
Analytica Chimica Acta 580 (2006) 107–121

Tutorial on a chemical model building by least-squares non-linear
regression of multiwavelength spectrophotometric

pH-titration data

Milan Meloun a,∗, Sylva Bordovská a, Tomáš Syrový a, Aleš Vrána b
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Abstract

Although the modern instrumentation enables for the increased amount of data to be delivered in shorter time, computer-assisted spectra analysis
is limited by the intelligence and by the programmed logic tool applications. Proposed tutorial covers all the main steps of the data processing
which involve the chemical model building, from calculating the concentration profiles and, using spectra regression, fitting the protonation
constants of the chemical model to multiwavelength and multivariate data measured. Suggested diagnostics are examined to see whether the
chemical model hypothesis can be accepted, as an incorrect model with false stoichiometric indices may lead to slow convergence, cyclization
or divergence of the regression process minimization. Diagnostics concern the physical meaning of unknown parameters βqr and εqr, physical
sense of associated species concentrations, parametric correlation coefficients, goodness-of-fit tests, error analyses and spectra deconvolution,
and the correct number of light-absorbing species determination. All of the benefits of spectrophotometric data analysis are demonstrated on the
protonation constants of the ionizable anticancer drug 7-ethyl-10-hydroxycamptothecine, using data double checked with the SQUAD(84) and
SPECFIT/32 regression programs and with factor analysis of the INDICES program. The experimental determination of protonation constants
with their computational prediction based on a knowledge of chemical structures of the drug was through the combined MARVIN and PALLAS
programs. If the proposed model adequately represents the data, the residuals should form a random pattern with a normal distribution N(0, s2),
with the residual mean equal to zero, and the standard deviation of residuals being near to experimental noise. Examination of residual plots may
be assisted by a graphical analysis of residuals, and systematic departures from randomness indicate that the model and parameter estimates are
not satisfactory.

© 2006 Elsevier B.V. All rights reserved.
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. Introduction

The accurate determination of protonation constants is often
equired in various chemical, biochemical and pharmaceuti-
al fields as the protonation constants of organic reagents and
rugs play a fundamental role in many analytical and med-

cal procedures. If a drug is poorly soluble then, instead of

potentiometric determination of dissociation constants, pH-
pectrophotometric titration may be used with the non-linear
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egression of the absorbance-response-surface data. Spectro-
copic methods are, in general, highly sensitive and are as such
uitable for studying protonation equilibria solutions [1–26]. If
he components involved can be obtained in pure form, or if
heir spectral responses do not overlap, such analysis is trivial.
or many systems, particularly those with similar components,

his is not the case, and these have been difficult to analyze. There
re several advantages when using multiwavelength data as com-
ared to selecting a single wavelength: (a) Determination of the

ure spectra for all species and intermediates of the equilibria
ixture. (b) Application of a wide range of model-free analy-

es, from simple factor analysis to indicate the number of species
e.g., INDICES [12]) to sophisticated analysis based on evolving
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actor analysis. (c) The need to determine a “good” wavelength
o follow the actual equilibrium or reaction is eliminated. (d)
he analysis of multiwavelength data is often significantly more

obust.
Since the mid-1960s, computers have acquired an ever-

reater importance in the evaluation of equilibrium measure-
ent data using the full spectrum in order to determine the

tability (protonation) constants βqr and molar absorptivities εqr.
he most widespread programs and algorithms for determining

he stability constants from absorbance data are LETAGROP-
PEFO [4], SQUAD [5–10], PSEQUAD [5], HYPERQUAD
23], SPECFIT [24–26,34] and more recently DATAN [27–32]
nd BeerOz [33]. All these computational approaches are based
n the initial proposal of stoichiometries of species which
efine the chemical equilibrium model, are based on mass-
ction law and mass balance equations, and also involve least-
quares curve-fitting procedures. Such programs, for example,
QUAD(84) [7], contain functional blocks for (i) determination
f the number of light-absorbing species, (ii) regression esti-
ation of βqr and εqr, (iii) a rigorous goodness-of-fit test, (iv)

n error analysis, which includes calculation of the confidence
nterval of the parameters, correlation coefficients and residual-
quares-sum function contours and other statistics, and (v)
ndividual spectrum deconvolution. Splitting a program struc-
ure into such logical units helps to elucidate its anatomy, and
o understand the modus operandi of a sophisticated program
7–10,33,34].

In the context of this tutorial, a solution equilibria study is
epresented by the investigation of protonation of ionizable drug
cids and encompasses the identification of the correct number
f the various species which absorb light and the determina-
ion of the associated protonation constants. As the protonation
quilibria of some certain drugs have been studied systemati-
ally in our laboratory [13–18,21,22], the authors have tried to
omplete the tutorial procedure from chemical model building
nd testing to double checked spectra least-squares regression
ith two programs, SQUAD(84) and SPECFIT/32, and to deter-
ine protonation constants of the poorly soluble anticancer

rug 7-ethyl-10-hydroxycamptothecin. This compound (CAS
o. 86639-52-3, molecular formula C22H20N2O5, molecular
eight 392.40 and dissociation constants were not yet esti-
ated), used here as an example only, is the pharmacologically

ctive metabolite of the anticancer drug irinotecan, used globally
n the first line treatment of advanced metastatic colorectal can-
er. Concurrently, the experimental determination of protonation
onstants was combined with their computer prediction based
n a knowledge of chemical structures [50] using the MARVIN
51] and PALLAS [52] programs.

. Theoretical

.1. Protonation constants by regression spectra analysis
An acid–base equilibrium of the drug studied is described in
erms of the protonation of the Brönstedt base Lz−1 according to
he equation Lz−1 + H+ → HLz characterized by the protonation

t
t
p
t
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onstant

H = aHLz

az−1
L aH+

= [HLz]

[Lz−1][H+]

yHLz

yLz−1yH+

issociation reactions realized at constant ionic strength termed
mixed dissociation constants”, are defined as

a,j = [Hj−1L]aH+

[HjL]

hese constants are found in experiments where pH values
re measured with glass and reference electrodes, standardized
ith the practical pH(S) = paH+ activity scale recommended

nternationally [1,2]; pH(S) = p(aH+ )c + log ρs where index c
eans molar (and, if relevant, molal m concentrations) and

s is the density of the solvent. For aqueous solutions and
emperatures up to 35 ◦C, this correction is less than 0.003
H units. The value of [Hj−1L]/[HjL] may be determined by
pectrophotometric-pH titration when a determination of the
ixed dissociation constant pKa is performed, cf. ref. [2,3]. If

he protonation equilibria between the anion L (the charges are
mitted for the sake of simplicity) of a drug and a proton H are
onsidered to form a set of variously protonated species L, LH,
H2, LH3, etc., which have the general formula LqHr in a par-

icular chemical model and are represented by nc the number of
pecies (q, r)i, i = 1, . . ., nc where index i labels their particular
toicheiometry, then the overall protonation (stability) constant
f the protonated species, βqr, may be expressed as

qr = [LqHr]

