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Abstract

Identifying outliers and high-leverage points is a fun-
damental step in the least-squares regression model
building process. The examination of data quality
involves the detection of influential points, outliers
and high-leverages, which cause many problems in
regression analysis. On the basis of a statistical anal-
ysis of the residuals (classical, normalized, standard-
ized, jackknife, predicted and recursive) and diagonal
elements of a projection matrix, diagnostic plots for
influential points indication are formed. The identifi-
cation of outliers and high leverage points are com-
bined with graphs for the identification of influence
type based on the likelihood distance. The powerful
procedure for the computation of influential points
characteristics written in S-Plus is demonstrated on
the model predicting the metabolic clearance rate of
glucose (MCRg) that represents the ratio of the
amount of glucose supplied to maintain blood glu-
cose levels during the euglycemic clamp and the
blood glucose concentration from common labora-
tory and anthropometric indices. MCRg reflects insu-
lin sensitivity filtering-off the effect of blood glucose.
The prediction of clamp parameters should enable us
to avoid the demanding clamp examination, which is
connected with a higher load and risk for patients.

Keywords: diagnostic plot; high-leverages; influence
measures; influential observations; outliers; regres-
sion diagnostics.

Introduction

Women with the polycystic ovary syndrome (PCOS)
have a high prevalence of insulin resistance. Howev-
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er, controversy exists as to whether insulin resistance
results from PCOS or the obesity that is frequently
associated with it (1–6). Gennarelli et al. (6) have sug-
gested a prediction statistical model for insulin resis-
tance in PCOS women within a wide range of body
mass indices (BMIs) involving waist-to-hip-ratio
(WHR) and serum triglycerides or fasting insulin.
Cibula et al. (7) recently described such a statistical
model in non-obese PCOS women with sex-hormone
binding globulin (SHBG) as the best predictor of the
insulin sensitivity index. In the present study, a large
group of lean and obese women was evaluated (ful-
filling the generally accepted diagnostic criteria of
PCOS) with the use of a euglycemic clamp, which is
considered as the gold standard in the evaluation of
insulin sensitivity. Here we attempted to build a
regression model for the prediction of one of the
clamp parameters, the metabolic clearance rate of
glucose (MCRg), which represents the ratio of the
amount of glucose supplied to maintain blood glu-
cose levels during the euglycemic clamp and the
blood glucose concentration from common labora-
tory and anthropometric indices. MCRg reflects insu-
lin sensitivity filtering-off the effect of blood glucose.
The prediction of clamp parameters should enable us
to avoid the demanding clamp examination, which is
connected with a higher load and risk for patients.
Our primary aim was to demonstrate how to cope
with the presence of influential experimental points
that deteriorate the quality of prediction.
Statistical models, particularly regression models,

are extremely useful tools for extracting and under-
standing the essential features of a set of data. These
models, however, are nearly always approximate
descriptions of more complicated processes, and
because of this inexactness the study of the variation
in the results of an analysis under modest modifica-
tions of the problem formulation becomes important.
However, there are a number of common difficulties
associated with real data sets. The first involves the
detection and elimination of outliers in the original
data. A problem with outliers is that they can strongly
influence the model, especially when using least
squares criteria, so a multistep procedure is required,
first to identify whether there are any samples that are
atypical of the data set, then to remove them, and
finally to reformulate the model. This paper describes
a proposed new methodology with a series of pow-
erful general diagnostics for detecting observations
that differ from the bulk of the data. We think of data
as being divided into two classes: (i) good observa-
tions (the majority of data) reflecting population scat-
ter of data and (ii) the outliers (if any), which are
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included in the so-called influential points. The goal
of any outlier detection is to find this true partition,
and thus separate good from outlying observations.
The detection, assessment and understanding of
influential points are major problems in regression
model building, as is evident from the many influence
measures that have been proposed and the critical
survey published (8–13). Regression diagnostics used
in this paper represent procedures for an examination
of the regression triplet (data, model, method) for
identification of (a) the data quality for a proposed
model; (b) the model quality for a given set of data;
(c) a fulfillment of all least-squares assumptions. In
this paper regression diagnostics are critically sur-
veyed and commented upon, and compared on a
regression model for prediction of the metabolic
clearance rate of glucose as one of the output para-
meters of the clamp.

Proposed method

Estimate of the regression parameters

A linear regression model is one formed by a linear
combination of explanatory variables x or their func-
tions, y5XbH´. Vector y has dimensions (n=1) and
matrix X (n=m) and supposes that m-n. Linear
means ‘‘linear according to model parameters’’. The
least-squares is the most frequently used method in
regression analysis to find the minimal length of the
residual vector , where is the predic-ˆ ˆ ˆesyIy y sX bP p

tor vector. The square of vector length is consistentê

with the residual sum of squares criterion U(b) of the
least-squares method, so that the estimates of model
parameter b minimizes the expression

n n m 2w z
2ˆU (b)s (yyy ) s yy x b f minimumx |i P,i i ij j8 8 8

y ~is1 is1 js0

The conventional least-squares estimator b has the
form with the corresponding vari-T 1 Tybs(X X) X y

ance . However, some basic2 T 1yD (b)ss (X X)
assumptions are necessary for the least-squares
method (LS) to be valid (10):
1. The regression parameters b are not bound.
2. The regression model is linear in the parameters,

and an additive model for the measurement of errors
is valid, y5XbH´.
3. The matrix of non-random controllable values of

the explanatory variable X has a column rank equal
to m.
4. The mean value of the random errors ´i is zero;

E(´i)s0. This is valid for all correlation type models
and models having intercept term.
5. The random errors ´i have constant and finite

variance, E(´i2)ss2 and therefore the data are said to
be homoscedastic.
6. The random errors ´i are uncorrelated and there-

fore cov(´i, ´i)sE(´i, ´i)s0. When the errors follow the
normal distribution they are also independent. This
corresponds to independence of the measured quan-
tities y.

