ffiffiffiffiffiffiffiffiffiffiffiffi
D bj
� �q

< bj
		 		, j=1,

..., m. Higher parameter variances can be caused by
termination of a minimization process before reaching
a minimum.

(2) The quality of the experimental data is examined by
identifying influential points through the use of
regression diagnostics.

(3) The quality of curve fit achieved, or the adequacy of
the proposed model and m parameter estimates found
with n values of experimental data, is examined by a
goodness-of-fit test based on the statistical analysis of
classic residuals. If the proposed model adequately
represents the data, the residuals should form a
random pattern with a normal distribution N(0, s2),
with a residual mean equal to zero, e ¼ 0, and with the
standard deviation of residuals s(e) being near to
noise, i.e., the experimental error of absorbance
measured, s beð Þ � sinst Að Þ. Systematic departures from
randomness indicate that the model and parameter
estimates are not satisfactory. Examinations of residual
plots may be assisted by graphical analysis of the
residuals.

Uncertainty in the estimated dissociation constants

The adequacy of a proposed regression model with
experimental data and the reliability of the parameter
estimates βqr,j or pKa,j found can be examined by the
goodness-of-fit test. Direct results xj from experimental
and instrumental operations in a laboratory are always
approximate, mainly because of the limited accuracy of
measuring instruments. Results from a chemical analysis
or physicochemical constants (e.g., the protonation or
dissociation constant y) are calculated from several
measured quantities x1, ..., xn by the function y=G(x1, ...,
xn). The resulting approximate relationship for the vari-
ance s2(y) is formed from m sources of uncertainties, and
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each source has its own variance σ2(xi). The following
expression is termed the rule of propagation of absolute
uncertainties:

s2 yð Þ ¼
Xm
i¼1

s2 xið Þ þ 2
Xm�1

i¼1

Xm
j¼i

cov xi; xj
� �

;

where cov(xi, xj) is a measure of the linear dependence
between the two variables xi and xj.

Experimental

Chemicals and solutions

The drug silybin and other chemicals and solutions have
been described previously [24].

Apparatus and pH-spectrophotometric titration procedure

The apparatus used and the pH-spectrophotometric titration
procedure have been described elsewhere [1, 24].

Software used

Computation relating to the determination of dissociation
constants was performed by regression analysis of the UV/
VIS spectra using the SQUAD(84) [6], SPECFIT/32 [12]
and INDICES [25] programs. Most of the graphs were
plotted using ORIGIN 7.5 [26]. In order to create regression
diagnostic graphs and compute regression-based character-
istics, an algorithm was written in S-PLUS [27], and the
Linear Regression module of the ADSTAT package [28]
was used.

Supporting information available

Complete experimental and computational procedures,
input data specimens and corresponding outputs (in
numerical and graphical form) from both SQUAD(84) and
SPECFIT/32 are available free of charge via the Internet at
http://meloun.upce.cz in the block DATA.

Results and discussion

Silybin was chosen as a typical example of the acid drugs
analyzed in our laboratory to demonstrate the reliability of
the protonation model and the estimation of protonation
constants because of two issues. The first is evaluating the
protonation equilibria for the drug silybin in cases of
strongly overlapping equilibria, as the difference between
two consecutive dissociation constants is less than 3 (about

1.2 here). Such close equilibria are always difficult to
evaluate and therefore the user needs to prove the reliability
of each dissociation constant estimation. A distribution
diagram of the relative concentrations of all of the variously
protonated species demonstrates the overlapping proton-
ation equilibria for three consecutive dissociation constants.
The second issue concerns the small differences between
the molar absorptivities of the variously protonated species
within a spectrum. It may happen that nonlinear regression
fails when the small differences in absorbance are of the
same magnitude as the instrumental noise, sinst(A).