[L]q[H]r
= c

lqhr

here the free concentration [L] = l, [H] = h and [LqHr] = c. As
ach aqueous species is characterized by its own spectrum, for
V/vis experiments and the ith solution measured at the jth
avelength, the Lambert–Beer law relates the absorbance, Ai,j,
eing defined as

i,j =
nc∑
n=1

εj,ncn =
nc∑
n=1

(εqr,jβqrl
qhr)

n

here εqr,j is the molar absorptivity of the LqHr species with
he stoichiometric coefficients q, r measured at the jth wave-
ength. The absorbance Ai,j is an element of the absorbance

atrix A of size (ns × nw) being measured for ns solutions with
nown total concentrations of nz = 2 basic components, cL and
H, at nw wavelengths. The rank of the matrix A is obtained from
he equation rank(A) = min[rank(E), rank(C)] ≤ min(nw, nc, ns).
ince the rank of A is equal to the rank of E or C, whichever is

he smaller, and since rank(E) ≤ nc and rank(C) ≤ nc, then pro-
ided nw and ns are equal to or greater than nc, it will only be
ecessary to determine the rank of matrix A, which is equiv-
lent to the number of dominant light-absorbing components
2,3,11,12].

Two families of algorithms for data interpretation can be dis-

inguished, based on the types of constraints applied in the spec-
ra interpretation. The first family, originally implemented in the
rogram SQUAD(75) [5], uses the constraint of a non-linear
hermodynamic speciation model. A non-linear least-squares
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method is used to optimise the absorptivity coefficients and
equilibrium constants of formation of the absorbing species.
The multicomponent spectra analysing program SQUAD(84)
[7] can adjust βqr and εqr for absorption spectra by minimising
the residual-square sum function (RSS),

RSS =
ns∑
i=1

nw∑
j=1

(Aexp,i,j − Acalc,i,j)
2

=
ns∑
i=1

nw∑
j=1

(
Aexp,i,j −

nc∑
k=1

j,kck

)2

= minimum

where Ai,j represents the element of the experimental absorbance
response-surface of size ns × nw and the independent variables
ck are the total concentrations of the basic components cL and
cH being adjusted in ns solutions. Unknown parameters are the
best estimates of the protonation constants, βqr,i, i = 1, . . ., nc,
which are adjusted by the SQUAD(84) regression algorithm. At
the same time, a matrix of molar absorptivities (εqr,j, j = 1, . . .,
nw)k, k = 1, . . ., nc, as non-negative reals is estimated, based on
the current values of protonation constants. For a set of current
values of βqr,i, the free concentrations of ligand l for each solu-
tion are calculated, as h is known from pH measurement. Then,
the concentrations of all the species in the equilibrium mixture
[LqHr]j, j = 1, . . ., nc are obtained; they represent ns solutions of
the matrix C. The calculated standard deviation of absorbance
s(A) and the Hamilton R-factor are used as the most important
criteria for a fitness test. If, after termination of the minimiza-
tion process, the condition s(A) ≈ sinst(A) is met and the R-factor
is less than 1%, the hypothesis of the chemical model is taken
as the most probable one and is accepted. SQUAD(75) [5] and
its successors (e.g., SQUAD(84) [7]), have been used success-
fully in many complexation or protonation equilibria [35–38]
studies.

Another popular program is the commercial SPECFIT/32
[34], based on the algorithm developed by Gampp and co-
workers [24–26], and the similar modular program BeerOz
(Matlab) [33] for the determination of stability constants from
spectrophotometric titration data. The method referred to as
“model-free” does not require any assumption as to the chem-
istry of the system other than the number of active complexes
present, not any assumptions as to the nature of absorbing com-
plexes, their stoichiometry or a thermodynamic model. The
solution is retrieved using constraints such as non-negativity for
concentrations and absorptivities, closure (the sum of the con-
centrations of some species should be equal to a known quantity)
and unimodality (only one maximum in the concentration pro-
files). The latest version of SPECFIT/32 [34] makes use of a
multiwavelength and multivariate spectra treatment and enables
a global analysis for equilibrium and kinetic systems with singu-
lar value decomposition and non-linear least-squares regression

modeling using the Levenberg–Marquardt method [39], and has
been used in many papers [23–26,34,40–44]. Factor analysis is
used as a powerful tool for the determination of independent
components in a given data matrix is used.
ca Acta 580 (2006) 107–121 109

.2. Procedure for protonation model building and testing

An experimental and computational scheme for protonation
odel building and testing, and for the determination of pro-

onation constants of a multicomponent system was proposed
y Meloun et al., cf. page 226 in ref. [2] or ref. [7] and is here
xtended and revised with regard to SPECFIT/32:

1) Instrumental error of absorbance measurements, sinst(A):
The INDICES algorithm cf. ref. [12] should be used with
solutions of potassium dichromate to evaluate sinst(A). The
Cattel’s scree plot of sk(A) = f(k) consists of two straight
lines intersecting at {s∗k(A); k*} where k* is the matrix rank
for the system. Since k* = 1 for one component K2Cr2O7 in
solution, the value of sk(A) for k* = 1 is a good estimate of the
instrumental error of the spectrophotometer used, sinst(A) =
s∗1(A) reaching a value of 0.25 mA U for the Cintra 40 (GBC,
Australia) spectrophotometer employed.

2) Experimental design: Since preparation of a large number
of separate solutions is tedious, simultaneous monitoring
of absorbance and pH during titrations is valuable [7]. In a
titration, the total concentration of one of the components
changes incrementaly over a relatively wide range, but the
total concentrations of the other components change only by
dilution, or not at all if they are present at the same concen-
tration in the titrant and titrand. However, the absorbance
cannot be varied over a large range without decreasing
the precision of its measurement, and is effectively con-
fined to a range of about one order of magnitude, e.g.,
0.1 < A < 1.2, though the range of concentrations measured
can be increased by use of different path-lengths, e.g., 5, 1
and 0.1 cm. The protonation equilibria of drugs are usually
studied in the ultraviolet and visible region, 190–760 nm.
The wavelength range selected is such that every species
makes a significant contribution to the absorbance; little
information is obtained in regions of great spectral over-
lap or where the molar absorptivities of two or more species
are linearly interdependent, as the change of absorbance fol-
lowing changes in cL and cH becomes rather small. If only
a small number of wavelengths is used those of maxima
or shoulders should be chosen, because small errors in set-
ting the wavelength are then less important. It is best to use
wavelengths at which the molar absorptivities of the species
differ greatly, or a large number of wavelengths spaced at
equal intervals.