7. The random errors ´i have a normal distribution
N(0, s2).
In regression analysis the method of least squares

is often used. This method, however, does not ensure
that the model is fully acceptable from a statistical
point of view. A source of problems may be found in
components of a regression triplet (data, model and
method of estimation). The least squares method pro-
vides accurate estimates only when all assumptions
about data and about a regression model are fulfilled.
When some assumptions are not fulfilled, the least-
squares method is inconvenient. Regression diagnos-
tics represent the procedures for identification of (a)
the data quality for a proposed model, (b) the model
quality for a given data set and (c) fulfillment of all
least-squares assumptions.

Examination of data quality

Examination of data quality involves detection of the
influential points, which cause many problems in
regression analysis by shifting the parameter esti-
mates or increasing the variance of the parameters.
Influential points include data classified into: (i) out-
liers (denoted in the graphs by the letter O), which
differ from the other points in value on the y-axis; (ii)
high-leverage points, also called extremes (denoted in
the graphs by the letter E), which differ from the other
points in value on the x-axis or (iii) both O and E,
standing for a combination of outliers and high-lev-
erages together. Analysis of various types of residu-
als, or some transformation of the residuals, is useful
for detecting inadequacies in the model or influential
points in the data. Ordinary residuals , normalizedêi
residuals or also so-called scaled residuals ,ˆ ˆ ˆe se /sN,i i

standardized residuals or also so-called internally Stu-
dentized residuals , Jackknife resid-ˆ ˆ yˆe se /(s 1yH )S,i i ii

uals or also so-called externally Studentized residuals

nymy1
ˆ ˆe se ,J,i S,i 2y ˆnymyeS,i

predicted residuals or also so-called cross-validated
residuals

êiê s syyx bP,i i i (i),1yHii

and recursive residuals may be applied and have
been described previously (8–10). Some diagnostics
are based on the diagonal elements of the hat matrix.
For analysis of residuals a variety of plots have been
widely used in regression diagnostics:
(a) The graph of predicted residuals (14) has on the

x-axis the predicted residuals and on the y-axis theêP,i
ordinary residuals . The high-leverage points areêi
easily detected by their location, as they lie outside
the line ysx, and are located quite far from this line.
The outliers are located on the line ysx, but far from
its central pattern.
(b) The Williams graph (15) has on the x-axis the

diagonal elements Hii and on the y-axis the jackknife
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residuals . Two boundary lines are drawn, the firstêJ,i
for outliers, yst0.95 (nymy1) and the second for
high-leverages, xs2m/n. Note that t0.95(nymy1) is
the 95% quantile of the Student distribution with
(nymy1) degrees of freedom.
(c) The Pregibon graph (16) has on the x-axis the

diagonal elements Hii and on the y-axis the square of
normalized residuals . Since the expression2êN,i

is valid for this graph, two dif-2ˆE (H qe )s(mq1)/nii N,i

ferent constraining lines can be drawn,
ysyxq2(mq1)/n, and ysyxq3(mq1)/n. To distin-
guish among influential points the following rules are
used: (i) a point is strongly influential if it is located
above the upper line; (ii) a point is influential if it is
located between the two lines. The influential point
can be either an outlier or a high-leverage point.
(d) The McCulloh and Meeter graph (17) has on the

x-axis ln wHii /(m(1yHii))x and on the y-axis the loga-
rithm of the square of the standardized residuals

. In this plot the solid line drawn represents the2ˆln (e )S,i

locus of points with identical influence, with slopey1.
The 90% confidence line is defined by ysyxyln
F0.9(nym, m). The boundary line for high-leverage
points is defined as xslnw2/(nym)=(t20.95(nym)x,
where t20.95(nym) is the 95% quantile of the Student
distribution with (nymy1) degrees of freedom.
(e) The Gray’s L-R graph (18) has on the x-axis the

diagonal elements Hii and on the y-axis the squared,
normalized residuals . All the points will2 2ˆ ˆe se /U(b)N,i i

lie under the hypotenuse of a triangle with a 908 angle
in the origin of the two axes and the hypotenuse
defined by the limiting equality Hii q s1. In the2êN,i
Gray’s L-R graph, contours of the same critical influ-
ence are plotted, and the locations of individual points
are compared with them. It may be determined that
the contours are hyperbolic as described by

22xyx y1
ys ,

x (1yK)y1

where and c is a constant. For2Ksn (nymy1)/(c m)
cs2, the constant K corresponds to the limit .y2/ m/n
The constant c is usually equal to 2, 4 or 8.
(f) The Index graph (10) has on the x-axis the order

index i and on the y-axis the residuals , , ,ˆ ˆ ˆe e eS,i P,i J,i

, or the diagonal elements Hii, or estimates bi. ItêR,i
indicates the suspicious points that could be influen-
tial, i.e., outliers or high-leverages.
(g) The Rankit graph (Q-Q plot) (10) has on the

x-axis the quantile of the standardized normal distri-
bution uPi for Pisi/(nq1) and on the y-axis the
ordered residuals , , , i.e. increasinglyˆ ˆ ˆ ˆe e e eS,i P,i J,i R,i

ordered values of various types of residuals.
There are diagnostics that are based on scalar influ-

ence measures (8–10): Proper normalization in influ-
ence functions (19) leads to scalar measures. These
measures express the relative influence of the given
point on all parameter estimates.
(a) The Cook measure Di (20) expresses directly the

relative influence of the ith point on all parameter esti-
mates and has the form

T T ˆ(byb ) X X (byb ) e H(i) (i) S,i iiDs s = .i 2ˆm=s m 1yHii

The Cook measure Di expresses the influence of the
ith point on the parameter estimate b only. When the
ith point does not affect b significantly, the value of
Di is low. Such a point, however, can strongly affect
the residual variance . It is generally useful to study2ŝ

cases that have Di)0.5 and is always important to
study cases with Di)1. These benchmarks are intend-
ed as an aid to finding influential cases, but they do
not represent a test. There is no significance test asso-
ciated with Di.
(b) The Atkinson measure Ai (21) enhances the sen-

sitivity of distance measures to high-leverage points
and has the form

nym HiiˆAsNe N= = .i J,i y m 1yHii

This measure is also convenient for graphical inter-
pretation; Atkinson recommends that signed values of
Ai be plotted using any of the customary methods for
residuals. Ai could also be large because the ith jack-
knife residual is large. Large jackknife residuals are
due to outliers, points whose response falls far from
the fitted function.
(c) The Belsey DFFITSi measure, also called Welsch-