Fig. 1 a The 3-D absorbance response surface representing the
dependence on pH at 25 °C of 33 absorption spectra for the protonation
equilibria of silybine after removal of influential outlying spectra (S-
PLUS). b The 3-D overall diagram for the residuals, representing the
response surface showing the quality of the goodness-of-fit after the
removal of influential outlying spectra (S-PLUS)
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Reliability of protonation model estimation

The number of light-absorbing species in the protonation
equilibria

The proposed strategy for efficient protonation constant
determination followed by spectral data treatment is
presented for the protonation equilibria of the drug acid
silybin [24]. pH-spectrophotometric titration enables absor-
bance response surface data (Fig. 1a) to be obtained for
nonlinear regression analysis. The reliability of parameter
estimates (for pKa and ɛ) may be evaluated on the basis of a
goodness-of-fit test of the set of residuals (Fig. 1b). The
SQUAD(84) program [6] analytical process starts with data
smoothing followed by a factor analysis based on the
Kankare method using the INDICES procedure [25], as
described in ref. [1]. The position of a breakpoint on the
sk(A)=f(k) curve in the scree plot is calculated and gives
k*=5 with the corresponding co-ordinate s5

*(A)=0.3 mAU,
which also represents the instrumental error sinst(A) of the
spectrophotometer used (Fig. 2).

Least squares nonlinear regression of the absorbance
response hyperplane

Four protonation constants and five molar absorptivities of
silybin for 39 wavelengths constitute 4þ 5� 39ð Þ ¼ 199
unknown parameters, which are refined by the MR
algorithm in the first run of the SQUAD(84) program on
pH spectra (Fig. 3). In the second run, the NNLS algorithm
makes a final refinement of all previously found parameter
estimates, with all molar absorptivities kept non-negative.
The reliability of the parameter estimates may be tested
using SQUAD(84) diagnostics.

The first diagnostic indicates whether all parametric
estimates βqr and ɛqr have physical meanings and reach
realistic values. As the standard deviations s(log βqr) of
parameters log βqr and s(ɛqr) of parameters ɛqr are
significantly smaller than their corresponding parameter
estimates (Table 1), all the variously protonated species are
statistically significant. Figure 4 shows how the estimated
molar absorptivities of all of the variously protonated
species (ɛL, ɛLH, ɛLH2, ɛLH3 and ɛLH4) of silybin depend
on wavelength. Some spectra overlap, and this may cause
some resolution difficulties in a nonlinear regression
approach.

The second diagnostic tests whether all of the calculated
free concentrations of the variously protonated species on
the distribution diagram have physical meaning, which
proved to be the case (Fig. 4). The diagram shows that
overlapping protonation equilibria exist here.

The third diagnostic, concerning the matrix of correla-
tion coefficients in Table 1, proves that there is an absence
of an interdependence between any pair of protonation
constants of silybin except for species LH1 vs. LH2, and
LH3 vs. LH4. The significant correlations of these two pairs
may be explained by the protonation constants being too
close, which is related to overlapping equilibria.

The fourth diagnostic, concerning the goodness-of-fit
(Fig. 5), indicates influential points and outliers in the

Fig. 3 The absorption spectra
of silybin (left), the A–pH curve
at selected wavelengths in de-
pendence on pH (right) for
dominant analytical wavelengths
[nm]: a, 252.4; b, 285.3; c,
291.3; d, 318.2; e, 303.21; f,
327.1 (SPECFIT, ORIGIN)

Fig. 2 Cattel’s scree plot of the Kankare criterion s(A) for the
determination of the number of light-absorbing species in the mixture
k*=5 and the actual instrumental error of the spectrophotometer used
s5

*(A)=0.3 mAU (INDICES in S-PLUS)
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spectra set. The basic features and statistical properties of
the residual set of each experimental spectrum are described
by the symmetry and kurtosis of the residual distribution,
their dispersion, and the presence or absence of outliers.
The various exploratory diagnostic plots (EDPs) offer
information about these statistical data features, some of
which are shown in Fig. 5. When a sufficient number of
points is available, estimating the probability density
function and histogram can help to elucidate the structure
of the sample. While the left part of Fig. 5 exhibits a
symmetrical normal distribution, the right part shows a

skewed non-normal asymmetric distribution, proving it to
be an outlying spectrum.

