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Pregnenolon-sulfate (PregS) positively modulate the membrane N-methyl-D-aspartate (NMDA)
receptors in CNS and periphery that are responsible for the permeability of calcium channels and
the activation of neuronal function. In addition, these conjugates act as negative noncompetitive
modulators of GABAA receptors that are responsible for the attenuation of neuronal excitability.
Recently, the permeability of blood-brain barrier for PregS was found in rat, but the facts
supporting this finding were known even before. Serum levels of PregS depend chiefly on age and
on adrenal activity. The biased estimators based on the principal component regression PCR
method avoiding multicollinearity problems are described. The purposes of this paper were to
emphasize the importance of understanding the nature of any near-singularities in the data that
might cause problems with the ordinary least squares regression, to described the algorithm of
one biased regression method, the principal component regression. Several criteria for the
selection of suitable bias are demonstrated.
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Introduction

Pregnenolon-sulfate (PregS) and dehydroepiandrosterone-sulfate (DHEAS) positively modulate the
membrane N-methyl-D-aspartate (NMDA) receptors in CNS and periphery that are responsible for the
permeability of calcium channels and the activation of neuronal function [1-3]. In addition, these
conjugates act as negative noncompetitive modulators of GABAA receptors that are responsible for
the attenuation of neuronal excitability [4-7]. Recently, the permeability of blood-brain barrier for
PregS was found in rat [8], but the facts supporting this finding were known even before [9-12]. Serum
levels of PregS depend chiefly on age and on adrenal activity [13-14]. Some authors [14] recommended
the use of PregS with significant responsibility to ACTH stimulation as a marker of adrenal dysfunction
in children. Taking together the complete information about the age dependence of PregS including the
determination of reference limits in the age groups should be of interest not only in diagnostics of
adrenal disorders but also in the diagnostics of some disturbances of central nervous system as anxiety-
depressive syndrome [15] or the diseases connected with aging as Alzheimer disease. DePerretti [13]
described the detail scan of PregS age dependence during childhood and adolescence, however the
changes during adulthood were not investigated. A detailed study covering the changes of the steroid
conjugate during all life span in the both sexes was not published so far. We have attempted to
supplement this lack evaluating the age and sex relationships of PregS in the both sexes that covers the
age span from 4 to 70 years of age using principal component regression. Besides the exact evaluation
of the age and sex relationships of PregS we have tried to introduce a correct approach for the analysis
of age dependencies of the hormones, which are mostly represented by the data with non-Gaussian
distribution, non-constant variance. In addition, multicollinearity is currently present in ordinary
polynomial regression models that are currently used for the description of the age dependence. The
difficulties mentioned above could lead to complete misinterpretation of the data when using the
ordinary polynomial regression. Accordingly, we have proposed a principal component polynomial
regression on the data transformed by power transformation as an appropriate method enabling to cope

with the problems mentioned above.
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In this paper the estimators based on generalized principal components of transformed data by
power transformation in comparison with the Box-Cox transformation are adopted. For suitable bias

selection the criterion based on the MEP, R?, and AIC are preferred.

Methodology

The polynomial linear regression model with »n observations of m-th order polynomial variable and for
an additive model of measurements errors is assumed, y = X f+ & Vector y has dimensions (r x I)
and matrix X has dimensions (» X m). Random errors €, in dependent variable y should have a normal
distribution N(0, &°). When the least squares assumptions are valid, the parameter estimates b found

by minimization of the sum of squared residuals RSS

RSS = Y
i=1

y; - ixy bj]z = minimum @)

j=0

are the best linear unbiased estimators (BLUE), [16-17]. The convential least-squares estimator b has

theformb = (XTX)' XT y withthe corresponding variance D(b) = ¢ (X TX)'. However, some

difficulties arise when the matrix X7 X appears to be singular. In some cases, especially with
polynomial models, the parameter estimates may be without physical meaning. The multicollinearity
problem in regression refers to the set of problems created when there are near-singularities occurs
among the columns of the X matrix and certain linear combinations of the columns of X are nearly zero
[18].

