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A new procedure of statistical analysis, with exploratory data diagnostics and
BoxeCox transformation was used.

Abstract

To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are

essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In
the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the
exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity.

Under such circumstances the original data should be transformed. The BoxeCox transformation improves sample symmetry and
stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found.
Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content

in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values
available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V
(20 373 values) and Zn (36 123 values) in large samples.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

High concentrations of some (specifically heavy)
metals in soils can cause long-term harm to ecosystems
and humans. As society becomes increasingly concerned
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about the hazard posed by polluted soil it wants to know
how much of any pollutant there is in the ground. Soil
survey, monitoring and inventarization programs are
the inevitable tools used to define soil properties for
a given area or country, including its pollution status.
The Register of Contaminated Sites is one such
program, established as part of the Fertilisers Act (Act
No. 156/98 S.B., as amended) and connected decrees in
the Czech Republic. Within the framework of the
Register, a survey of the risk element (Cd, Pb, Cr, Hg)
content of agricultural soils on a 1-km2 grid was
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implemented from 1990 to 1993. The four elements were
successively complemented by analyses of Be, Co, Ni, V
and Zn. This survey established a database which has
since been continuously filled out by the results of
supplementary sampling. Each sample in the batch is
identified by geographical co-ordinates and the number
of the plot in the relevant agricultural enterprise. The
results of risk element content quantification in 2 M
nitric acid extract or aqua regia extract are related. A
batch of over 40 000 soil samples has been analysed for
the Register database, and the exact sample sizes for each
element (2 M HNO3 extraction) are Be: 16 544 values
available, Cd: 40 317 values, Co: 22 176 values, Cr:
40 318 values, Hg: 32 344 values, Ni: 34 989 values, Pb:
40 344 values, V: 20 373 values and Zn: 36 123 values.

When an exploratory data analysis (Tukey, 1977;
Chambers et al., 1983) indicates that the sample
distribution strongly differs from a normal one, the
problem arises as to how to analyze the soil sample data.
Raw data may require re-expression to produce an
informative display, effective summary, or straightfor-
ward analysis (Meloun et al., 1992). Difficulties may
arise because the raw data have (i) a strong asymmetry,
or (ii) batches at different levels with a widely differing
spread. By altering the shape of the batch or batches
these problems may be alleviated. The data are trans-
formed by applying a single mathematical function to all
of the raw data values. It is not only the units in which
the data are stated that may need to be changed but also
the basic scale of the measurement. Changes of origin
and scale mean linear transformations, and these leave
shape alone; nonlinear transformations such as the
logarithm and square root are necessary to change
shape. Changing the scale of measurement is natural
because it provides an alternative means of reporting the
information. Batch symmetry is often a desirable
property, as many estimates of location work best, and
are best understood, when the data come from
a symmetric distribution. The BoxeCox transformation
eliminates heteroscedasticity, and the reconstructed
mean and standard deviation are the estimates for the
corrected distribution of the data. But heteroscedasticity
has nothing in common with the outliers, objects which
do not follow the distribution of data majority. The
geochemical and pedological data sometimes arrive in
several batches at different levels and a systematic
relationship between spread and level is often found:
increasing level usually brings increasing spread. When
this relationship is strong there are several reasons for
transforming the data in a way that reduces or
eliminates the dependence spread on level: the trans-
formed data will be better suited for comparison and
visual exploration, and may be better suited for
common confirmatory techniques, while individual
batches become more nearly symmetric and have fewer
outliers.
This paper provides a description of the BoxeCox
transformation and a re-expression of statistics for
transformed data. The procedure of BoxeCox trans-
formation is illustrated on a typical soil pollution survey
case study concerning a determination of cadmium
content (mg kg�1) and other elements (Be, Cd, Co, Cr,
Hg, Ni, Pb, V and Zn).