3) Number of light-absorbing species: A qualitative interpre-
tation of the spectra aims to evaluate of the quality of the
dataset and remove spurious data, and to estimate the min-
imum number of factors, i.e. contributing aqueous species,
which are necessary to describe the experimental data. The
INDICES [12] determine the number of dominant species
present in the equilibrium mixture. In this algorithm the
various indicator function PC(k) techniques developed to

deduce the exact size of the true component space can be
classified into two general categories: (a) precise methods
based upon the knowledge of the experimental error of
the absorbance data, sinst(A), and (b) approximate methods
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requiring no knowledge of the experimental error, sinst(A).
In general, more precise and most inclining methods are
based on the first criterion concerning the procedure of
finding the point where the slope of the indicator function
PC(k) = f(k) changes. Each “real” factor corresponding to
an actual absorbing species in solution will cause a dra-
matic decrease in PC(k) value, whereas superfluous factors
cause only very small decreases. In reality, though, noise
also contains systematic contributions, either from instru-
mental or from physical factors, and the break in the slope
may not be very clear on graphs. Elbergali et al. [45]
therefore proposed derivatives to improve the identifica-
tion of the number of components. The derivative criteria,
S.D.(k) are based on the points where the slope changes and
reaches a maximum. The S.D.(k) is defined as S.D.(k) =
log[PC(k + 1)] − 2 × log[PC(k)] + log[PC(k − 1)] and p −
k should be at the first maximum of the S.D.(k) func-
tion. The third derivative TD(k) value crosses zero and
reaches a negative minimum which can be used as a cri-
terion. The TD(k) is defined as TD(k) = log[PC(k + 2)] −
3 × log[PC(k + 1)] + 3 × log [PC(k)] − log[PC(k − 1)] and p
should be equal to k where TD(k) has its first minimum.
The change in slope can also be found by calculating
the derivatives ratio, ROD(k) by ROP(k) = {PC(k − 1) −
PC(k)}/{PC(k) − PC(k + 1)}. Ideally ROD(k) should have
a maximum at the point where k = p.
(a) Precise indices: Besides the first criterion applied, indi-

cator function PC(k) methods are also based on a com-
parison of an actual index PC(k) of the method used with
the experimental error of the instrument used, sinst(A).
These have been described elsewhere [12]:
1. Kankare’s residual standard deviation, sk(A). The

sk(A) values for different numbers of components k
are plotted against an index k, sk(A) = f(k), and the
number of significant components is an integer p = k
for which sk(A) is close to the instrumental error
of absorbance sinst(A), [11,12]. When no outliers
(grossly erroneous points) are present in the spec-
tra examined, s∗k(A) ≤ sinst(A) is valid. Outliers are
detected, and corrected and the s∗k(A) = f (k) plot
is then recalculated; the spectra are then free from
gross errors and ready to be analyzed by the regres-
sion program.

2. Residual standard deviation, R.S.D.(k), is used anal-
ogously to the previous method sk(A).

3. Average error criterion, AE(k), is used analogously
to the preceding method sk(A).

4. Bartlett χ2 criterion, χ2(k) is used when the true
number of significant components corresponds to
the first k value for which χ2(k) is less than criti-
cal χ2(k)expected = (n − k)(m − k).

(b) Approximate methods: A more difficult problem is to
deduce the number of components without relying on

an estimation of the instrumental error of absorbance,
sinst(A): only the first criterion remains. Most of the tech-
niques presented are empirical functions [12]. Eigen-
values gk are conventionally used as a measure of the
ca Acta 580 (2006) 107–121

size of a principal component [46]. The first p eigen-
values, called a set of primary eigenvalues, contain a
contribution from the real components and should be
considerably larger than those containing only noise.
The second set, called the secondary eigenvalues con-
tains (o − p) eigenvalues and these are referred to as
non-significant eigenvalues.
1. Exner function, ψ(k): The Exner ψ(k) function may

be used for the identification of the true dimension-
ality of the data. Exner proposed that ψ = 0.3 can
be considered a fair correlation, ψ = 0.2 can be con-
sidered a good correlation and ψ = 0.1 an excellent
correlation. This means that for ψ < 0.1 the corre-
sponding k can be taken as the number of light-
absorbing species in solution; the first criterion is,
however, often preferred as the more reliable one.

2. Scree test, RPV(k): The scree test for the identifi-
cation of the true dimensionality of a data set is
based on the observation that the residual variance
should level off before those dimensions containing
random error are included in the data reproduction.
When the residual percentage variance is plotted
against the number of k PC dimensions used in
data reproduction, RPV(k) = f(k), the curve should
drop rapidly and level off at some point. Accord-
ing to the first criterion, the point where the curve
begins to level off, or where a discontinuity appears,
is taken to be the dimensionality of the data space
[47,48].

3. Imbedded error function, IE(k): The imbedded error
function IE(k) is an empirical function [48] devel-
oped to identify those k latent variables which con-
tain error without relying upon an estimate of the
error associated with the absorbance data matrix.
The imbedded error is a function of the error eigen-
values. The behavior of the IE(k) function, as long
as k varies from 1 to o, can be used to deduce the
true dimensionality of the data. The IE(k) function
should decrease as the true dimensions are used in
the data reproduction. When the true dimensions
are exhausted, however, and the error dimensions
are included in the reproduction, the IE(k) should
increase.

4. Factor indicator function, IND(k): The factor indi-
cator function IND(k) is an empirical function which
appears more sensitive than the IE(k) function in
identifzing the true dimensionality of an absorbance
data matrix [47]. This function, like the IE(k) func-
tion, reaches a minimum when the correct number of
latent variables or k PC dimensions is employed in
the data reproduction. It has however been observed
that the minimum is more pronounced and/or can
often occur even in situations where the IE(k) func-

tion exhibits no minimum.

5. Ratio of eigenvalues calculated by smoothed PCA
and those by ordinary PCA, RESO(k): The rec-
ommended procedure for determining the number
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When the minimization process of a regression spectra anal-
ysis terminates, some diagnostic criteria are examined to
determine whether the results should be accepted. An incor-
rect hypothesis on the chemical model leads to divergency,
ca Acta 580 (2006) 107–121 111

cyclization, or the failure of the minimization. To attain a
good chemical model, the following diagnostics should be
considered:

First diagnostic—the physical meaning of the paramet-
ric estimates: The physical meaning of the stability
(protonation) constants, associated molar absorptivi-
ties, and stoichiometric indices is examined: βqr and εqr

should be neither too high nor too low, and εqr should
not be negative. The absolute values of s(βj), s(εj) give
information about the last RSS-contour of the hyper-
paraboloid in neighborhood of the pit, RSSmin. For
well-conditioned parameters, the last RSS-contour is a
regular ellipsoid, and the standard deviations are reason-
ably low. High s values are found with ill-conditioned
parameters and a saucer-shaped pit. The empirical rule
that is often used is that a parameter is considered to
be significant when the relation s(βj) × Fσ <βj is met
and where Fσ is equal to 3. The set of standard devi-
ations of εpqr for various wavelengths, s(εqr) = f(λ),
should have a Gaussian distribution; otherwise erro-
neous estimates of εqr are obtained. High parameter
standard deviations are often caused either by ter-
mination of the minimization process before a mini-
mum is reached or high non-linearity in the regression
model.
Second diagnostic—the physical meaning of the species
concentrations: There are some physical constraints
which are generally applied to concentrations of species
and their molar absorptivities: concentrations and molar
absorptivities must be positive numbers. Moreover, the
calculated distribution of the free concentration of the
basic components and the variously protonated species
of the chemical model should show realistic molarities,
i.e. down to about 10−8 M. Since a species present at
about 1% relative concentration or less in an equilib-
rium behaves as numerical noise in a regression analy-
sis, a distribution diagram makes it easier to judge the
contributions of the individual species to the total con-
centration quickly. Since the molar absorptivities will
be generally be in the range 103 − 105 L mole−1 cm−1,
species present at low concentration, e.g. less than ca.
0.1% relative concentration, will affect the absorbance
significantly only if their ε is extremely high. They may
represent an “enough to interfere but not enough to
determine” specimen.
Third diagnostic—parametric correlation coefficients:
Partial correlation coefficients, rij, indicate the interde-
pendence of two parameters, i.e. stability constants βi

and βj, when others are fixed in value. Fundamentally,
all of these correlation coefficients may have values
between −1 and +1, where zero indicates complete
independence, and +1 or −1 indicates complete cor-
relation. Two completely correlated species cannot be
M. Meloun et al. / Analytica Ch

of components in mixtures using RESO(k) con-
tains principal components analysis for the mea-
sured spectra set using the SVD algorithm to find
the eigenvalues g0

i which correspond to ordinary
PCA. Details may be found in the original paper
describing RESO [49]. The testing criterion calcu-
lates the index RESOai or the ratios between gsa, i
and g0

i for different a and plot log(RESOai ) versus
component number. It estimates the number of com-
ponents by examining the log(RESOai ) versus com-
ponent number plots. RESO then locates the number
of log(RESOai )s which are very close to each other
and do not change substantially with the variation of
k in comparison to the remaining log(RESOai )s. This
is the number of components existing in the mixture
examined.

(4) Choice of computational strategy: The input data should
specify whether βqr or log βqr values are to be refined
whether multiple regression (MR) or non-negative linear
least-squares (NNLS) are desired [5,7], whether baseline
correction has to be performed, etc. In description of the
model, it should be indicated whether the protonation con-
stants are to be refined or held constant, and whether molar
absorptivities are to be refined.

(5) Previously reported or theoretically predicted parameter
�qr estimates: It is wise before starting a regression to ana-
lyze actual experimental data, to search for scientific library
sources to obtain a good default for the number of ioniz-
ing groups, and numerical values for the initial guess as
to relevant stability (protonation) constants and the prob-
able spectral traces of all the expected components. This
information assists in enabling the use of very good values
close to final results as the necessary initial guesses in the
minimization process. This is critical when the numbers of
unknowns are high and the risk of local minima destroys the
output of non-linear regression analysis of the spectroscopic
data.

Two programs, PALLAS [51] and MARVIN [52] pro-
vide a collection of powerful tools for making a prediction
of the pKa values of any organic compound on the basis
of base on the structural formulae of the compounds, using
approximately 300 Hammett and Taft equations. Depend-
ing on the nature of the chemical structure and based on
the hypothesis that the ionization state of a particular group
is dependent upon its subenvironments constituted by its
neighboring atoms and bonds, a hierarchical tree is con-
structed from the ionizing atom outward. This contains the
atoms directly connected to the root atom at the first level,
those bonded to the first level at the second level, and so
on. Ab initio quantum mechanics calculations have been
used extensively, as have semiempirical quantum mechan-
ics [50].

(6) Diagnostic criteria indicating a correct chemical model:

included in a chemical model, because the relevant
protonation constants are strongly correlated and an
increase or decrease of one component may compen-
sated for the other.
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Fourth diagnostic—goodness-of-fit test: This diagnos-
tic contains the most important criteria for testing the
correctness of the hypothetical chemical model pro-
posed. To identify the “best” or true chemical model
when several are possible or proposed, and to establish
whether or not the chemical model represents the data
adequately, the residuals e should be carefully analyzed.
The goodness-of-fit achieved is easily seen by exami-
nation of the differences between the experimental and
calculated values of absorbance, ei = Aexp,i,j − Acalc,i,j.
One of the most important statistics calculated is the
standard deviation of the absorbance, s(A), calculated
from a set of refined parameters at the termination of
the minimization process. This is usually compared
with the standard deviation of absorbance calculated
by the INDICES program [12] sk(A) and the instru-
mental error of the spectrophotometer used sinst(A)
and if it is valid that s(A) ≤ sk(A), or s(A) ≤ sinst(A),
then the fit is considered to be statistically accept-
able. Although this statistical analysis of residuals [53]
gives the most rigorous test of the degree-of-fit, some
realistic empirical limits are employed: for example,
when sinst(A) ≤ s(A) ≤ 0.002, the goodness-of-fit is still
taken as acceptable, while s(A) > 0.005 indicated that
a good fit has not been obtained. Alternatively, the
statistical measures of residuals e can be calculated
to examine the following criteria: the residual mean
(known as the residual bias) ē should be a value close
to zero; the mean residual |ē| and the residual stan-
dard deviation s(e) being equal to the absorbance stan-
dard deviation s(A) should be close to the instrumen-
tal standard deviation sinst(A); the residual skewness
g1(e) should be close to zero for a symmetric distri-
bution of residuals; the residual kurtosis g2(e) should
be close to 3 for a Gaussian distribution of residu-
als; a Hamilton R-factor of relative fit, expressed as a
percentage (R × 100%), of <0.5% is taken as an excel-
lent fit, but a value of >2% is taken to be a poor one.
The R-factor gives a rigorous test of the null hypoth-
esis H0 (giving R0) against the alternative H1 (giv-
ing R1). H1 could be rejected at the α significance
level if R1/R0 > R(m,n−m,α), where n is the number of
experimental points, m the number of unknown param-
eters, and (n − m) is the number of degrees of free-
dom. The value of R(m,n−m,α) can be found in statistical
tables.
Fifth diagnostic—deconvolution of spectra: Resolution
of each experimental spectrum into spectra of the indi-
vidual species proves whether the experimental design
is efficient enough. If for a particular concentration
range the spectrum consists of just a single compo-
nent, further spectra for that range would be redun-
dant. In ranges where many components contribute

significantly to the spectrum, several spectra should
be measured. If the model represents the data ade-
quately, the residuals should possess characteristics
that agree with, or at least do not refute, the basic
mica Acta 580 (2006) 107–121

assumptions: the residuals should be randomly dis-
tributed about the Acalc values predicted by the regres-
sion equation. Systematic departures from randomness
indicate that the model is not satisfactory. Examination
of plots of the residuals versus λ may assist numeri-
cal and/or graphical aids in the analysis of residuals.
A study of the signs of the residuals (+ or −) and
the sums of the signs can be used. Graphical presen-
tation of the residuals is of great help in the diagno-
sis: for detection of an outlier, detection of a trend in
the residuals, detection of a sign change, detection of
an abrupt shift of level in the spectrum, and exam-
ination of symmetry and normality in the residuals
distribution.