(a) The condition number K = A__/A_, contains A_,_ and A_, the largest and the smallest
eigenvalues of a matrix R [ Belsey]. The condition number provides a measure of the sensitivity of the
solution to the normal equations to small changes in X or y. A large condition number indicates that
a near-singularity is causing the matrix to be poorly conditioned. If X > 1000, very strong

multicollinearity is detected.
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(¢) The variance inflation factor for the j-th regression parameter VIF; being defined as the ratio
of the variance of the jth regression coefficient to the same variance for orthogonal variables when R
is the unit matrix. If VIF; > 10, strong multicollinearity is detected. If there is a near-singularity
involving X; and the other independent variables, R will be near 1.0 and VIF; will be large. If X; is
orthogonal to the other independent variables, Rjz will be 0 and VIF; will be 1.0.

Biased regression refers to this class of regression methods in which unbiasedness is no longer
required. Generalized principal component regression solves the collinearity problem by elimination
of those dimensions of the X-space that induce the problem and was described previously [18].

One of the main properties of regression models is a good predictive ability. This predictive
ability can also be adopted for the selection of an, in some sense optimum, criterion parameter P.
Various criteria for testing prediction ability may be used'; one of the most efficient seems to be the
mean quadratic error of prediction MEP (in literature it is also known as the mean squared error of
prediction MSEP) defined by the relationship

i(yi - xiT b(i))2

n

where b is the estimate of regression parameters when all points except the ith one were used and x;

is the ith row of matrix X. The statistic MEP uses a prediction p, from an estimate constructed without

including the ith point. The most suitable model is that which gives the lowest value (minimum) of the
mean quadratic error of prediction MEP. Beyond the MEP, the predicted coefficient of determination
R?, (maximum) and the Akaike information criterion AIC (minimum) can also be used. The MEP can

be used to express the predicted determination coefficient,



]é; _ 1 - n x MEP .
X:J’iz - nxy? )
i=1
The Akaike information criterion is defined
AIC = n ln(M) + 2m 4)
n

The most suitable model gives the lowest value of the mean quadratic error of prediction MEP, Akaike
information criterion AIC and the highest value of the predicted determination coefficient, R,’. The
calculated P do not correspond generally to a global minimum but parameter estimates and the

statistical characteristics are greatly improved.

Transformation in case of non-normality of variable distributions

There are two basic reasons for transforming variables in regression: transformation of the dependent
variable is indicated as possible remedies for non-normality and for heterogenous variances of the
random errors €. Transformations to improve normality have generally lower priority that
transformation to simplify relationship or stabilize variance. Fortunately, transformations to stabilize
variance often have the effect of improving normality as well.

Transformation for symmetry is carried out by a simple power transformation

) y’\ for parameter A > 0
yi( )= {m y for parameter A = 0 )
-y - for parameter A < 0

which does not retain the scale, is not always continuous and is suitable only for positive y. Optimal
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estimates of parameter A are sought by minimizing the absolute values of particular characteristics of
an asymmetry. The robust estimate of an asymmetry g,(y) may be expressed with the use of a relative

distance between the arithmetic mean y and the median j, ;, by

g}(y) =
> 0, -y ©

as for symmetric distributions it is equal to zero, g,(y) = 0.
Transformation leading to the approximate normality may be carried out by the use of family

of Box-Cox transformation [19] defined as

or - 1A for parameter A # 0
J’im = 7

Iny for parameter A = 0

where x is a positive variable and A is real number or in the form with a variable standardization

J’ix -1
o] for parameter A # 0
)
e ®)
y In(y) for parameter A = 0

where y = exp i‘ [In(y))/n is the geometric mean of the original dependent variable. The maximum
i=1
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likelihood solution is obtained by the least squares analysis on the transformed data for several choices
of A from, say A = -1 to +1. Let RSS(A) be the residual sum of squares from fitting the model to
transformed dependent variable y™ for the given choice of A and let 6%(A) = RSS(A)/n.