Although the left Q–Q graph in Fig. 5 indicates rather
longer tails than an ideal normal distribution, all points are
well fitted with the straight line and therefore the residuals
exhibit agreement between the residual distribution and the
normal distribution. The right graph in Fig. 5 does not fit
the straight line well, and these residuals therefore do not
exhibit normality.

The halfsum plot indicates that most points in the left
graph are in the confidence band around a median line

Fig. 4 The pure spectral pro-
files for the molar absorptivity
vs. wavelength for the variously
protonated species L, LH, LH2,
LH3, LH4 of silybin, and the
distribution diagram for the rel-
ative concentrations of all of the
variously protonated species L,
LH, LH2, LH3, LH4 of silybin in
relation to pH; the charges of
species are omitted for the sake
of simplicity (SPECFIT,
ORIGIN)

Table 1 The best chemical model found for the protonation equilibria of silybin using double-checked nonlinear least squares regression analysis
of multiwavelength and multivariate pH spectra with SQUAD(84) and SPECFIT/32 (bold) for ns=20 (and 33) spectra measured at nw=39 (and
43) wavelengths for nz=2 basic components L and H forming nc=5 variously protonated species

Estimated protonation constants Partial correlation coefficients

LqHr log βqr pKa s (log βqr) L1H1 L1H2 L1H3 L1H4

L1H1 11.501, 11.485 11.501, 11.485 0.008, 0.004 1 – – –
L1H2 21.112, 21.108 9.611, 9.623 0.010, 0.002 0.9105 1 – –
L1H3 29.778, 29.776 8.666, 8.668 0.021, 0.008 0.5191 0.7709 1 –
L1H4 36.676, 36.659 6.898, 6.883 0.022, 0.002 0.4927 0.7473 0.9902 1
Determination of the number of light-absorbing species by factor analysis

SQUAD SPECFIT
Number of spectra measured ns 20 33
Number of wavelengths nw 39 43
Number of light-absorbing species k* 5 5
Residual standard deviation sk*(A), [mAU] 0.3 Not estimated
Goodness-of-fit test via statistical analysis of residuals
Residual mean e [mAU] 3.50×10−17 −1.83×10−8

Mean residual e [mAU] 0.67 0.52
Standard deviation of residuals s(e) [mAU] 1.01 0.65
Residual skewness bg1 eð Þ 0.29 −0.04
Residual kurtosis bg2 eð Þ 2.43 3.56
Hamilton R-factor [%] 0.2 Not estimated
ɛ (all species) vs. 1λare Realistic Realistic

The charges of the ions are omitted for the sake of simplicity. The resolution criterion and the reliability of the parameter estimates found is proven
with goodness-of-fit statistics such as the residual square sum RSS, the standard deviation of absorbance after termination of the regression
process, s(A) [mAU], the residual standard deviation by factor analysis sk(A) [mAU], the mean residual ej j, the residual standard deviation s(e),
the residual skewness bg1 eð Þ and the residual kurtosis bg2 eð Þ, which proves that a Gaussian distribution applies, the Hamilton R-factor [%], and the
presence of non-negative and realistic estimates for the calculated molar absorptivities of all of the variously protonated species ɛ vs. 1λ.

Table 1 The best chemical model found for the protonation equilibria
of silybin using double-checked nonlinear least squares regression
analysis of multiwavelength and multivariate pH spectra with SQUAD

(84) and SPECFIT/32 (bold) for ns=20 (and 33) spectra measured at
nw=39 (and 43) wavelengths for nz=2 basic components L and H
forming nc=5 variously protonated species
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y=M, and that the residuals therefore exhibit a symmetric
distribution. As most points in the right graph are not in the
confidence band of a median line, this distribution deviates
from a symmetrical one.

The quantile-box plots in both parts of Fig. 5 exhibit
significant differences in terms of the shapes and symme-

tries of the boxes. While the left graph suggests a
symmetric distribution of a Gaussian nature, the right graph
shows an asymmetric distribution with some outliers.