(7) Search for the best computation a strategy: Analysis of sim-
ulated spectra is usually recommended as it serves to—(a)
establish the best computational strategy for an efficient
regression analysis, (b) investigate of the sensitivity of each
parameter in the chemical model assumed, and (c) exami-
nate of the influence of the instrumental noise of the spec-
trophotometer used sinst(A) on the accuracy and precision
of the parameters estimated βqr and εqr. The details for
the computer data treatment are collected in the Supporting
Information.

2.3. Reliability of the estimated protonation constants

The adequacy of a proposed regression model with experi-
mental spectra and the reliability of parameter estimates βqr,j
found (being denoted for the sake of simplicity as bj, j = 1, . . .,
m) and εij, j = 1, . . ., nw, may be examined by a goodness-of-fit
test, cf. page 101 in ref. [2]:

(1) The quality of parameter estimates bj, j = 1, . . ., m, found is
reviewed according to the variances D(bj). Often an empir-
ical rule is used: parameter bj differs significantly from
zero when its estimate is greater than 3 standard deviations,
3
√
D(bj) < |bj|, j = 1, . . ., m.

(2) The quality of the experimental data is examined by iden-
tification of the influential points (namely outliers) with
the use of regression diagnostics, cf. page 62 in ref.
[53].

(3) The quality of curve fit achieved: the adequacy of the pro-
posed model and m parameter estimates found with n val-
ues of experimental data is examined by a goodness-of-fit
test based on the statistical analysis of classical residuals.
If the proposed model adequately represents the data, the
residuals should form a random pattern with a normal dis-
tribution N(0, s2), with the residual mean equal to zero,
ē = 0, and the standard deviation of residuals s(e) being
near to noise, i.e. the experimental error ε of the absorbance
measured. Systematic departures from randomness indicate

that the model and parameter estimates are not satisfactory.
Examination of residual plots may be assisted by graph-
ical analysis of the residuals, cf. pages 289 and 290 in
ref. [53].
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is the common criterion for determining p on Fig. 3. Very low
values of sinst(A) prove that relatively reliable spectrophotometer
and experimental technique were used. Due to the large varia-
tions in the indices values, their logarithms in all nine selected
M. Meloun et al. / Analytica C

. Experimental

.1. Chemicals and solutions

7-Ethyl-10-hydroxycamptothecin were purchased from Mol-
an Corporation, Canada, with a purity of 98.5% (HPLC). Potas-
ium hydroxide, 1 M, was prepared from an exact weight of
ellets (p.a., Aldrich Chemical Company) with carbon-dioxide
ree redistilled water. The solution was stored for several days
n a polyethylene bottle. This solution was standardized against

solution of potassium hydrogen-phthalate using the Gran
ethod with a reproducibility of 0.1%. Potassium chloride (p.a.
achema Brno) was not purified further. Buffers and other solu-

ions were prepared from analytical-reagent grade chemicals.
wice-redistilled water was used in the preparation of solutions.

.2. Apparatus and pH-spectrophotometric titration
rocedure

The free hydrogen-ion concentration h was measured via
mf on an OP-208/1 digital voltmeter (Radelkis, Budapest)
ith a precision of ±0.1 mV using a G202B glass electrode

Radiometer, Copenhagen) and an OP-8303P commercial SCE
eference electrode (Radelkis, Budapest). The spectrophotomet-
ic multiple-wavelength pH-titration was carried out as follows:
n aqueous solution 20.00 cm3 containing 10−5 mol/L drug,
.100 mol/L hydrochloric acid and 10 mL indifferent solution
Cl for adjustment of constant value of an ionic strength was

itrated with standard 1.0 mol/L KOH at 298 K and 20 absorption
pectra were recorded. Titrations were performed in a water-
acketed double-walled glass vessel of 100 mL, closed with a
eflon bung containing the electrodes, an argon inlet, a ther-
ometer, a propeller stirrer and a capillary tip from a micro-

urette. All pH measurements were carried out at 25.0 ◦C ± 0.1◦
nd 37.0 ◦C ± 0.1◦. When the drug was titrated, a stream of argon
as was bubbled through the solution both to stir and to maintain
n inert atmosphere. The argon was passed through an aqueous
onic medium by prior passage through one or two vessels also
ontaining the titrand medium before entering the corresponding
itrand solution. The burettes used were syringe micro-burettes
f 1250 �L capacity (META, Brno) with a 2.50 cm micrometer
crew, [54]. The polyethylene capillary tip of the micro-burette
as immersed into the solution when adding reagent, but with-
rawn after each addition in order to avoid leakage of the reagent
uring the pH read out. The micro-burette was calibrated by 10
eplicate determinations of the total volume of delivered water
y weighing on a Sartorius 1712 MP8 balance with results eval-
ated statistically, leading to a precision of ±0.015% in added
olume over the whole volume range. The solution was pumped
nto the cuvette and spectrophotometric measurement was per-
ormed with the use of a Cintra 40 spectrophotometer (GBC,
ustralia).
.3. Software used

Computation related to the determination of dissociation con-
tants was performed by regression analysis of UV/VIS spectra

F
o
p
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sing the SQUAD(84) [7] and SPECFIT/32 [34] programs. Most
f graphs were plotted using ORIGIN 7.5 [55]. For prediction
f pKa on base of the molecule structure the programs PALLAS
51] and MARVIN [52] were used. The factor analysis was per-
ormed with program INDICES [12].

.4. Supporting information available

Complete experimental and computational procedures, input
ata specimen and corresponding output in numerical and graph-
cal form for both programs, SQUAD(84) and SPECFIT/32 are
vailable free of charge via the Internet at http://meloun.upce.cz
nd in the block DATA of a menu.