Box-Cox transformation lead to (y - 1) when A is equal to 1 and log y being the limiting form
of the function as A tends to 0. There is no reason to suppose that either of these values of A is optimal,
and hence it makes sense to try a range of values and see which yields the minimum of RSS. If it is to
try ten values of A, ten new dependent variables is generated within the regression application using
the functional form and the different values of A. Resulting y is regressed separately on the explanatory
variables.

Box-Cox transformation has the following properties: a) The curves of transformation g(x) are

Ao
monotonic and continuous with respect to parameter A because lim, _, % = In x. b) All

transformation curves share one point for all values of A. The curves nearly coincide at points close to
[0, 1]; i. e., they share a common tangent line at that point. c) The power transformations of exponent
=25 -3/2; -1; -1/2; 0; 1/2; 1; 3/2; 2 have equal spacing between curves in the family of Box-Cox
transformation graph.

The Box-Cox transformation can be applied on the positive data only. To extend this
transformation means to make a substitution of y values by (y - y,) values which are always positive.
Here y, is the threshold value y, <y,

An excellent diagnostic tool enabling estimation of parameter A may be done by the logarithm

of the maximum likelihood function as

InL(L) = —g Ins2(y) + (A - I)Z Iny, C))
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where s%(y) is the sample variance of transformed data y. The function In L = f{A ) is expressed
graphically for a suitable interval, for example, -3 < A < 3. The maximum on this curve represents the
maximum likelihood estimate A . The asymptotic 100(1 - &) % confidence interval of parameter A is
expressed by OONL(A) - mL(A)] < X2, (1), where X* ,(1) is the quantile of the ¥ distribution

with 1 degree of freedom. This interval contains all values A for which it is true that

InL(A) > I LA) - 0.5x%,_,(1) (10)

This Box-Cox transformation is less suitable if the confidence interval for A is too wide. When the
value A = 1 is also covered by this confidence interval, the transformation is not efficient and is not

recommended.

Experimental

Subjects and plasma samples

The blood was taken from 230 healthy women within 10 and 70 years of age, and from 179 healthy
men within 4 and 69 years of age who had been invited by random selection for a survey of iodine
deficiency in the district of Cheb in West Bohemia in the frame of the study on iodine deficiency in the
Czech Republic. The blood was withdrawn from the cubital vein within 8 - 10 a.m. into heparin-coated

vials. Not later than 2 h serum was separated and stored in a freezer at -20°C until processed.

Devices

The HPLC system was from Gilson (Villiers le Bel, France) and consisted of a pump 305 with
manometric module 805, slave pump 306, dynamic mixer 811C, autoinjector 234 and fraction collector
FC203B. The UV detector LCD 2082 and column oven LCO 100 were from ECOM (Czech Republic).
Thereverse phase column ET 250/4 NUCLEOSIL® 100-5 C18 was from Macherey-Négel (FRG). The

CSW APEX system DataApex (Czech Republic) was used for the collecting and working up of



chromatographic data.