2. Materials and methods

2.1. Sampling

The batches of soil samples for risk element analyses
were taken from agricultural areas across the whole
Czech Republic using the following sampling technique:
one sample from arable land and grassland represents
an area of 7e10 ha, from hop gardens and orchards 3 ha
and from vineyards 2 ha. One composite sample consists
of 30 individual probes to depths of 30 cm or 15 cm on
arable land and grassland, respectively. The spatial
distribution of the composite samples is arranged so as
to achieve approximately 1 soil composite sample per
100 ha of agricultural soil. The following parameters
were measured in the soil samples: soil texture (de-
termined according to the maps of the Complex Soil
Survey in the categories light, medium and heavy), pH
exchangeable in KCl extraction, As, Be, Cd, Co, Cr, Cu,
Mo, Ni, Pb, V, Zn determined by the AAS or ICP
method in 2 M HNO3 extraction, and total Hg content.
Samples from different areas were analysed for the
selected range of elements. The detection limit x̂D
[mg kg�1] and quantification limit x̂Q [mg kg�1] for the
quantitative determination of elements are, respectively,
for As 1.307 and 4.619, for Be 0.06 and 0.197, for Cd
0.061 and 0.196, for Co 0.658 and 2.203, for Cr 0.598
and 2.179, for Cu 0.515 and 1.821, for Hg 0.02 and 0.06,
for Mo 0.1 and 0.297, for Ni 0.574 and 1.992, for Pb
0.957 and 2.916, for V 1.611 and 5.764, and for Zn 1.37
and 3.979.

2.2. Proposed procedure of statistical data treatment

Step 1 Survey of descriptive statistics: the statistical
software for an actual sample batch usually
calculates a survey of parameters of location
and spread.

Step 2 Basic diagnostic plots in the exploratory data
analysis for a graphical visualization of data,
diagrams and simple plots are used i.e.
(a) the dot diagram and the jitter dot diagram,
(b) the box-and-whisker plot and the notched

box-and-whisker plot,
(c) the quantile plot, and
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(d) the symmetry plot (cf. Meloun et al., 1992,
pp. 45e67).

Step 3 Determination of sample distribution: the sample
distribution represented by symmetry, skewness
and kurtosis is examined by
(e) the kernel density estimator of the proba-

bility density function

f̂ðxÞZ 1

nh

Xn

iZ1

K
hx� xi

h

i
; ð1aÞ

where h is bandwidth, which controls the
smoothness of f̂ðxÞ, and K(x) is the kernel
function, which is symmetric around zero,
and also has the properties of a frequency
function. The actual choice of shape for the
kernel function is not important, so here
a bi-quadratic kernel estimate is used

KðxÞZ
�
0:9375ð1� x2Þ2 for � 1%x%1
0 for x outside ½�1; 1�

ð1bÞ

The quality of the kernel estimate f̂ðxÞ is
controlled mainly by the selection of para-
meter h. If h is too small, the estimate is too
rough; if it is too large, the shape of f̂ðxÞ is
flattened too much (cf. Meloun et al., 1992,
pp. 58).

(f) the quantileequantile plot, which is used for
comparison of the actual with the theore-
tical sample distribution.

Step 4 Tests of basic assumptions about the sample (cf.
Meloun et al., 1992, pp. 78e82): applying an
analysis of basic assumptions about the data,
the following examinations were applied:
(a) Examination for the independence of sam-

ple elements,
(b) Examination for the normality of the

sample distribution,
(c) Examination of sample homogeneity. All of

the algorithms used are available on the
internet (Kupka, 2004).

Step 5 Data transformation: when most of the EDA
diagnostic plots exhibit an asymmetric distribu-
tion in the original sample data, data trans-
formation seems to be the most convenient of
several possible techniques to apply. For the
transformation the estimate l maximizing
ln L(l) is calculated. The selected l is used in
the calculation of estimates �y, s2( y), ĝ1ðyÞ, and
ĝ2ðyÞ. From these estimates, the re-expressed
estimates of the original variables �xR, s2ð�xRÞ,
and the 95% confidence interval of the re-
expressed variable m are then calculated (cf.
Meloun et al., 1992, pp. 70e77).
2.3. Measurement of location using
data transformation

Examining the data, the proper transformation is
often found to be that which leads to a symmetric data
distribution, stabilizes the variance or makes the dis-
tribution closer to normal. Such transformation of the
original data x to the new variable value yZ g(x) is
based on an assumption that the original experimental
data represent a nonlinear transformation of a normally
distributed variable xZ g�1( y).