Kuh’s distance (22), is obtained by normalization of
the sample influence function and using the variance
estimate obtained from estimates b(i). This meas-2ŝ(i)
ure has the form

Hii2 2ˆDFFITS se = .i J,i 1yHii

Belsey, Kuh, and Welsch (22) suggest the test that the
ith point is considered to be significantly influential
on prediction when DFFITSi is larger in absoluteŷP
value than .y2 m/n
(d) The Anders-Pregibon diagnostic Api (19)

expresses the influence of the ith point on the volume
of the confidence ellipsoid

Tdet(X X )m (i) m (i)APs ,i Tdet(X X )m m

where Xms(xNy) is the matrix having as the least col-
umn the vector y. The diagnostic APi is related to the
elements of the extended projection matrix Hm by the
expression APis1yHiiy s1-Hm,ii. A point is con-2êN,i
sidered to be influential if Hm,iis1-APi)2(mq1)/n.
(e) The Cook-Weisberg likelihood measures LDi (19)

represent a general diagnostic defined by

ˆ ˆLDs2wL (Q)yL (Q )x,i (i)

where is the maximum of the logarithm of theˆL (Q)
likelihood function when all points are used and

is the corresponding value when the ith pointˆL (Q )(i)
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is omitted. For strongly influential points,

2LD ) x (m q 1),i 1ya

where x2
1ya (m q 1) is the quantile of the x2

distribution.
With the use of different variants of LDi it is possible

to examine the influence of the ith point on the
parameter estimates or on the variance estimate or
on both (37):
(f) The likelihood measure LDi(b) examines the

influence of individual points on the parameter esti-
mates b by the relationship

w zd=Hi iix |LD (b)sn=ln q1 ,i
y 1yH ~ii

where .2ˆdse /(nym)i S,i

(g) The likelihood measure LDi( ) examines the2ŝ

influence of individual points on the residual variance
estimates by the relationship

w zn d (ny1)i2 x |ˆLD (s )sn=ln qn ln (1yd )q y1.i i
y ny1 ~ 1ydi

(h) The likelihood measure LDi(b, ) examines the2ŝ

influence of individual points on the parameters b and
variance estimates together by the relationship2ŝ

w zn2 x |ˆLD (b, s )sn=ln qn ln (1yd )i i
y ny1 ~

d (ny1)iq y1
(1yd ) (1yH )i ii

Examination of a proposed regression model

There are many various plots for considering y on xj,
but we limit the choice here to (a) partial regression
leverage plots and (b) partial residual plots. Both plots
are augmented here by the graph of residual vs.ê
prediction , which can indicate a false model whenŷP
the points form a nonlinear pattern (8–10).
(a) Partial regression leverage plots (PRL plot) were

introduced by Belsey et al. (22). They permit classifi-
cation of the quality of a proposed regression model
and also indicate the presence of an influential point
and lack of fulfillment of the assumptions of the clas-
sical least-squares method. They show the depend-
ence between y and a selected controllable variable
xj when the other controllable variables forming col-
umns in the matrix X are kept constant. This linear
dependence is valid only when the proposed model
is correct. The symbol X(j) denotes a matrix formed by
leaving out the jth column xj.
(b) Partial residual plots (PR plots) are also termed

‘‘componentqresidual’’ plots. These plots are rec-
ommended for indication of different types of non-
linearity in the case of a poorly proposed regression
model. The linear dependence shows the suitability
of proposed variable xj in the model.
(c) Sign test for model specification. To check a pro-

posed regression model with reference to the data, all

tests of linearity may be applied. The sign test is a
single test based on the residuals. Incorrectness of a
proposed model causes non-randomness of residu-
als, and this non-randomness may be tested.
Various test criteria for a search of regression mod-

el quality may be used (8–10). One of the most effi-
cient seems to be the mean quadratic error of
prediction,MEP, being defined by the cross-validation
relationship

,
nw z

T 2x |MEPs 8 (yyx b ) /ni i (i)
y ~is1

where b(i) is the estimate of regression parameters
when all points except the ith one were used and xi
is the ith row of matrix X. The statistic MEP uses a
prediction from an estimate constructed withoutŷP,i
including the ith point. The MEP also can be used to
express the predicted determination coefficient,

n=MEP2R̂ s1y .nP
2 2y yn=yi8

is1

Another statistical characteristic in quite general use
is derived from information theory and entropy (23)
and is known as the Akaike information criterion,

B EU (b)
C FAICsn ln q2 m.
D Gn

The most suitable model is the one that gives the low-
est value of the mean quadratic error of prediction,
MEP, and Akaike information criterion, AIC, and the
highest value of the predicted determination coeffi-
cient, Rp

2.

Examination of conditions for the least-squares

method

From seven basic conditions for the least-squares
method that must be met to give unbiased linear esti-
mates of parameters, the heteroscedasticity, autocor-
relation and non-normality of errors ´ are the most
important.
(a) Identification of heteroscedasticity in data is

based on the idea that the variance of a measured
quantity at the ith point is an exponential function of
the variable xib of the type , where2 2s ss exp (l x b)i i

xi is the ith row of matrix X. The test for homosce-
dasticity is carried out by checking the null hypothesis
H0)ls0. Cook and Weisberg introduced the test cri-
terion

2
nw z

2ˆˆ(yyy ) ex |i P i8
n 2y ~ w zis1
ˆSs , where y s y /n.x |2f P in 8w z

4 y ~is1ˆˆ2 s (yyy )x |i P8
y ~is1

When null hypothesis is valid, the test statistic Sf has
approximately the x2(1) distribution with one degree
of freedom.
(b) Identification of autocorrelation in data. When

data are a time series, the errors ´ are not independ-
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ent but are correlated with one another. The autore-
gressive process of the first order is described by the
expression , where uivN(0, s2) is an´ sr ´ q ui 1 iy1 i

independent random variable with constant variance
and r1F1 is the autocorrelation coefficient of the first
order. For r1s1 a case of cumulative errors is defined
that appears often in biochemical data. When the
model Xb does not contain all the significant variables
and is falsely proposed, the mean values of residuals
correspond to a process of the first order, with a pos-
itive autocorrelation coefficient of the first order, r1.
Tests of autocorrelation can be understood as tests of
accuracy of a proposed model, with reference to the
number of controllable variables. To test for autocor-
relation, the graph of against is plotted and anˆ ˆe ei iy1

approximately linear trend proves significant
autocorrelation.
(c) Test of normality of errors in data. To test the

normality of residuals, the most convenient test
seems to be the Jarque-Bera test (24), which is based
on the criterion