Determination of pregnenolone sulfate

Pregnenolone sulfate was determined using the modified radioimmunoassay for determination of
pregnenolone [20]. Briefly, tritiated pregnanolone as a tracer and antiserum raised against
pregnenolone-19-O-carboxymethyoxime conjugated with bovine serum albumin exhibiting 42%
cross-reactivity with pregnenolone and 6% cross-reactivity with progesterone were used for the
determination. Progesterone and pregnenolone, the concentrations of which are about two orders of
magnitude lower than in conjugated steroid were separated using ether extraction (25 ml of sample, 225
ml of distilled water and 1.25 ml of ether). The efficiency of separation was 79.6+3.1% and 87.8+3.3%,
in progesterone and pregnenolone, respectively. The organic layer was discarded, while 100 ml of the
polar one was used for radioimmunoassay. The calibration curve was constructed using pregnenolone
sulfate standard. The sensitivity of analysis was 32 pg per tube, inter and intra-assay coefficient of
variation was 10.9% and 4.3%, respectively. The necessity of separation of free steroids from the
sample was confirmed by the analysis of interference of cross-reacting substances. The interference was
evaluated by HPLC fractionation of the pooled sera from women in luteal phase of menstrual cycle and
from umbilical cord of neonates followed by determination of immunoreactivity in dry residues of
fractions. The HPLC separation was carried out using the reverse phase system with the column ET
100-5 C18 from Macherey-Nidgel (Diiren, Germany). The high-pressure gradient with eluent A
consisting of 15% acetonitrile in water with addition 100 mg of ammonium bicarbonate per liter and
methanol as eluent B was programmed as follows: 0-3 min, 0% B - 6 min, 40% B (linear gradient) -
20 min 80% B (linear gradient) 23 min 100% B (linear gradient) then drop to 0% B up to 30 min. The
temperature of the column was 40°C and constant flow rate was 1 ml/min. The retention times of
standards in detectable concentrations (2.5 mg in 25 ml of methanol solution) were measured at 205

nm.
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Procedure of statistical data treatment

The procedure for construction of a polynomial regression model consists of following steps:

Step 1. Proposal of a model.

Step 2. Examination of multicollinearity and statistical significance of parameters estimates.

Step 3. Construction of a more accurate model using PCR: on a base of MEP or AIC the most
convenient regression model of transformed data is determined. If some parameters are statistically
insignificant the most suitable parameter P is searched with the use of MEP and AIC.

Step 4. Examination of a variables normality and their transformation, recalculation of results.

Software used

For creation of computation of the principal component regression PCR the algorithm in S-Plus was

written and also module Linear Regression of the ADSTAT package were used, cf. [21].

Results and Discussion

Statistical evaluation of data

We have attempted to describe age relationships and sex differences in serum levels of pregnenolone
sulfate using principal component regression on polynomial model. Many problems in chemometrics
concern an approximation of instrumental data of convex (or concave) increasing (or decreasing) values
by a polynomial so that their course fulfils the condition of the shape of the data. For solution of these
types of problems the principal component regression PCR with an optimum value of a criterion P
minimizing characteristics MEP, AIC and maximizing R,’ can be used. Main aim is to find a degree
of polynomial regression model m which describes the content of pregnenolone sulphate for male and
female patients, respectively, in dependence on the age and also to estimate all polynomial parameters,
E(e/A)=B,+ B, A +...+ B,, A™. The purpose of the least squares analysis will influence the manner

in which the model is constructed. There are potential uses of regression equations given as providing
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a good description of the behavior of the responce variable; prediction of future responses and
estimation of mean responses; extrapolation, or prediction of responses outside the range of the data;
estimation of parameters [3 and developing realistic models of the process. Each objective has different
implications on how much emphasis is placed on eliminating variables from the model, on how
important it is that the retained variables be causally related to the response variable, and on the amount
of effort devoted to making the model realistic.

Fig. 1

In the step 1 the proposal of a regression model for male patients data is used: Fig. 1 presents
the statistics MEP and R, for increasing degree of polynomial m and the ordinary least squares OLS
used. The lowest MEP value and the highest R,* were achieved for a polynomial of the 6th degree.
Even that the polynomial of the 5rd degree differs only slightly, the sixth degree polynomial was
preferred. All parameters estimates from [3, through [3¢ are not significantly different from zero what
is here a result of strong multicollinearity.

Fig.2,3,4,5

In step 2 the exploratory data analysis in regression is applied and the scatter plot of the
regression curve of pregnenolone sulphate data in dependence on age of male patients (Fig. 2) shows
a skewed asymmetric distribution of random errors in variable y. The rankit Q-0 plot of jackknife
residuals (Fig. 3) proves the non-normal distribution. Ordinary residuals exhibit strong
heteroscedasticity (Fig. 4) and Williams plot (Fig. 5) indicates some influential points among which
there are several outliers (1, 74, 136, 142, 147, 60, 65, 150).