Transformation for variance stabilization implies
ascertaining the transformation yZ g(x) in which the
variance s2( y) is constant. If the variance of the original
variable x is a function of the type s2(x)Z f1(mx) where
mx is the population mean of the original data, the
variance s2( y) may be expressed by

s2ðyÞZ
�
dgðxÞ
dx

�2

f1ðxÞZC;

where C is a constant. The chosen transformation g(x) is
then the solution of the differential equation

gðxÞzC

Z
dxffiffiffiffiffiffiffiffiffiffi
f1ðxÞ

p :

When the dependence s2(x)Z f1(x) is of a power
(exponent) nature, the optimal transformation will also
be a power transformation. Since for a normal distri-
bution the mean is not dependent on a variance,
a transformation that stabilizes the variance makes the
distribution closer to normal. Transformation leading to
approximate normality may be carried out by the use of
the BoxeCox transformation family (Box and Cox,
1964) defined as

yZgðxÞZ
��

jxjl � 1
�
=l for parameter ls0

ln jxj for parameter lZ0

�
; ð2Þ

where x is a positive variable and l is a real number.
The BoxeCox transformation can be applied only to

positive data. To extend this transformation means to
make a substitution of x values by (x� x0) values which
are always positive. Here x0 is the threshold value
x0! x(1). To estimate the parameter l in a BoxeCox
transformation the method of profile likelihood may be
used, because for lZl̂ the distribution of the trans-
formed variable y is considered to be normal, N(my,
s2( y)). The logarithm of the profile likelihood function
may be written as

ln LðlÞZ� n

2
ln s2ðyÞCðl� 1Þ

Xn

iZ1

ln xi; ð3Þ

where s2( y) is the sample variance of the transformed
data y (Box and Cox, 1964). The function ln LZ f(l) is
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expressed graphically for a suitable interval, for
example, �3% l% 3. The maximum on this curve
represents the maximum likelihood estimate l̂. The
asymptotic 100(1� a) % confidence interval of para-
meter l is expressed by 2

�
ln L

	
l̂


� ln LðlÞ

�
%c2

1�að1Þ,
where c2

1�að1Þ is the quantile of the c
2 distribution with

1 degree of freedom. This interval contains all l values
for which it is true that ln LðlÞRln L

	
l̂


� 0:5c2

1�a ð1Þ.
This BoxeCox transformation is less suitable if the
confidence interval for l is too wide e and if the sample
size is small then the confidence interval for the
parameter will be wide. When the value lZ 1 is also
covered by this confidence interval, the transformation
is not efficient.

2.4. Re-expression of the statistical measurements
after data transformation

After an appropriate transformation of the original
data {x} has been found, such that the transformed data
give an approximately normal symmetrical distribution
with constant variance, the statistical measurements of
location and spread for the transformed data {y} are
calculated. These include the sample mean �y, the sample
variance s2ðyÞ, and the confidence interval of the mean
�yGt1�a=2ðn� 1ÞsðyÞ=

ffiffiffi
n

p
. These estimates must then be

recalculated for the original data {x}. Two different
approaches to the re-expression of the statistics for
transformed data can be used without difficulty:

(a) Rough re-expressions represented by a single reverse
transformation �xRZg�1ðyÞ. This re-expression for
a simple power transformation leads to the general
re-expressed mean

�xRZ�xlZ

�P
n
iZ1 x

l
i

n


1=l
; ð4Þ

where for lZ 0, ln x is used instead of xl and ex

instead of x1/l. The re-expressed mean �xRZ�x�1

stands for the harmonic mean, �xRZ�x0 for the
geometric mean, �xRZ�x1 for the arithmetic mean
and �xRZ�x2 for the quadratic mean.