2w zˆ ˆg (g y3)1 2ˆ x |L(e)sn q ,
y 6 24 ~

where the symbol denotes the sample skewnessĝ1
and the sample kurtosis of residuals set.ĝ2
When , the null hypothesis H0

2ˆL(e) M x (2)s5.990.95

about the error normality is rejected. In this test, the
supernormality effect of small samples may disturb
statistical testing.

Experimental

Materials

The study group consisted of 73 oligo/amenorrheic
women with PCOS matching NIH criteria (25), all with
the clinical manifestations of hyperandrogenemia
such as hirsutism and/or acne and with the elevation
of free testosterone index (FTI) and/or androstenedi-
one above the upper limit of the normal range or with
a decrease below the lower limit for SHBG (i.e.,
2.65 nmol/l for testosterone, 5.4 nmol/l for androste-
nedione and 43 nmol/l for SHBG). None of the
patients had taken oral contraceptives or any other
steroid medication during the previous 3 months. The
patients were evaluated at the clinical departments of
both institutions as outpatients, and after signingwrit-
ten informed consent they underwent blood sampling
between days 3 and 6 of the menstrual cycle or, in
the case of secondary amenorrhea, at any time. After
collection of basal blood samples, a 2-hour euglycem-
ic hyperinsulinemic clamp was performed as reported
elsewhere (26). Briefly, an indwelling cannula was
inserted in the antecubital vein for the simultaneous
infusion of 15% glucose solution with addition of 7.5%
KCl and for the insulin infusion (1 mIU/kg/min; 25 IU
of the regular insulin, Actrapid HM, Novo Nordisk, in
50 ml of sodium saline solution (0.9%)), and another

cannula was inserted into the wrist vein on the same
hand. The hand was heated in a heating pad at 658C
and blood samples for the determination of blood glu-
cose were taken every 5 minutes. The rate of glucose
infusion was manually adjusted to maintain blood
glucose within the range of 5.0 mmol/l 5%. The MCRg
(ml/kg/min) represents the ratio of the amount of glu-
cose supplied to maintain blood glucose levels during
the last 20 minutes of the clamp and the average
blood glucose concentration in the same period. This
parameter reflects insulin sensitivity filtering-off the
effect of blood glucose. Triglycerides were deter-
mined enzymatically (reagents from Boehringer
Mannheim; Mannheim, Germany, using a Cobas Mira
S autoanalyzer; Hoffman-La Roche, Basel, Switzer-
land); testosterone, androstenedione, and SHBG were
determined as described previously (27). Blood glu-
cose was determined in the whole blood using the
electrochemical method (Super GL, Freital, Germany).

Proposed procedure

The procedure for examination of influential points in
data and the construction of a linear regressionmodel
consists of the following steps of the regression triplet
examination. The procedure usually starts from the
simplest model, with individual explanatory control-
lable variables not raised to powers other than the
first, and with no interaction terms of the type xjxk
included. Exploratory data analysis in regression pro-
vides a scatter plot of individual variables and all pos-
sible pair combinations are examined. Also, in this
step the influential points causing multicollinearity
are detected.

Step 1. Data I detection of influential points The sta-
tistical analysis of special residuals, different diagnos-
tic graphs and numerical measures are used to
examine influential points, namely outliers and lev-
erages. If outliers are found, it has to be decided
whether these points should be eliminated from the
data. If points are eliminated, the whole data treat-
ment must be repeated.

Step 2. Model I significance test of parameter esti-

mates The parameters of the proposed regression
model and the corresponding basic statistical char-
acteristics of this model are determined by the ordi-
nary least-squares method (OLS). Individual
parameters are tested for significance by using the
Student t test. The correlation coefficient R, the deter-
mination coefficient, or multiplied by 100% as the
regression rabat 100D, are computed. The mean
quadratic error of prediction, MEP, and the Akaike
information criterion, AIC, are calculated to examine
the quality of the model. A partial regression graph
and partial residual graphs show statistical signifi-
cance of individual parameters.

Step 3. Method I construction of a more accurate

model According to the test for fulfillment of the con-
ditions for the least-squares method and the results
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Table 1 A survey of the influential points that were indicated using various graphical diagnostic tools.

Diagnostics indicating SP and IP Suspicious points SP Influential points IP Outliers O High-leverages E

A. Diagnostic plots constructed from various residuals and hat matrix
elements

1. Graph of predicted residuals, Figure 2A 7, 23, 29, 51, 33, 7, 23, 29, 51, 33, 7, 23, 7
29, 51

2. Williams graph, Figure 2B 7, 23, 29, 30, 33, 51, 73 7, 23, 29, 33, 51, 73 7, 23, 4, 7, 21,
29, 33 36, 38
51, 73 40, 41, 45

3. Pregibon graph, Figure 2C 7, 21, 23, 36, 38, 40, 45 7, 21, 23, 36, 38, 40, 45 --- ---
4. McCulloh-Meeter graph, Figure 2D 7, 23, 29, 36, 38, 40 7, 23, 29, 36, 38, 40 7, 23, 7, 36,