In step 3 an examination of multicolinearity concerns an estimation of the maximum condition
number K = 3.63 x10® which is higher than 1000 and the largest value of the variance inflation factor
VIF = 3.05 x107 is higher than 10 and both criteria indicate a strong multicollinearity. Since the test
criterion F, = 6.75 is greater than the corresponding quantile of the Fisher-Snedecor F-distribution
F,45(5,179-6)=2.15, the proposed regression model is statistically significant. In contrast, the quantile

of the Student #-distribution, ¢, ,5(179-6) = 1.974 is greater than all £,=1.435, ¢, =-1.790, ¢, =-1.953,
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t;=1.788 but not then z,=2.141, ¢,=-2.186 and #, = 2.097, therefore parameters [B,, B,, B and B, are
statistically insignificant while [3,, B,, B, significant. It may be concluded that the method of the
ordinary least-squares (OLS) is not convenient for parameter estimation in case of strong
multicollinearity in data and the method of the principal component regression PCR should be used
instead.
Fig. 6
In step 4 a trial-and-error search of the most suitable value of the criterion parameter P with the
use of the mean quadratic error of prediction MEP, the Akaike information criterion AIC and the
predicted determination coefficient R,> was applied, Fig. 6. The lowest MEP and AIC value and the
highest value for R,* is for P=2.0 x10™* what means that for P>2.0 x10* all parameters estimates are
statistically significant and therefore different from zero. While the ordinary least-squares method OLS,
with P = 10 found the polynomial
y = 810.2(564.8, N) - 247.9(138.5, N) x + 27.54(12.86, S) x* -1.26(0.58, S) x> + 2.81(1.34, S) x 10
x*-2.99(1.53, N) x10* x* + 1.23(0.68, N) x10° x°
(in brackets is the parameter standard deviation and N means that the parameter estimate is statistically
non-significant while S means significant) with MEP = 51192, AIC = 1921.1 and R,’ = 14.91, the
method of the principal component regression PCR, with P = 2.0 x 10 found
y =-395.8(155.1, S) + 64.93(17.65, S) x - 1.50(0.50, S) x* - 1.39(0.91, N) x107 x* + 2.27(0.85, S) x
10* x* +2.41(0.85, S) x 10 x° - 4.92(0.19, S) x 10 x°
with lower value of the criterion MEP = 46032, AIC = 1926.9 and higher value of R, = 34.75. All
parameters estimated by the method of the principal component regression PCR are statistically
significant and therefore are acceptable even that an excellent curve fitting was achieved in both cases.
Table 1
Fig. 7
To examine normality of random errors distribution in dependent variable y and to find the most

convenient variable transformation, the RSS(A) for different values of power A were searched and the
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best power estimated (Tablel, Fig. 7). Several resolution criteria ware applied to find the optimal power
A but the most important one was such A for which the normality of residual distribution was achieved.
It means for which the skewness g, is nearly zero and the kurtosis g, is nearly equal to 3. Resulting
power was A =-0.15. Fig. 8 shows the scatter plot of found polynomial (m = 6) through transformed
data and criterion parameter P = 0.0002 and the rankit O-Q plot of jackknife residuals then proves a
normal distribution and a homoscedasticity of residuals. The method of the generalized principal
component regression GPCR, with P =2.0 x 10 and using transformed data found
¥ =1539.5(60.9, S) + 36.58(6.93, S) x - 0.81(0.20, S) x* - 1.03(0.36, S) x10° x> + 1.19(0.34, S) x 10™*
x*+1.29(0.33, S) x 10 x° - 2.54(0.75, S) x 10 x5
with value of the criterion MEP = 7219.0, AIC = 1592.2 and value of R’ = 51.12. All parameters
estimated by the method of the principal component regression PCR are statistically significant and
therefore are acceptable even that an excellent curve fitting was achieved in both cases.
Fig. 8,9
Analogically, the analysis of female patients data was provided and the optimum degree of
polynom was found m = 4 (Fig. 9). Analogically as for the male data also for females a non-normality
of random errors in dependent variable y and heteroscedasticity of ordinary residuals may be proven.
The best power for power transformation was found A = 0.2, Fig. 9. When the PCR method on
transformed data was applied the optimum polynomial (m = 4) with parameter P = 0.0004 results.
While the ordinary least-squares method (OLS with P = 107) found the polynomial
y=-254.3(211.7,N) + 27.0(29.5, N) x + 0.225(1.333, N) x* - 2.17(2.40, N) x 107 x* +2.00(1.50, N)
x 10 x*
(in brackets is the parameter standard deviation and N means that the parameter estimate is statistically
non-significant while S means significant) with MEP = 24335, AIC = 2324.3 and R,’ = 54.71, the
method of the principal component regression PCR, with P = 4.0 x 10* and A = +0.20 found
y = 0.661(0.217, S) +0.148(0.017, S) x - 1.940(0.287, S) x 102 x* - 1.903(0.239, S) x 10~ x* +