. Results and discussion

The SQUAD(84) spectra analysis starts with data smoothing
ollowed by a factor analysis using the INDICES program. The
xperimental spectra are obtained for the titration of an alka-
ine 1.02 × 10−4 M 7-ethyl-10-hydroxycamptothecine solution
y a standard solution of 1 M HCl (or HClO4) to adjust pH
alue. Comparison of both SQUAD and SPECFIT regression
rogram treatments, with the proposed strategy for an efficient
xperimentation in protonation constants determination is pre-
ented. pH-spectrophotometric titration enables the absorbance-
esponse-surface data on Fig. 1 to be obtained for analysis with
on-linear regression. As the actual SQUAD version used has
limited dimension and input can contain 20 spectra only, an

fficient spectra sample 20 × 39 (ns × nw) was used (Fig. 2) for
egression analysis.

The number of light-absorbing species p can be predicted
rom the indices function values by finding the point p = k where
he slope of Cattel’s indices function PC(k) = f(k) changes, or by
omparing PC(k) values with the instrumental error sinst(A). This
ig. 1. The 3D-absorbance-response-surface representing 26 absorption spectra
f protonation equilibria of 7-ethyl-10-hydroxycamptothecine in dependence on
H at 25 ◦C (S-Plus).

http://meloun.upce.cz/
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Fig. 2. (a) 3D-absorbance-response-surface representing a sample of 17 absorption spectra taken from the set on Fig. 1; (b) 3D-overall diagram of residuals
representing the response surface indicating the quality of goodness-of-fit after removal of influential outlying spectra (S-Plus).

Fig. 3. Cattel’s scree plot for the determination of the number of light-absorbing species in mixture k* = 4 and the actual instrumental error of the spectrophotometer
used s∗4(A) = 0.56 mA U (Kankare). The logarithm dependence of 9 indices methods as a function of the number of principal components k for the pH-absorbance
matrix: first row—Kankare’s residual standard deviation, sk(A); residual standard deviation, R.S.D; average error criterion, AE; second row—Bartlett χ2 criterion;
Exner ψ function; scree test RPV; third row—imbedded error function IE; factor indicator function IND; RESO function. All methods lead to the same conclusion
k* = 4 (INDICES in S-Plus).
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ethods as a function of the number of principal components k
or the drug analyzed were used.

For the indices methods in Fig. 3 (Kankare’s residual standard
eviation sk(A), the residual standard deviation R.S.D. and the
verage error criterion AE) the horizontal line denotes the value
f the instrumental error, sinst(A). The best approximation of
inst(A) for 7-ethyl-10-hydroxycamptothecin was found for k = 4,
hile higher values of k do not lead to any significant decrease of

k(A). The position of a break-point on the sk(A) = f(k) curve in
he scree plot is calculated and gives k* = 4 with the correspond-
ng co-ordinate s∗4(A) = 0.56 mA U which also represents the
nstrumental error sinst(A) of the spectrophotometer used. For
he Bartlett χ2 criterion, the horizontal line denotes a magnitude
f χ2

krit and the vertical line separates values of k for which H0

as accepted. In the case of the approximate indices methods

or the Exner ψ function, the value ψ≤ 0.1 is achieved for k = 4
hile higher values of k do not bring a significant decrease, in

he value ψ. For the scree test RPV, the curve of dependence

o
c
r
s

ig. 4. The derivatives detection criteria of some indices functions applied to the absor
tandard deviation S.D.(sk(A)) (left); the third derivative TD(sk(A)) (middle); and the
esidual standard deviation S.D.(R.S.D.); the third derivative TD(R.S.D.) (middle); an
f the average error function S.D.(AE); the third derivative TD(AE) (middle);and the
ca Acta 580 (2006) 107–121 115

PV(k) = f(k) begins to level off at some point of k. This k = 4
alue is considered to be the dimensionality of the absorbance
ata space. For the imbedded error function IE there is a mini-
um of k = 4 on the curve of the function IE = f(k). Similarly, for

he factor indicator function, a minimum of k = 4 on the curve of
he function IND = f(k) is reached. The RESO method also leads
o k = 4 species in a mixture. It may concluded that (a) generally,
he most reliable indices methods seem to be those based on a
nowledge of the instrumental error of absorbance, sinst(A), (b)
ndices methods are all based on finding the point where the
lope of the indices function changes, and (c) precise methods
ased on a knowledge of the instrumental error of absorbance
inst(A) should be preferred.

When there are more than three components, derivative meth-

ds can be used: when the curve PC(k) = f(k) does not exhibit a
lear break-point, the second derivative localizes this break more
eliably. The derivative criteria are based on the point where the
lope changes and reaches a maximum in Fig. 4. The second

bance data from Fig. 3: first row—the second derivative of the Kankare residual
derivatives ratio ROD(sk(A)) (right); second row—the second derivatives of the
d the derivatives ratio ROD(R.S.D.) (right); third row—the second derivatives
derivatives ratio ROD(AE) (right); (INDICES in S-Plus).
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ig. 5. (a) The absorption spectra of 7-ethyl-10-hydroxycamptothecine for var
ariously protonated species L, LH, LH2, LH3, (c) distribution diagram of the r
-ethyl-10-hydroxycamptothecine in dependence on pH (SQUAD, ORIGIN).

erivative S.D.(k) and p − k should be at the first maximum of
he S.D.(k) function. The third derivative TD(k) value crosses
ero and reaches a negative minimum which can be used as a
riterion. The change in slope can also be found by calculat-
ng the derivatives ratio ROD(k). Ideally ROD(k) should have

maximum at the point where k = p. A more difficult prob-
em is to deduce the numer of components without relying on
n estimation of the instrumental error of absorbance, sinst(A);
hen only the first criterion remains. All three index methods
redict the four variously protonated light-absorbing species of
rug 7-ethyl-10-hydroxycamptothecine in protonation equilib-
ium, k = 4.

Two sets of simulated and experimental absorption spec-

ra were used to examine the applicability of both algo-
ithms to the determination of protonation constants. Three
rotonation constants and four molar absorptivities of 7-ethyl-

p
e
s

able 1
he best chemical model found for a protonation equilibrium of 7-ethyl-10-hydroxyca
f multiwavelengths and multivariate pH-spectra with SQUAD(84) and SPECFIT/3
omponents L and H, forming nc = 4 variously protonated species

qHr Estimated protonation constants

log βqr s(log βqr)

1H1 9.516, 9.519 0.022, 0.035
1H2 18.299, 18.306 0.041, 0.015
1H3 21.346, 21.395 0.062, 0.018

etermination of the number of light-absorbing species by factor analysis
Number of light-absorbing species, k*

Residual standard deviation, s∗
k
(A)

oodness-of-fit test by the statistical analysis of the residuals
Residual square sum, RSS
Residual mean ē bar [mA U]
Mean residual |ē| [mA U]
Standard deviation of residuals, s(e) [mA U]
Residual skewness ĝ1(e)
Residual kurtosis 
g2(e)
Hamilton R-factor [%]