The residual-index scatter plot is very informative, as it
is able to indicate an autocorrelated trend in the residuals.
The left graph does not prove any trend but a horizontal

Fig. 5 Detecting and removing
influential outlying spectra with
the use of graphical exploratory
data analysis involving good-
ness-of-fit test of residuals.
From the set of 33 spectra, the
two examples show either a
good spectral fit (left) or a poor
spectral fit (right): 1st row:
histogram and kernel estimation
of the probability density; 2nd
row: the quantile-quantile (Q–
Q) plot; 3rd row: the halfsum
plot; 4th row: the quantile-box
plot; 5th row: the plot of a trend
analysis, (QCEXPERT)
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band of points with constant vertical scatter from left to
right. No trend is proven with the statistical test. The right
graph exhibits an obviously increasing trend in the residuals
and this proves that this spectrum is strongly outlying
among the set of spectra. This trend is proven to be
statistically significant.

Statistics from the goodness-of-fit test prove that the
s5(A) value of 0.3 mAU is closer to the standard deviation
of absorbance when the minimization process terminates;
s(A)=1.01 mAU (SPECFIT 0.65 mAU) when the outlying
spectra have been removed (Fig. 6). Outlying spectra in the
original set of 45 spectra are detected with rectangles in the
left graph of Fig. 6, and the right graph shows the fitness
when the outlying spectra are removed. Numerical values
of statistical measures of the residuals now indicate very
good fitness, and also prove that the minimum of the
elliptic hyperparaboloid U was reached: the residual mean

e ¼ 3:50� 10�17 (SPECFIT −1.83×10−8) proves that there
is no bias or systematic error in the spectra fitting. The
mean residual ej j ¼ 0:67 (SPECFIT 0.52) mAU and the
residual standard deviation s(e)=1.01 (SPECFIT 0.65)
mAU have sufficiently low values. The standard deviation
of absorbance s(A) after termination of the minimization
process is always better than 2 mAU, and the proposal of a
good chemical model and reliable parameter estimates are
thus proven. The skewness bg1 eð Þ ¼ 0:29 (SPECFIT −0.04)
is quite close to zero and proves the symmetric distribution
of the set of residuals, while the kurtosis bg2 eð Þ ¼ 2:43
(SPECFIT 3.56) is close to 3, proving that a Gaussian
distribution applies.

The fifth diagnostic, the spectral deconvolution in Fig. 7,
shows the deconvolution of the experimental spectrum into
spectra for the individual variously protonated species, to
examine whether the experimental design is efficient.

Fig. 6 Detecting and removing
influential outlying spectra us-
ing a goodness-of-fit test. Spec-
tral fitness achieved before (left)
and after (right) removing out-
liers. Rectangles indicate out-
liers: 1st row: the plot of the
residual standard deviation s(e);
2nd row: the mean residual ej j;
3rd row: test of residual distri-
bution symmetry using skew-
ness g1 and kurtosis g2;
(SPECFIT, QCEXPERT,
ORIGIN)
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Spectral deconvolution seems to be quite a useful tool when
proposing a strategy for efficient experimentation. Such a
spectrum provides sufficient information for a regression
analysis that monitors at least two species in equilibrium,
where none of them is a minor species. A minor species has
a relative concentration in a distribution diagram of less
than 5% of the total concentration of the basic component
cL. When, on the other hand, only one species is prevalent
in solution, the spectrum yields quite poor information for a
regression analysis, and the parameter estimate is rather
unsure and definitely not reliable enough. The upper part of
Fig. 7 shows a spectral deconvolution and the lower part a
plot of the residual scatter vs. wavelength. This graph
detects the quality of curve fitting and also proves the
reliability of fitting the actual spectrum in question.

Uncertainty in the estimated dissociation constants

Uncertainty in pKa caused by drifts in pH measurement

To gauge the uncertainty arising from pH measurement, the
pH-meter was adjusted via standard buffers at 4.006±0.005
and 9.180±0.005, and then a third buffer of value 6.865±
0.005 was measured for six hours and the time drift in the
pH values monitored (Fig. 8). A decrease in pH value by

0.002 pH units every six hours does not appear to be
significant during a 90-minute measurement of the spectra
set. It was found that for a given experiment the uncertainty
in the pH meter adjustment is ±0.004, the uncertainty due to
time drift is ±0.007, and the uncertainty in the pH value of
the pH standard is ±0.005. Based on the propagation of
errors law, the uncertainty caused by the pH measurements
is equal to ±0.009.