29, 36 38, 40
38, 40

5. Gray’s L-R graph, Figure 2E 7, 23, 29, 36 7, 23, 29, 36 7, 29 7, 21, 36,
38, 40,
41, 45, 47

B. Diagnostics based on scalar and vector influence measures

6. Cook measure D, Figure 3C 7, 21, 23, 29, 36, 38, 40, 45 7, 21, 23, 29, 36, 38, 40, 45 -- --
7. Atkinson measure A, Figure 3D 7, 23, 29, 36, 38, 40 7, 23, 29, 36, 38, 40 -- --
8. Belsey measure DFFITS, Figure 3E 7, 15, 23, 29, 36, 38, 40 7, 15, 23, 29, 36, 38, 40 -- --
9. Anders-Pregibon diagnostic AP, Figure 3F 7, 21, 23, 36, 38, 40, 45 7, 21, 23, 36, 38, 40, 45 -- --
10. Cook-Weisberg likelihood measure 7, 23, 36, 38, 40 7, 23, 36, 38, 40 -- --
LD(b), Figure 3G
11. Cook-Weisberg likelihood measure 7, 23, 29, 51 7, 23, 29, 51 -- --
LT(s2), Figure 3H
12. Cook-Weisberg likelihood measure 7, 23, 29, 36, 38, 40 7, 23, 29, 36, 38, 40 -- --
LD(b,s2), Figure 3I

C. Index graphs of various residuals and hat matrix elements

13. Ordinary residuals , Figure 1A and Bê 7, 23, 29, 30, 32, 33, 51, 56, 73 7, 23, 29, 30, 32, 33, 51, 56, 73 -- --
14. Normalized residuals , Figure 1CêN 10, 14, 23, 26, 27, 29, 30, 32, 10, 14, 23, 26, 27, 29, 30, 32, -- --

33, 39, 42, 51, 56, 73 33, 39, 42, 51, 56, 73
15. Standardized residuals , Figure 1DêS 7, 23, 29, 30, 32, 51, 56, 73 7, 23, 29, 30, 32, 51, 56, 73 -- --
16. Jackknife residuals , Figure 1EêJ 7, 23, 29, 30, 32, 51, 56, 73 7, 23, 29, 30, 32, 51, 56, 73 -- --
17. Predicted residuals , Figure 1FêP 7, 23, 29, 32, 33, 38, 51, 56, 73 7, 23, 29, 32, 33, 38, 51, 56, 73 -- --
18. Diagonal elements of hat matrix 4, 7, 21, 36, 38, 45 4, 7, 21, 36, 38, 45 -- 4, 7, 21, 36,
, Figure 3AĤii 38, 45

19. Diagonal elements of modified hat 4, 5, 7, 15, 21, 23, 36, 38, 4, 5, 7, 15, 21, 23, 36, 38, -- 4, 5, 7, 15
matrix , Figure 3BĤm,ii 40, 45 40, 45 21, 23, 36,

38, 40, 45

Suspicious points (SP) are data points in diagnostic graphs that obviously differ from the others; influential points (IP) are
data points that are detected and are separated into outliers and high-leverages using the following testing criteria: ns73,
ms4, 1. Graph of predicted residuals: outliers are far from the central pattern on the line ysx; 2. Williams graph: the first
line is for outliers, yst0.95 (nymy1)s1.995, the second line is for high-leverages, xs2m/ns0.11; 3. Pregibon graph: two
constraining lines are drawn, ysyxq2(mq1)/n, and ysyxq3(mq1)/n, a strongly influential point is above the upper line;
an influential point is between the two lines; 4. McCulloh and Meeter graph: the 90% confidence line is for outliers, ysyxyln
F0.95(nym, m) while the boundary for high-leverages is xslnw2/(nym)=(t20.95(nym)x; 5. Gray’s LyR graph: points toward the
part are outliers while toward the right angle of the triangle are high-leverages; 6. Di: when Di)1 then the ith point is an IP;
7. Ai: when Ai2)3.5 then the ith point is an outlier; 8. DFFITSi: when ±DFFITSi± s0.468 then the ith point is an IP; 9. APi:y)2 m/n
when APi-1y2(mq1)/ns0.863 then the ith point is an IP; 10., 11. and 12. LDi: generally, when LDi)x2

1ya(mq1)s11.07 then
the ith point is an IP. 13. : detects SP only; 14. : when )±3s± then the i-th point is an outlier; 15. : detects SP only;ˆ ˆ ˆ ˆe e e eN N,i S

16. : when )3.5 then the ith point is an outlier; 17. : detects SP only; 18. Hii: when Hii)2m/ns0.11 then the i-th point2ˆ ˆ ˆe e eJ J,i P

is a high-leverage; 19. Hm,ii: when Hm,ii)2m/ns0.11 then the ith point is a high-leverage, 20., 21. and 22. the rankit graph (Q–
Q plot) examines whether the ordered residuals , , exhibit a normal distribution. Conclusion: Eliminated outliers 7,ˆ ˆ ˆe e eS,i P,i N,i

23, 29, 33, 51, 73 and eliminated suspicious points 7, 16, 23, 29, 30, 33, 34, 36, 40, 43, 51, 61, 73.

of regression diagnostics, a more accurate regression
model is constructed.

Software

For the creation of regression diagnostic graphs and
computation of the regression based characteristics,
an algorithm Linear regression in S-Plus was written
and is available on request.

Results and discussion

The simple screening method based on common lab-

oratory and anthropometric indices, enabling us to
avoid expensive and demanding clamp examinations
in the majority of the subjects suspected of insulin
resistance, is the most desirable. Recently, some
authors reported such models in samples of women
with PCOS (6, 7). We attempted to suggest a general
method for detection and elimination of experimental
points deteriorating the informative value of the pre-
diction model. Hence, a model for the prediction of
the metabolic clearance rate of glucose reflecting
insulin sensitivity and filtering-off the effect of blood
glucose was built and evaluated. A number of tech-
niques for detection and elimination of experimental
points deteriorating its informative value were dem-
onstrated step-by-step to promote their wider use in
biochemistry and medicine.
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Figure 1 Index graphs of various residuals: (A) Ordinary residuals e; (B) Squared ordinary residuals e2; (C) Normalized
residuals eN; (D) Standardized residuals eS; (E) Jackknife residuals eJ; (F) Predicted residuals eP.

Using backward regression, we previously found in
lean PCOS women SHBG as a single reliable predictor
of insulin sensitivity. In the present study, we extend-
ed this observation for the further common laboratory
and anthropometric indices in both lean and obese
women. Nevertheless, the primary aim was to pro-
pose a regression model and to find influential points
in the data and to eliminate them.