ε (all species) vs. λ

he charges of the ions are omitted for the sake of simplicity and the standard dev
esolution criterion and reliability of parameter estimates found are proven with goodn
f absorbance after termination of the regression process, s(A) [mA U], the residual
esidual standard deviation s(e), the residual skewness g1(e) and the residual kurtosis
nd realistic estimates of calculated molar absorptivities of all variously protonated s
H values, (b) pure spectra profiles of molar absorptivities vs. wavelengths for
e concentrations of all of the variously protonated species L, LH, LH2, LH3 of

0-hydroxycamptothecine for 39 wavelengths and 20 spectra
Figs. 2 and 5) constitute the unknown parameters which are
efined by the MR algorithm in the first run of the SQUAD
rogram. In the second run, the NNLS algorithm makes the
nal refinement of all the previously found parameter estimates
ith all the molar absorptivities kept non-negative. The relia-
ility of the parameter estimates may be tested with the use of
QUAD(84) diagnostics in Table 1:

The first diagnostic indicates whether all parametric esti-
ates βqr and εqr have physical meaning and attain realis-

ic values. As the standard deviations s(log βqr) of parameters
og βqr and s(εqr) of parameters εqr are significantly smaller
han their corresponding parameter estimates, all the variously

rotonated species are statisticaly significant. Fig. 5 shows the
stimated molar absorptivities of four of the variously protonated
pecies εL, εLH, εLH2 , and εLH3 of the anticancer drug 7-ethyl-

mptothecine using double checked non-linear least squares regression analysis
2 (bold) for ns = 17 spectra measured at nw = 39 wavelengths for nz = 2 basic

Partial correlation coefficients

L1H1 L1H2 L1H3

1 – –
0.997 1 –
0.6232 0.6198 1

SQUAD SPECFIT

4 4
0.56 Not estimated

3.35 × 10−4 2.38 × 10−4

−2.05 × 10−8 Not estimated
0.58 Not estimated
0.81 0.6
−0.12 Not estimated
2.12 Not estimated
0.15 Not estimated

Realistic Realistic

iations of the parameter estimates are in the last valid digits in brackets. The
ess-of-fit statistics such as the residual square sum RSS, the standard deviation
standard deviation by factor analysis sk(A) [mA U], the mean residual ē, the

g2(e) proving a Gaussian distribution; Hamilton R-factor [%] and non-negative
pecies ε vs. λ.
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Fig. 6. Detecting and removing influential outlying spectra with the use of
the goodness-of-fit test. Achieved spectra fitness before (left) and after (right)
removing outliers. Rectangles indicate outliers: first row—the plot of the resid-
ual standard deviation s(e) and the mean residual |ē| indicates spectra nos. 1,
4 and 18 as the outliers; second row—test of residual distribution symmetry
using skewness g1 and kurtosis g2; third row—a Hamilton R-factor of relative
fit expressed as a percentage of an excellent curve-fitting can be used for the
detection of outliers (SQUAD, ORIGIN).
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0-hydroxycamptothecine in dependence on wavelength. Some
pectra overlap, and such cases may cause some resolution dif-
culties in a non-linear regression approach.

The second diagnostic tests whether all of the calculated free
oncentrations of variously protonated species on the distribu-
ion diagram have physical meaning, which proved to be the case
Fig. 5). The diagram shows that one overlapping protonation
quilibrium exists.

The third diagnostic concerning the matrix of correlation
oefficients in Table 1 proves that there is an interdepen-
ence of one pair of protonation constants of 7-ethyl-10-
ydroxycamptothecine r (β11 versus β12). The significant corre-
ation of this pair, pKa2 = 8.79 and pKa3 = 9.51, may be explained
y proximate dissociation constants, which associated with the
verlapping equilibria.

The fourth diagnostic concerning the goodness-of-fit (Fig. 6
eft) indicates three outlying spectra, nos. 1, 4 and 18. After
emoving the outliers, the plot of s(e) and |e| for each spec-
rum proves that the s4(A) value is equal to 0.56 mA U and is
lose to the standard deviation of absorbance when the mini-
ization process terminates, s(A) = 0.81 mA U (Table 1). The

tatistical measures of all residuals from Fig. 6 prove that the
inimum of the eliptic hyperparaboloid RSS is reached: the

esidual mean ē = −2.05 × 10−8 proves that there is no bias or
ystematic error in the spectra fitting. The mean residual |ē| =
.58 mA U and the residual standard deviation s(e) = 0.81 mA U
and 0.60 SPECFIT) have sufficiently low values. The skewness
1(e) = −0.12 is close to zero and proves a symmetric distribu-
ion of the residuals set, while the kurtosis g2(e) = 2.12 is close to
proving a Gaussian distribution. The Hamilton R-factor of rel-
tive fitness is 0.15%, proving an excellent achieved fitness, and
herefore the parameter estimates may be considered as reliable.

The fifth diagnostic, the spectra deconvolution on Fig. 7,
hows the deconvolution of the experimental spectrum into

ig. 7. Deconvolution of the experimental absorption spectrum of 7-ethyl-10-hydroxycamptothecine for 39 wavelengths into spectra of the individual variously
rotonated species L, LH, LH2, LH3 in solution (above) and the statistical analysis of the residuals (below) of each particular absorption spectrum for a selected
alue of pH equal to: (a) 10.070, (b) 9.478 and (c) 7.231 (SQUAD, ORIGIN).
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Fig. 8. Typical SPECFIT working environment testing a chemical model hypothesis of four variously protonated species L, LH, LH , LH of 7-ethyl-10-
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tion constant estimation. A distribution diagram of the rela-
tive concentrations of all of the variously protonated species
demonstrates the overlapping protonation equilibria for two
ydroxycamptothecine in dependence on pH: (a) the measured absorption spec
rofiles of molar absorptivities vs. wavelengths for all of the variously protonate
rotonated species (SPECFIT).

pectra of the individual variously protonated species to
xamine whether the experimental design is efficient. Spectrum
econvolution seems to be a quite useful tool in the proposal of
n efficient experimentation strategy. Such a spectrum provides
ufficient information for a regression analysis which monitors
t least two species in equilibrium where none of them is a minor
pecies. A minor species has a relative concentration in a distri-
ution diagram of less than 5% of the total concentration of the
asic component cL. When, on the other hand, only one species
revails in solution, the spectrum yields quite poor information
nto the regression analysis, and the parameter estimate is some-
hat uncertain, and definitely not reliable enough. To test the

eliability of protonation constants at different ionic strengths, a
oodness-of-fit test is applied with the use of a statistical anal-
sis of the residuals, and the results are given in Tables 1 and 2.
or the drug studied, the most efficient tools, such as the
amilton R-factor, the mean residual and the standard deviation
f residuals, are applied: as the R-factor in all cases reaches
value of less than 0.2%, an excellent fitness and reliable

arameter estimates are indicated. The standard deviation of
bsorbance s(A) after termination of the minimization process
s always better than 1.0 mA U, and the proposal of a good
hemical model and of reliable parameter estimates are proven.