(b) More correct re-expressions are based on the Taylor
series expansion of the function yZ g(x) in a neigh-
bourhood of the value �y. The re-expressed mean �xR
is then given by

�xRzg�1

(
�y� 1

2

d2gðxÞ
dx2

�
dgðxÞ
dx

��2

s2ðyÞ
)
: ð5Þ

The variance is then expressed as

s2ð�xRÞz
�
dgðxÞ
dx

��2

s2ðyÞ;
where individual derivatives are calculated at the point
xZ�xR. The 100(1� a) %confidence interval of the re-
expressed mean for the original data may be defined as

�xR � IL%m%�xRCIU; ð6Þ

where

ILZg�1

�
�yCG� t1�a=2ðn� 1ÞsðyÞffiffiffi

n
p



; ð7Þ

IUZg�1

�
�yCGCt1�a=2ðn� 1ÞsðyÞffiffiffi

n
p
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and

GZ� 1

2

d2gðxÞ
dx2

�
dgðxÞ
dx

��2

s2ðyÞ: ð9Þ

On the basis of the (known) actual transformation
yZ g(x) and the estimates �y, s2( y) it is easy to calculate
the re-expressed estimates �xR and s2ð�xRÞ:

1. For a logarithmic transformation (when lZ 0) and
g(x)Z ln x the re-expressed mean and variance are
calculated by

�xRzexp
�
�yC0:5 s2ðyÞ

�
; ð10Þ

and

s2ð�xRÞz�x2
Rs

2ðyÞ: ð11Þ

2. For ls 0 and the BoxeCox transformation, the re-
expressed mean �xR will be represented by one of the
two roots of the quadratic equation

�xR;1;2Z

�
0:5ð1Cl�yÞG0:5

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C2lð�yCs2ðyÞÞCl2

	
�y2 � 2s2ðyÞ


q 
1=l
;

ð12Þ

which is closest to the median ~x0:5Zg�1ð~y0:5Þ. If �xR
is known, the corresponding variance may be
calculated from

s2ðxÞZ�x
ð�2lC2Þ
R s2ðyÞ: ð13Þ

3. Results

Many statistical programs offer a list of the
estimates of various point parameters of location and
spread, but they rarely help the user to choose the
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statistically adequate parameter for an actual sample
batch. Exploratory data analysis and an examination
of sample assumptions will find an answer to this
question. The first case study with this methodology
runs on typical geochemical sample data and will
illustrate a rigorous procedure of the statistical
treatment of univariate data with exploratory data
analysis.

Properly processed analytical data can be used in
research, government and legislation. For example, (a)
results may serve as a national database characterising
the degree of pollution of agricultural soils; (b) the
appropriate parts of such a database may be distrib-
uted to local offices, (environmental sections) to be
available to the regional and local government (e.g. in
urban planning, privatisation projects, changes in land
use, the application of sewage sludge or sediment to
agricultural soil); (c) results may be used in the process
of constructing legislative measures concerning the
limit values of harmful substances in soil; and (d)
a database can serve as one source for calculating
critical loads and balances of risk elements in agro-
ecosystems.

(1) Survey of descriptive statistics: ADSTAT statistical
software calculates an actual sample batch, a survey
of parameters of location and spread for nZ 40 317
(for an elucidation of the statistics cf. Meloun et al.,
1992). On the basis of EDA, the user should select
the most convenient parameter of location from
the following available estimates: the arithmetic
mean �xZ0:238G0:003 mg kg�1, the median x̂0:5Z
0:19 mg kg�1 and the following trimmed means
�xð10%ÞZ 0:210G0:001 mg kg�1, �xð20%ÞZ0:203G
0:001, �xð40%ÞZ 0:194G0:001 mg kg�1 (calculated
with ADSTAT, TriloByte Statistical Software,
Pardubice, Czech Republic), the standard deviation
sZ0.300 mg kg�1, and the parameters of shape are
the skewness ĝ1Z30:7 and the kurtosis ĝ2Z2123,
proving strongly skewed asymmetric distribution
with a very sharp peak.