1. Data I detection of influential points

The data quality analysis concerns an analysis detec-
tion of the influential points, which cause many prob-
lems in regression analysis by shifting the parameter
estimates or increasing the variance of the
parameters:
(a) Residual analysis: generally it is valid that out-

liers are identified by an examination of the residuals
while the high-leverage points are found from the
diagonal elements Hii of the projection hat matrix,
Table 1.
A survey of all the diagnostics for influential point

detection shows that diagnostics plots are the most
efficient tool because they are able to separate influ-
ential points into outliers and high-leverages. A sur-
vey of identified suspicious points by various types of
diagnostic measures is given in Table 1. It is clear that
there are some local differences given by severity of
cut-off values but the majority of measures indicate
the same points.
Ordinary residuals (Figure 1A and B) are always

associated with a non-constant variance; they may
not indicate strongly deviant points. Even though the
common practice of programs for the statistical anal-
ysis of residuals is to examine by use of statistical
characteristics such as the mean ē, the variance

, the skewness and the kurtosis , these2ˆ ˆ ˆs (e) g (e) g (e)1 2

statistics do not give a correct indication of the influ-
ential points. Points 7, 23, 29, 30, 32, 33, 51, 56 and

73 may be considered to be suspicious and some test-
ing diagnostics for influential points should be
applied.
In the case of normalized residuals (Figure 1C), the

rule of 3s is classically recommended: outliers are
quantities with of magnitude greater than "3s ofêN,i
all values and lie outside the interval ē"3s. Suchˆ
assumptions about normalized residuals are mislead-
ing. Points 10, 14, 23, 26, 27, 29, 30, 33, 39, 42, 51, 56
and 73 may be denoted as suspicious in this graph.
However, normalized residuals are not able to indi-
cate high-leverage points.
The statistical properties of standardized residuals

(Figure 1D) are the same as those of the ordinary
residuals and indicate suspicious points 7, 23, 29, 30,
32, 51, 56 and 73 only. The maximum values of areêS
bounded s8.31. This influential points criterionynym
also seems to be misleading.
For jackknife residuals (Figure 1E) an approximate

rule may be applied: strongly influential points (i.e.,
outliers) have )3.5, but for high-leverages, how-2êJ,i
ever, these residuals do not give any indication:
according to this criterion the points 7, 23, 29, 30, 32,
51, 56 and 73 are outliers.
Predictive residuals are able to find suspicious

points only I 7, 23, 29, 32, 33, 38, 51, 56 and 73, as
shown in Figure 1F.
(b) Diagnostic plots constructed from residuals and

hat matrix elements: a combination of various types
of residuals with the diagonal elements of the projec-
tion hat matrix Hii leads to five diagnostic graphs of
influential points (the data set of size ns73, ms4):
The graph of predicted residuals (Figure 2A), one of

the simplest graphs, separates outliers 7, 23, 29 and
51 located far from its central pattern on the line ysx
from high-leverage point 7 outside and far from the
line ysx.
The Williams graph (Figure 2B) has two testing

boundary lines, the first line for outliers
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Figure 2 Diagnostics based on residual plots and hat matrix elements: (A) Graph of predicted residuals, (B) Williams graph,
(C) Pregibon graph, (D) McCulloh-Meeter graph, (E) Gray’s L-R graph.

Figure 3 Index graphs of vector and scalar influence measures: (A) Diagonal elements of the hat matrix Hii; (B) Diagonal
elements of the modified hat matrix Hm,ii; (C) Cook measure D; (D) Atkinson measure A; (E) Belsey’s DFFITS measure; (F)
Anders-Pregibon measure AP; (G) Cook-Weisberg likelihood measure LD(b); (H) Cook-Weisberg likelihood measure LD(s2); (I)
Cook-Weisberg likelihood measure LD(b, s2).
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Table 2 Estimates of four unknown parameters of the linear
regression model before and after removal of outliers and
suspicious points in a process of regression model building
and testing.

1st step of regression triplet analysis: original data were
used.
Data: 73 original data points used.
Model: ysb0qb1 x1qb2 x2qb3 x3 used: Rs0.7073,
Ds50.03%, MEPs5.96, AICs127.22, s(e)s2.3,

b0s13.55(1.71) Parameter is significant. Estimated signifi-
cance level ps2.68E-11.

b1sI0.220(0.062) Parameter is significant. Estimated sig-
nificance level ps0.0007.

b2s0.053(0.011) Parameter is significant. Estimated sig-
nificance level ps1.43E-05.

b3sI2.061(0.721) Parameter is significant. Estimated sig-
nificance level ps0.0056.
Method: tests of assumptions about the least squares.
(a) Fisher-Snedecor test for model significance, Fs23.028,
F(0.95, my1, nym)s2.737, Model is significant,
(b) Scott test of multicollinearity: SCsI0.067, Model is cor-
rect without multicollinearity.
(c) Cook-Weisberg test of heteroscedasticity: Sfs2.956,
x2(0.95, 1)s3.841, Residuals exhibit homoscedasticity.
(d) Jarque-Bera test for normality: Cs2.237, x2(0.95,
2)s5.991, Normality of residuals is accepted.
(e) Wald test for autocorrelation:Was0.9603, x2(0.95,
1)s3.841, Autocorrelation is not significant.
(f) Sign test for dependence and residuals trend: Sgs1.032,
N(0.975)s1.960, There is no trend in residuals.