Fig. 8 Uncertainty in pKa caused by drifts in pH measurement over
time

Fig. 7 Deconvolution of the experimental absorption spectrum of
silybin for 39 wavelengths into spectra for the individual variously
protonated species L, LH, LH2, LH3, LH4 in solution (above), and the
statistical analysis of the residuals (below) from each particular

absorption spectrum for a selected value of pH equal to: (a) 11.96,
(b) 9.31 and (c) 6.95. The charges of the species are omitted for the
sake of simplicity. (SQUAD, ORIGIN)
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Uncertainty in pKa caused by drifts in spectral
measurement

The uncertainty estimation procedure is applied to dissoci-
ation constant determination for silybin, which has three
close dissociation constants due to overlapping protonation
equilibria pKi � pKiþ1j j < 3 and a distant protonation
equilibrium, i.e., for an ionic strength I=0.03 the dissoci-

ation constants were found to be pKa,1=6.898, pKa,2=
8.666, pKa,3=9.611, pKa,4=11.501 (Fig. 4). Moreover, two
differently protonated species have very similar absorption
bands. The known values for the molar absorption
coefficients of all the variously protonated species and the
values of four dissociation constants were used to generate
the absorption spectra. A set of precise values for the
absorbance at 39 wavelengths was then loaded with random

Fig. 10 Dependence of the pre-
cision of the pKa estimates on
the instrumental error of the
spectrophotometer used sinst(A)

Fig. 9 Dependence of the accu-
racy of the pKa estimates on the
instrumental error of the spec-
trophotometer used sinst(A)
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errors generated for the preselected standard deviation of
absorbance s(A) and that were equal to the instrumental
noise of the spectrophotometer used, sinst(A).

The first and most important experimental parameter
affecting the accuracy and precision of the estimated
dissociation constants is the value of the instrumental noise
of the absorbance measurement, sinst(A). The value of this
noise was therefore generated and varied within an interval
of 0.1–1.0 mAU (Figs. 9 and 10). The second important
parameter was the spectral sample size n, which was varied
here, taking values of n=21, 36 and 51 using a pH interval
of 5–13. The noise generated was added to a precisely

calculated matrix of the spectra for 39 wavelengths that has
a Gaussian distribution of the random error of a zero mean
(actually 10−20), and a standard deviation equal to the
preselected value for the noise. When testing the statistical
significance of the estimated parameters, the critical value
of the Student t-test was tcrit=2.23 (Table 2).

Simulated spectra were treated using two regression
programs, SQUAD(84) and SPECFIT/32. Both programs
yielded similar pKi estimates and similar curves for the
molar absorptivities vs. wavelength. The accuracy of the
pKi estimates was investigated via the bias ΔpKi, i=1, ..., 4,
as expressed in the linear regression model ΔpKi=β0+

Table 2 The accuracy of the pKi estimates, investigated via the bias ΔpKi, i=1, ..., 4, as expressed in the linear regression model
ΔpKi=β0+β1sinst(A) as a function of the instrumental standard deviation sinst(A)

Intercept b0(s) texp and H0: b0=0 is Slope b1(s) texp and H0: b1=0 is Regression model is