The SPECFIT/32 program found the same estimates of
arameters βqr and εqr and of associated species concentra-

ions, parametric correlation coefficients, goodness-of-fit test,
rror analysis and spectra deconvolution, and a typical SPEC-
IT working environment testing a chemical model hypothesis
f four variously protonated species L, LH, LH2, and LH3 of 7-

F
L
o
o
c

2 3

r various pH values; (b) the 3D-presentation map of residuals; (c) pure spectra
ies; (d) distribution diagram of the relative concentrations of all of the variously

thyl-10-hydroxycamptothecine in dependence on pH is given
n Fig. 8, and of four another species L, L2H, L2H2, and L2H3
re in Fig. 9.

The first problem in the evaluation of the protonation equilib-
ia of the first drug concerns the strongly overlapping equilibria
ecause the difference between the two consecutive dissoci-
tion constants is logβ12 − logβ11 = 0.82, which is less than
hree pH units (the rule of overlapping equilibria). Such close
quilibria are always difficult to evaluate and therefore the
ser should carefully prove the reliability of each protona-
ig. 9. Testing a chemical model hypothesis of 4 variously protonated species
, L2H, L2H2 and L2H3, of 7-ethyl-10-hydroxycamptothecine in dependence
n pH: (a) pure spectra profiles of molar absorptivities vs. wavelengths for all
f the variously protonated species and (b) distribution diagram of the relative
oncentrations of all of the variously protonated species (SQUAD, ORIGIN).
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lose consecutive protonation constants. To investigate the reli-
bility of the protonation constants estimation, a simulated
ata set should also be employed, using the block of the acid
issociation simulate function of SPECFIT/32 program. The
uantity of added noise in the generated absorption spectra is
inst(A) = 0.5 mA U. A spectra set was generated for protona-
ion constants logβ11 = 9.51, logβ12 = 18.30 and logβ13 = 21.39
it means pKa1 = 3.09, pKa2 = 8.79 and pKa3 = 9.51). The wave-
ength and pH range of the spectra are used agree with the
xperimental spectra set 301–382 nm, with step 2.13 nm and
H range from 3.50 to 10.30, respectively.

Seeking the best chemical model of protonation equilibria,

our various hypotheses of the stoichiometric indices q and r
f LqHr acid were tested in order to find the model which
est represents the simulated and experimental data (Table 2).
he factor analysis of the INDICES program leads to 4 light-

a
n
i
e

able 2
he search for a protonation equilibria model of 7-ethyl-10-hydroxycamptothecine
ultivariate pH-spectra of Table 1 when (a) simulated data, and (b) experimental dat

, r Given log βqr Estimated l

1

a)
1, 1 9.51 9.10(1)
1, 2 18.3 12.11(5)
1, 3 21.39 –
2, 1 – –
2, 2 – –
2, 3 – –
2, 4 – –
2, 6 – –

Degree-of-fit test by the statistical analysis of residuals as the resolution criterion
s(A) or s(e) [mA U] 1.21

sk(A) [mA U], p 0.21, 4
¯ 0.71

g1(e) 0.36
g2(e) 6.8
R-factor [%] 0.21
ε (all species) vs. λ are Realistic
Model hypothesis Rejected

b)
1, 1 9.12(1)
1, 2 12.07(13)
1, 3 –
2, 1 –
2, 2 –
2, 3 –
2, 4 –
2, 6 –

Degree-of-fit test by the statistical analysis of residuals as the resolution criterion
s(A) or s(e) [mA U] 1.86

sk(A) [mA U], p 0.56, 4
¯ 1.22

g1(e) 0.57
g2(e) 4.75
R-factor [%] 0.35
ε (all species) vs. λ Realistic

Model hypothesis Rejected
ca Acta 580 (2006) 107–121 119

bsorbing components and the instrumental standard deviation
k(A) = 0.21 mA U for the simulated data and sk(A) = 0.56 mA U
or the experimental data. Therefore, not more than four vari-
usly protonated species should be tested here. Both data sets
ead to the same conclusion: that two hypotheses of the chemical

odel cannot be distinguished with the use of the degree-of-
t test as the resolution criterion, i.e. the second hypothesis of
pecies L, LH, LH2, LH3, and the fourth hypothesis of species
, L2H, L2H2, L2H3 in Table 2. True chemical model could
e determined with the use of a new experimental strategy,
or example, applying measurement for higher concentration of
rug. After the degree-of-fit test, the quality of the plot of molar

bsorptivities εpq,j, j = 1, . . ., nw of all of the variously proto-
ated species in dependence on wavelength λ on Figs. 8 and 9
s examined to ascertain whether the curves are realistic
nough.

using non-linear least-squares regression analysis of multiwavelengths and
a were used

og βqr using a hypothesis of chemical model no.

2 3 4

9.51(1) – –
18.30(2) – –
21.39(3) – –
– – 13.36(1)
– 22.97(1) 22.31(3)
– – 25.39(3)
– 39.56(3) –
– 47.12(5) –

0.39 2.6 0.38

0.21, 4 0.21, 4 0.21, 4
0.24 1.39 0.23

−0.3 0.36 −0.25
5.2 5.72 6.34
0.07 0.44 0.06
Realistic Realistic Realistic
Accepted Rejected Accepted

9.52(2) – –
18.30(4) – –
21.35(6) – –
– – 13.39(3)
– 23.10(1) 22.37(5)
– – 25.40(7)
– 40.06(3) –
– 47.30(8) –

0.81 2.78 0.85

0.56, 4 0.56, 4 0.56, 4
0.58 1.65 0.6

−0.12 −0.34 −0.03
2.12 3.74 2.12
0.15 0.5 0.15
Realistic Realistic Realistic

Accepted Rejected Accepted
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. Conclusions

When a drug is poorly soluble then instead of a potentio-
etric determination of dissociation constants, multiwavelength

pectrophotometric pH-titration may be analyzed with the least-
quares non-linear regression. The reliability of the dissociation
onstants of ionizable drug may be proven with goodness-of-
t tests of the absorption spectra measured at various pH. The
riteria of resolution used for the hypotheses in question form
he main part of the diagnostic tutorial proposed: (1) the num-
er of light-absorbing species is estimated by factor analysis
f the spectra set, (2) failure of the minimization process in
divergency or a cyclization; (3) examination of the physi-

al meaning of the estimated parameters βqr and εqr and of
ssociated species concentrations if both were realistic and pos-
tive; and (4) residuals randomly distributed about the predicted
egression spectrum, systematic departures from randomness
eing taken to indicate that either the chemical model or parame-
er estimates were unsatisfactory. However, they are cases when
he fitness test may not always lead to the straightforward answer
bout the chemical model namely when several mathematical
olutions (models) are valid and all these models tested fit points
ell.
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