2nd step of regression triplet analysis: data without outli-
ers were used.
Data: 73 data points without 6 outliers were used.
Model: ysb0qb1 x1qb2 x2qb3 x3 used: Rs0.7136,
Ds50.92%, MEPs3.82, AICs88.4, s(e)s1.9,

b0s11.75(1.55) Parameter is significant. Estimated signifi-
cance level ps1.98E-10.

b1sI0.150(0.053) Parameter is significant. Estimated sig-
nificance level ps0.0071.

b2s0.048(0.010) Parameter is significant. Estimated sig-
nificance level ps2.05E-05.

b3sI1.923(0.600) Parameter is significant. Estimated sig-
nificance level ps0.0021.
Method: tests of assumptions about the least squares.
(a) Fisher-Snedecor test for model significance, Fs21.790,
F(0.95, my1, nym)s2.750, Model is significant,
(b) Scott test of multicollinearity: SCsI0.052, Model is cor-
rect without multicollinearity.
(c) Cook-Weisberg test of heteroscedasticity: Sfs0.246,
x2(0.95, 1)s3.841, Residuals exhibit homoscedasticity.
(d) Jarque-Bera test for normality: Cs2.180, x2(0.95,
2)s5.991, Normality of residuals is accepted.
(e) Wald test for autocorrelation:Was0.075, x2(0.95,
1)s3.841, Autocorrelation is not significant.
(f) Sign test for dependence and residuals trend: Sgs0.510,
N(0.975)s1.960, There is no trend in residuals.

3rd step of regression triplet analysis: data without suspi-
cious points were used.
Data: 73 data points without 13 suspicious points were
used.
Model: ysb0qb1 x1qb2 x2qb3 x3 used: Rs0.7505,
Ds56.33%, MEPs3.51, AICs74.6, s(e)s1.8,

b0s13.44(1.75) Parameter is significant. Estimated signifi-
cance level ps2.75E-10.

b1sI0.176(0.057) Parameter is significant. Estimated sig-
nificance level ps0.0032.

b2s0.040(0.011) Parameter is significant. Estimated sig-
nificance level ps0.0010.

b3sI2.723(0.637) Parameter is significant. Estimated sig-
nificance level ps7.63E-05.
Method: tests of assumptions about the least squares.
(a) Fisher-Snedecor test for model significance, Fs24.075,
F(0.95, my1, nym)s2.769, Model is significant,
(b) Scott test of multicollinearity: SCsI0.011, Model is cor-
rect without multicollinearity.
(c) Cook-Weisberg test of heteroscedasticity: Sfs0.080,
x2(0.95, 1)s3.841, Residuals exhibit homoscedasticity.
(d) Jarque-Bera test for normality: Cs1.278, x2(0.95,
2)s5.991, Normality of residuals is accepted.
(e) Wald test for autocorrelation:Was0.736, x2(0.95,
1)s3.841, Autocorrelation is not significant.
(f) Sign test for dependence and residuals trend: Sgs1.473,
N(0.975)s1.960, There is no trend in residuals.

Conclusion: In the 3rd step the best regression model was
found.

yst0.95(nymy1)s1.995 detecting outliers 7, 23, 29,
33, 51 and 73, and the second for high-leverage points
xs2m/ns0.11, detecting high-leverages 4, 7, 21, 36,
38, 40, 41 and 45.
The Pregibon graph (Figure 2C) is able to distin-

guish strongly influential points from medium influ-
ential points. Point 7 is strongly influential, while
points 21, 23, 36, 38, 40 and 45 are found as medium
influential.
The McCulloh-Meeter graph (Figure 2D) has two

testing boundary lines, the first for outliers, ysln
w(nym) t20.95(nym)x, behind which two outliers were
indicated and the second for high-leverages xsln w2/
(ny2m)x, behind which high leverages are found: 7,
36, 38 and 40.
Gray’s L-R graph (Figure 2E) indicates strongly

influential points 7, 23, 29 and 36 and separates them
into outliers 7 and 29, i.e., points that lie high in the
y-axis, and high-leverages 7, 21, 36, 38, 40, 41, 45 and
47, which lie in the direction of the x-axis.
(c) Diagnostics based on scalar influence measures:

in the classification of influential points, it is important
to remember that they can affect the various regres-
sion characteristics differently. Points affecting the
prediction , for example, may not affect the param-ŷP,i
eter variance. The degree of influence of individual
points can be classified according to those character-
istics that are affected. For the identification of influ-
ential points, there are many additional diagnostics
that may be divided according to two principal
approaches: the first is based on the examination of
changes that occur when certain influential points are
excluded, while the second concerns the validity of
the regression model when the variance of errors is
abnormal, the so-called model of inflated variance.
For analysis of the diagonal elements of the projec-
tion hat matrix (Figure 3A and B) the rule is valid that
when Hii)2m/ns0.11 holds, the actual ith point is the
high-leverage. From that point of view, points 4, 7, 21,
36, 38 and 45 are high-leverages. For more complex
analysis, it is useful to form the extension of matrix
X by a vector y to give the matrix Xms(XNy), and the
resulting matrix contains the diagonal element
Hm,iisHiiq . According to the same2 2ˆ ˆe / w(nym) s xi
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Figure 4 Partial regression leverage plots (upper line) and partial residual plots (lower line) for three regressors, BMI (on the
left), SHBG (in the middle) and TGD (on the right).

Figure 5 The effect of influential and suspicious points on the prediction ability (upper line), indicated with the use of jackknife
residuals eJ (middle line) and indicated with the use of squared residuals (lower line): for 73 points of the original data (on
the left), for data without removed outliers 7, 23, 29, 33, 51, 73 (in the middle) and for data without removed suspicious points
7, 16, 23, 29, 30, 33, 34, 36, 40, 43, 51, 61, 73 (on the right).

rule, Hm,ii)2m/ns0.11, the diagonal elements of the
extended hat matrix Hm,ii detect both outliers and
high-leverages 4, 5, 7, 15, 21, 23, 36, 38, 40 and 45.
The Cook measure Di (Figure 3C) is used in connec-

tion with an approximate rule: when Di)1, the shift
of parameter estimate b is greater than the 50% con-
fidence region and the relevant ith point is rather

influential. According to this rule, points 7, 21, 23, 29,
36, 38, 40 and 45 are influential.
With designed experiments, usually Hiism/n, the

Atkinson measure (Figure 3D) is numerically equal to
the jackknife residual . The same empirical ruleêJ

)3.5 for the detection of influential points may be2êJ,i
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used, and points 7, 23, 29, 36, 36, 38 and 40 were
found influential.
In the case of the Belsey’s DFFITS measure (Figure