21 spectra, pKa1 −1.6×10–3 (2.0×10–3) −0.78, accepted 1.65 (3.52) 0.47, accepted not significant
pKa2 −4.8×10–3 (1.5×10–2) −0.33, accepted 38.70 (25.17) 1.54, accepted not significant
pKa3 −2.2×10–3 (4.8×10–3) −0.46, accepted 8.54 (8.25) 1.04, accepted not significant
pKa4 −9.5×10–4 (3.4×10–3) −0.28, accepted 10.56 (5.94) 1.78, accepted not significant
36 spectra, pKa1 6.4×10–4 (7.3×10–4) 0.88, accepted −1.2 (1.25) −0.96, accepted not significant
pKa2 −5.3×10–3 (6.4×10–3) −0.82, accepted 6.67 (10.94) 0.61, accepted not significant
pKa3 −3.7×10–3 (3.9×10–3) −0.95, accepted 8.83 (6.73) 1.31, accepted not significant
pKa4 −3.6×10–3 (3.9×10–3) −0.92, accepted 2.25 (6.61) 0.34, accepted not significant
51 spectra, pKa1 4.2×10–5 (7.2×10–4) 0.06, accepted 1.32 (1.18) 1.13, accepted not significant
pKa2 −4.4×10–3 (8.5×10–3) −0.52, accepted 12.96 (13.90) 0.93, accepted not significant
pKa3 −5.5×10–4 (2.4×10–3) −0.23, accepted −2.16 (3.85) −0.56, accepted not significant
pKa4 −2.4×10–3 (4.0×10–3) −0.60, accepted 3.5 (6.46) 0.54, accepted not significant

In the interval of sinst(A) investigated, from 0.1 to 1.0 mAU, both of the parameter estimates, the intercept β0 and the slope β1, are statistically
tested using a Student t-test of the null hypotheses H0: b0=0 and H0: b1=0. The significance of the proposed linear regression model is then
proven with the Fisher-–Snedecor F-test.

Fig. 11 Spectrophotometric de-
termination of pKa
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β1sinst(A) as a function of the instrumental standard
deviation sinst(A). In the investigated interval of sinst(A),
from 0.1 to 1.0 mAU, neither of the parameter estimates b0
and b1 are statistically significant, and so the dissociation
constants pKi are accurate for all values of sinst(A).

Precision was examined based on the estimated standard
deviation of the dissociation constant s(pK) of the calculat-
ed ith dissociation constant pKi in relation to the noise level
sinst(A), expressed in the linear regression model s(pK)=

β0+β1sinst(A) (Fig. 10). In all cases the intercept was
statistically insignificant, and it was found that increasing
the sample size decreased the value of the slope (Fig. 10).
While parameter pK2 is well-conditioned in the regression
model, as the pK2 is sensitive enough to the absorbance
noise, the other three parameters (pK1, pK3 and pK4) are
less sensitive to the magnitudes of random errors, and are
therefore badly conditioned in the regression model
(Table 3).

The noise level sinst(A) has an influence on the precision
of the estimated parameters pKi when closely overlapping
equilibria exist. This is the case with the LH2 and LH3

species, which exhibit overlapping spectra with LH, and
therefore the estimation of pK2 is more difficult and the
precision of the estimation depends on the noise level of the
spectral data. Table 3 shows the bias in the accuracies and
uncertainties of the dissociation constants for the noise level
sinst(A)=0.3 mAU, which corresponds to common experi-
mental data.

Uncertainties in pKa caused by drifts during analytical
operations

The uncertainties in pKi arising from drifts during analytical
operations have no significant influence, and therefore were
not propagated in the total uncertainty of pKi. Analytical
operations add uncertainty to the concentration of the acid
drug and will thus only affect the uncertainties in the
estimated molar absorptivities of the variously protonated
species. The law of uncertainty propagation leads us to
conclude that the uncertainty in the molar absorptivity is
about ±0.29% (Table 4).

Uncertainties in the overall pKa values

Based on the aforementioned uncertainties and experimen-
tal noise level sinst(A)=0.3 mAU, the resulting uncertainties

Table 5 The estimated dissociation constants in the protonation model (L, LH, LH2, LH3, LH4) of silybin for various ionic strengths at 25 °C are
proven with the goodness-of-fit test