(2) Basic diagnostic plots in the EDA are used for
a graphical visualization of the data: in Fig. 1 all of
the exploratory diagnostic graphs prove a strong
deviation from a normal distribution. The box-and-
whisker plot (Fig. 1a) indicates many outliers at high
values, and the quantile plot (Fig. 1b) an asymmet-
ric, skewed distribution.

(3) Determination of sample distribution in the EDA: the
sample distribution represented by symmetry, skew-
ness and kurtosis is examined by the kernel density
estimator of the probability density function (Fig. 1c).
This plot shows thatmost sample points are located in
one class and the plot indicates a strongly skewed
sample distribution. The normal probability plot
(Fig. 1d) checking a normal distribution does not
exhibit close agreement of the sample points with
a straight line.

(4) Basic assumptions about the sample (cf. Meloun
et al., 1992, pp. 78e82): applying an analysis of basic

Fig. 1. (a) The box-and-whisker plot of the Cd sample data. (b) The

quantile plot of the Cd sample data. (c) The kernel density estimator of

the probability density function of the Cd sample data. (d) The

quantileequantile plot (for normal distribution called the Rankit plot)

of the Cd sample data.
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assumptions about the data the following conclu-
sions were derived: sample elements are independent
and homogeneous. A combined sample skewness
and kurtosis test leads to the test statistic

C1Z
ĝ21ðxÞ

s2ðĝ1ðxÞÞ
C

½ĝ2ðxÞ � 3�2

s2ðĝ2ðxÞÞ
;

is 291.06O c2(0.95, 2)Z 5.992 and therefore nor-
mality of data distribution was rejected.

(5) Data transformation: as most diagnostic plots of the
EDA exhibit an asymmetric distribution of original
sample data, data transformation is a convenient
technique to employ. In the case of the BoxeCox
transformation the true mean value of a sample
distribution with both confidence limits IL and IU is
calculated. From the plot of the logarithm of the
likelihood function for the BoxeCox transformation
(Fig. 2) the maximum of the curve is at lZ�0.0556.

Fig. 2. The plot of the logarithm of the maximum likelihood for the Cd

sample data with BoxeCox transformation.

Fig. 3. The quantileequantile plot for the Cd sample data with

BoxeCox transformation.
The corresponding 95% confidence interval does not
contain the exponent value lZ 1, so all trans-
formations are statistically significant. The normal
probability plot (also called the Rankit plot) on
Fig. 3 shows that the BoxeCox transformation
brings more accurate results.
While classical measures of location, spread and
shape for the original data are �xZ0:238 mg kg�1,
s(x)Z 0.300 mg kg�1, the skewness ĝ1ðxÞZ30:74
and curtosis ĝ2ðxÞZ2123:04 are out of statistical
significance and may be taken as false estimates
of location. The BoxeCox transformation
(l̂Z� 0:0556) calculates the corrected mean
�xRZ0:187G0:001 mol dm�3.

(6) Conclusion: all EDA display techniques prove that
the sample distribution is skewed with many
outliers, and does not come from a population
with a normal distribution. For the best estimate of
a location parameter the arithmetic mean does not
represent an objective measure of location,
0.238G 0.003 mg kg�1, and cannot be used. On
the basis of the quantileequantile plot the Boxe
Cox transformation is considered the most rigorous
technique to estimate a measure of location, with
the corrected mean value �xRZ0:187G0:001
mol dm�3.