3E) the ith point is tested and found to be signif-
icantly influential when it is true that
DFFITS)2 s0.468. Influential points were indi-y(m/n)
cated (7, 15, 23, 29, 36, 38, 40) with the DFFITS
measure.
According to the Anders-Pregibon measure (Figure

3F), the ith point is tested and considered to be influ-
ential if APi-1y2(mq1)/ns0.863, and influential
points were indicated to be 7, 21, 23, 36, 38, 40 and
45.
There are three Cook-Weisberg likelihood meas-

ures, i.e., LDi(b) on Figure 3G, LDi(s2) on Figure 3H and
LDi(b, s2) on Figure 3I. All three measures indicate the
ith influential point if it is generally valid that
LDi)x2(mq1)s11.07. According to that criterion,
LDi(b) detected influential points 7, 23, 36, 38 and 40,
LDi(s2) suspicious points 7, 23, 29 and 51, and LDi(b,
s2) influential points 7, 23, 29, 36, 38 and 40.
If the regression model is correct and if there are

no influential points, then the rankit Q–Q graph forms
a nearly sigmoidal curve with quite a long linear
straight line in the middle part of the graph. The rankit
Q–Q graph of jackknife residuals is not among the
best diagnostic graphs for influential points. It is
based on the phenomenon that the residuals should
exhibit a normal distribution. The suspicious points,
however, do not fulfill this assumption and therefore
they could be tested as they are of an influential
nature. The influential points indicated are also locat-
ed beyond the ends of the straight line on the Q–Q
graph of predicted and normalized residuals.

2. Model I significance test of parameter estimates

The estimates of all parameters b0, b1, b2, and b3 are
significant (denoted by the letter A in brackets), Table
2. The model was described with the correlation coef-
ficient Rs0.7073, the determination coefficient
Ds50.03% thus expressing a percentage of variability
explained by the regression model; the mean error of
prediction MEPs5.958, the Akaike information crite-
rion AICs127.22 and the residual standard deviation
s(e)s2.33 were also calculated. All these statistics
excluding R can be used as resolution criteria for the
selection of the best regression model among several
plausible ones. Using the original set of data, the OLS
finds the regression model ys13.55(1.71, A)
I0.220(0.062, A) BMIq0.053(0.011, A) SHBG
I2.06(0.72, A) TGD, where standard deviations of the
parameters estimated are in parentheses and the let-
ter A means that is accepted as a statistically signifi-
cant estimate. Figure 4 shows the partial regression
leverage plots and the partial residual plots. The
linearity of all partial regression leverage plots and
partial residual plots for BMI, SHBG and TGD and
non-zero slopes of straight lines proves the correct-
ness of the proposed regression model. The quality
of estimates may be classified according to the
spread of points around the regression straight line.

This spread is connected with a partial regression
coefficient between y and the corresponding xj.
The sign test for non-randomness of residuals,

caused either by a false model or by the outliers,
proves here that there are no more outliers and that
the proposed regression model is correct.

3. Method I construction of a more accurate

regression model

Since outliers may influence the regression results
they should be treated with care. There are two pos-
sible approaches to the data: either to exclude outliers
from the data or to use a robust regression method.
One of the greatest disadvantages of the robust meth-
od application is a preference for the regression mod-
el proposed, here ysb0qb1 x1qb2 x2qb3 x3. If a
proposed model is unsuitable, robust methods can
lead to the suppression of the influence of both indi-
vidual points and influential points and therefore also
to a suppression of the detection of unsuitable pro-
posed models. Therefore, robust methods should be
applied only with careful regard to the peculiarities of
the model and data.
On the basis of previous graphical and numerical

diagnostics of influential points it may be concluded
that all outliers (Figure 5B) or suspicious points (Fig-
ure 5C) should be excluded from the original data set
and new parameter estimates should be calculated.
Figure 5 shows an influence of three steps of data
analysis on the prediction ability of the model pro-
posed. The upper part indicates a non-zero straight
line that proves a good prediction of the metabolic
clearance rate of glucose from individual regressors
BMI, SHBG and TBG. The middle part of the Figure
indicates influential points with the use of jackknife
residuals eJ, while the lower part of the Figure indi-
cates points with the use of squared residuals e2. It
can be seen that the following rule is valid: the less
outliers in the data, the more reliable the prediction
ability of the proposed regression model.

Conclusions

Statistical conclusion

In the interactive PC-aided diagnosis of the data, mod-
el and estimation method, the examination of data
quality involves the detection of influential points,
outliers and leverages, which cause many problems
in regression analysis by shifting the parameter esti-
mates, increasing the variance of the parameters or
leading to bad prediction ability. Regression diagnos-
tics represent the graphical procedures and numerical
measures for an examination of the regression triplet,
i.e., an identification of (i) the data quality for a pro-
posed model, (ii) the model quality for a given data
set, (iii) a fulfillment of all least-squares assumptions.
Regression diagnostics do not require knowledge of
alternative hypotheses for testing or fulfilling the oth-
er assumptions of classical statistical tests. The vari-
ous types of residuals differ in suitability for
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diagnostic purposes: (i) Standardized residuals êS,i
serve for the identification of heteroscedasticity only;
(ii) Jackknife residuals or predicted residualsˆ ˆe eJ,i P,i

are suitable for the identification of outliers; (iii)
Recursive residuals are used for the identificationêR,i
of autocorrelation and normality testing.

Biochemical conclusion

The model for prediction of the metabolic clearance
rate of glucose reflecting insulin sensitivity and filter-
ing-off the effect of blood glucose was built and eval-
uated. A general method for detection and elimination
of experimental points deteriorating the informative
value of the model was demonstrated to promote its
wider use in biochemistry and medicine. From the
clinical viewpoint, it is obvious that the clamp param-
eter MCRg in women with PCOS can be predicted
from the regression model including commonly
measured indices such as BMI, SHBG and triglycer-
ides and explaining 57% of the total variability found
in MCRg. The positive relationship of MCRg with
SHBG, as well as the negative correlations with BMI
and triglycerides in women including both lean and
obese subjects, are in accordance with the report of
Cibula et al. (7). The results show that there is no
quantitative difference in the prediction of MCRg
between lean PCOS women and the sample involving
the total population of PCOS women of fertile age.
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