Ionic strength

0.011 0.032 0.089 0.128

SQUAD SPECFIT SQUAD SPECFIT SQUAD SPECFIT SQUAD SPECFIT

pKa,1 6.871(44) 6.871(4) 6.898(22) 6.897(2) 6.858(40) 6.857(3) 6.841(43) 6.839(5)
pKa,2 8.938(43) 8.919(24) 8.666(21) 8.668(12) 8.549(38) 8.533(22) 8.574(41) 8.551(24)
pKa,3 9.721(18) 9.714(9) 9.611(10) 9.612(4) 9.579(19) 9.577(6) 9.556(19) 9.551(7)
pKa,4 11.644(9) 11.640(8) 11.501(8) 11.501(7) 11.666(15) 11.661(12) 11.622(14) 11.621(12)
Goodness-of-fit test, sk(A) [mAU]=0.25
RSS [mAU] 1.29 1.28 0.6 0.58 1.51 1.48 1.97 2.01
e [mAU] 1.05 1.04 0.67 0.66 0.99 0.98 1.11 1.13
s(A) [mAU] 1.6 1.35 1.01 0.86 1.61 1.38 1.84 1.6

Table 4 The drift during analytical operations exerts no significant
influence

Analytical operation Value and uncertainty

Weighting 50.0±0.1 mg
Pipet 1 25.00±0.03 ml
Pipet 2 10.00±0.01 ml
Volumetric flask 250.0±0.3 ml
Microburette 1.250±0.001 ml
Purity of drug 97.5±0.1 %

Analytical operations add uncertainty to the concentration of a drug
acid and so they will only affect the uncertainty in the estimated
molar absorptivities of the variously protonated species. The law of
uncertainty propagation leads us to conclude that the uncertainty in
the molar absorptivity is about ±0.29%.

Table 3 Estimated accuracies and precisions (uncertainties) of
individual dissociation constants pKi, i=1, ..., 4, for the instrumental
standard deviation sinst(A)=0.3 mAU

Accuracy
Bias in pKi pKa1 pKa2 pKa3 pKa4

±0.002 ±0.014 ±0.004 ±0.010
Precision

Uncertainty in pKi pKa1 pKa2 pKa3 pKa4

±0.001 ±0.010 ±0.003 ±0.003
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in the estimated dissociation constants pKi were calculated
(Table 5). This also means that when the standard deviation
for the dissociation constant s(pK), calculated using
nonlinear regression, is larger than these values, the noise
level sinst(A) in the experimental data is larger than the
supposed value 0.3 mAU.

Conclusions

The reliability of the dissociation constants for the acid
drug silybin can be proven be performing goodness-of-fit
tests on the absorption spectra measured at various pH
values (Fig. 11). Goodness-of-fit tests for various regression
diagnostics enabled the reliability of the parameter esti-
mates to be determined. When drugs are poorly soluble,
pH-spectrophotometric titration may be used along with
nonlinear regression of the absorbance response surface
data instead of potentiometry to determine the dissociation
constants. Regression diagnostics represent procedures for
examining the regression triplet (data, model, method) in
order to check (a) the data quality for a proposed model, (b)
the model quality for a given set of data, and (c) whether all
of the assumptions of least squares are fulfilled.

Acknowledgments The financial support of the Grant Agency IGA
(Grant No NR9055-4/2006) and of the Czech Ministry of Education
(Grant No MSM253100002) is gratefully acknowledged.

References

1. Meloun M, Bordovská S, Syrový T, Vrána A (2006) Anal Chim
Acta 580:107–121

2. Maeder M, Neuhold Y-M, Puxty G, Gemperline P (2006)
Chemometr Intell Lab Syst 82:75–82

3. Meloun M, Militký J, Hill M, Brereton RG (2002) Analyst
127:433–450

4. Meloun M, Militký J, Forina M (1994) Chemometrics for
analytical chemistry, vol 2. PC-aided regression and related
methods. Ellis Horwood, Chichester, UK

5. Leggett DJ (ed)(1985) SQUAD. In: Computational methods for
the determination of formation constants. Plenum, New York,
pp 99–157, 291–353

6. Meloun M, Javůrek M, Havel J (1986) Talanta 33:513–524
7. Leggett DJ, McBryde WAE (1975) Anal Chem 47:1065–1070
8. Leggett DJ (1977) Anal Chem 49:276–281
9. Gampp H, Maeder M, Mayer Ch J, Zuberbühler A (1985) Talanta