4. Conclusions

Often, chemical data are less than ideal and do not
fulfill all basic assumptions. Original data can be
transformed to improve the symmetry of data distribu-
tion and variance stabilization. Statistical measures of
the transformed data are re-transformed to get these
rigorous measures for the original data. Table 1 shows
a survey of summary statistics for the elements
beryllium, cadmium, cobalt, chromium, mercury, nickel,
lead, vanadium and zinc. This survey includes classical
and robust measures of central tendency, measures of
variability, and measures of shape. Of particular interest
here are sample size, the minimum and maximum values
in a large sample, and both quartiles. The classical
measures �x and s are strongly corrupted with outliers
and cannot be used here while the robust measures seem
to be more accurate. Since the exploratory data analysis,
the skewness and kurtosis and the quantile measures of
location prove that the sample distribution strongly
differs from a normal one, the data should be examined
to find the proper transformation leading to symmetric
distribution, stabilizing variance and making the distri-
bution closer to normal. The most rigorous estimate of
location is represented by the re-transformed mean �xR
after BoxeCox transformation of original data. This



Table 1

Survey of summary measures of central tendency, measures of variability, and measures of shape

Estimate of Nickel Lead Vanadium Zinc

Sample size n 34 989 40 344 20 373 36 123

Minimum x1 0.1 0.17 0.37 0.7

Maximum xn 662.0 1121.0 86.0 2070.0

Lower quartile FL 3.0 11.7 7.0 12.0

Upper quartile FU 7.3 19.4 13.0 22.0

Interquartile range 4.3 7.7 6.0 10.0

Classical estimates

Sample mean �x 6 6.033G 0.081 18.637G 0.299 10.878G 0.083 19.354G 0.234

Standard deviation 7.728 30.594 6.015 22.73

Skewness ĝ1 34.49 19.77 2.16 34.20

Kurtosis ĝ2 2298.8 528.2 12.41 2265.0

Robust estimates o

Median ~x0:5 4.70G 0.05 14.90G 0.05 9.60G 0.10 16.0G 0.05

Trimmed mean �xð1 1 5.320G 0.039 15.860G 0.067 10.320G 0.074 17.446G 0.089

Trimmed mean �xð2 1 5.109G 0.037 15.548G 0.063 10.050G 0.072 17.020G 0.085

Trimmed mean �xð4 1 4.883G 0.036 15.214G 0.061 9.752G 0.067 16.531G 0.084

JarqueeBerra norm

Testing criterion C1 294.3 259.3 111.4 294.9

Normality is rejected rejected rejected rejected

Homogeneity test

Number of outliers 1128 1359 486 961

BoxeCox transform

Re-transformed me 1 4.797G 0.020 15.172G 0.050 9.611G 0.050 16.360G 0.050

Of particular intere most rigorous estimates of location are re-transformed means after BoxeCox

transformation.
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statistics for the elements Be, Cd, Co, Cr, Hg, Ni, Pb, V and Zn including classical and robust

Beryllium Cadmium Cobalt Chromium Mercury

16 544 40 317 22 176 40 318 32 344

0 0 0.2 0.1 0

9.33 28.1 110.5 1577.4 69.086

0.32 0.14 3.9 3.2 0.06

0.57 0.27 6.7 6.9 0.11

FUeFL 0.25 0.13 2.8 3.7 0.05

of location, scale and shape

0.470G 0.004 0.238G 0.003 5.593G 0.039 7.104G 0.170 0.105G 0.00

s 0.264 0.300 2.930 17.35 0.534

5.99 30.74 4.19 40.09 107.88

119 2123.1 89.85 2608.52 12 963.7

f location

0.43G 0.01 0.19G 0.00 5.0G 0.0 4.60G 0.05 0.08G 0.00

0%Þ 0.449G 0.003 0.210G 0.001 5.356G 0.033 5.361G 0.040 0.086G 0.00

0%Þ 0.443G 0.003 0.203G 0.001 5.264G 0.032 5.072G 0.033 0.083G 0.00

0%Þ 0.438G 0.003 0.194G 0.001 5.150G 0.030 4.795G 0.030 0.081G 0.00

ality test, critical value for aZ 0.05 is c20.95(2)Z 5.99

157.1 291.1 145.9 311.1 382.0

rejected rejected rejected rejected rejected

265 2095 496 2285 1180

ation

an �xR 0.427G 0.003 0.187G 0.001 5.078G 0.030 4.922G 0.023 0.082G 0.00

st here are sample size, minimum and maximum values within the sample, and both quartiles. The
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estimate can be taken as the best for each element
studied.
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