32:95–101
10. Gampp H, Maeder M, Meyer Ch J, Zuberbühler A (1985) Talanta

32:251–264
11. Gampp H, Maeder M, Meyer Ch J, Zuberbühler A (1985) Talanta

33:943–951
12. Spectrum Software Associates (2004) SPECFIT/32. Spectrum

Software Associates, Marlborough, MA (see http://www.bio-
logic.info/rapid-kinetics/specfit.html, last accessed 16th Novem-
ber 2006)

13. Meloun M, Javůrek M, Högfeldt E (1988) Chem Scripta 28:323–
329

14. Meloun M, Havel J, Högfeldt E (1988) Computation of solution
equilibria. Ellis Horwood, Chichester, UK

15. Meloun M, Havel J (1984) Computation of solution equilibria, 1.
Spectrophotometry, Folia Fac. Sci. Nat. Univ. Purkyn. Brunensis
(Chemia), Brno, XXV

16. Meloun M, Havel J (1985) Computation of solution equilibria, 2.
Potentiometry, Folia Fac. Sci. Nat. Univ. Purkyn. Brunensis
(Chemia), Brno, XXVI

17. Meloun M, Militký J, Forina M (1992) Chemometrics for
analytical chemistry, vol 1. PC-aided statistical data analysis.
Ellis Horwood, Chichester, UK

18. Cook RD, Weisberg S (1982) Residuals and influence in
regression. Chapman & Hall, London

19. Atkinson AC (1985) Plots, transformations and regression: an
introduction to graphical methods of diagnostic regression
analysis. Clarendon, Oxford

20. Chatterjee S, Hadi AS (1988) Sensitivity analysis in linear
regression. Wiley, New York

21. Anscombe FJ (1961) Proc Fourth Berkeley Symp Math Statist
Prob I:1–36

22. Draper NR, Smith H (1966) Applied regression analysis, 1st edn.
Wiley, New York

23. Carrol RJ, Ruppert D (1988) Transformation and weighting in
regression. Chapman and Hall, New York

24. Meloun M, Burkoňová D, Syrový T, Vrána A (2003) Anal Chim
Acta 486:125–141

25. Meloun M, Syrový T, Vrána A (2003) Anal Chim Acta 489:137–
151

26. OriginLab Corporation (2006) ORIGIN. OriginLab Corporation,
Northampton, MA

27. Insightful Corp. (2006) S-PLUS. Insightful Corp., Seattle, WA,
(see http://www.insightful.com/products/splus, last accessed 16th
November 2006)

28. TriloByte Statistical Software Ltd. (2006) ADSTAT 1.25, 2.0, 3.0
(Windows 95). TriloByte Statistical Software Ltd., Pardubice,
Czech Republic

Anal Bioanal Chem (2007) 387:941–955 955

http://www.bio-logic.info/rapid-kinetics/specfit.html
http://www.bio-logic.info/rapid-kinetics/specfit.html
http://www.insightful.com/products/splus

	Reliability...
	Abstract
	Introduction
	Theoretical
	Estimation of protonation constants by nonlinear least squares regression
	Reliability of βqr or pKa estimates obtained by the goodness-of-fit test
	Graphical analysis of residuals
	Statistical analysis of residuals

	Procedure used to build and test the protonation model
	Uncertainty in the estimated dissociation constants

	Experimental
	Chemicals and solutions
	Apparatus and pH-spectrophotometric titration procedure
	Software used
	Supporting information available

	Results and discussion
	Reliability of protonation model estimation
	The number of light-absorbing species in the protonation equilibria
	Least squares nonlinear regression of the absorbance response hyperplane

	Uncertainty in the estimated dissociation constants
	Uncertainty in pKa caused by drifts in pH measurement
	Uncertainty in pKa caused by drifts in spectral measurement
	Uncertainties in pKa caused by drifts during analytical operations
	Uncertainties in the overall pKa values


	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