3.007(0.538, S) x 107 x*
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with lower value of the criterion MEP = 0.189, AIC = -380.0 and higher value of R’ = 62.54. All
parameters estimated by the method of the principal component regression PCR are statistically
significant and therefore are acceptable even that an excellent curve fitting was achieved with the use

of both method. The ordinary residuals exhibit a normal distribution and an obvious homoscedasticity.

Interpretation of the results

The course of the age dependence in male differs from that in female (Fig. 8 and Fig. 9). While in
women, a pronounced maximum after 30" year of age was followed by relatively rapid decline up to
senescence , in men, the maximum after 20® year of age was succeeded by minor decline up to 40® year
of age and plateau up to 60™ year of age followed by more rapid decrease. Both age and sex differences
were evaluated using two-way ANOVA with the sex as the first and the age group as the second factor.
The data were transformed using power transformation of the original data to minimum skewness of
residuals. Significant difference was found between sexes with tendency to lower levels of PregS in

older women when compared with age-matched men.

Conclusion

The method of the principal component regression PCR in combination with the MEP criterion is very
useful and attractive for constructing biased models. It can be also used for achieving such estimates
which keep the model course corresponding to the data trend especially in polynomial-type regression
models. In the search for the best degree of polynomial, several statistical characteristics of regression
quality should be considered together. Significant differences were found between men and women in
the course of age dependence of pregnenolone sulfate. In women, a significant maximum was found
around 30" year of age followed by rapid decline, the maximum in men was achieved almost 10 years
earlier and the changes were inconsiderable up to 60" year of age. The investigation of sex differences
and age dependencies of pregnenolone sulfate could be of interest taking together its well-known

neurostimulating effect, relatively high serum concentration and probable partial permeability of blood-
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brain barrier for the steroid conjugate which reflects for instance in correlation of complaints of the
patients suffering with premenstrual syndrome with serum levels of the conjugate. As concerns the
method of data analysis, the principal component regression is very useful tool for investigation of

curvilinear dependencies especially in polynomial regression models.
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FIGURES:

Fig. 1 A search for the optimum polynom degree m obtained for the lowest value of the mean error of
prediction MEP and for the highest value of the predicted determination coefficient R’
concerning the ordinary least squares polynomial regression OLS of the age dependencies of
pregnenolone sulphate in the serum of 179 men aged 4-69 years.

Fig. 2 The scatter plot of polynomial regression of the age dependencies of pregnenolone sulphate in
the serum of 179 men aged 4-69 years from Fig. 1 calculated with the use of the ordinary least

squares method OLS and original data. The curves of the mean prediction (the full line), the
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95% Working-Hotteling interval bands of prediction (the dashed lines) are symmetrical and
rather broad at ends of data interval and therefore do not permit prediction of y outside the data
interval. All of the parameters of the polynomial were statisticaly insignificant.

Fig. 3 The rankit Q-0 plot of jackknife residuals for the polynomial dependence of pregnenolone
sulphate in serum for 179 men calculated with the OLS analysis from Fig. 1 proves a non-
normality of residual distribution and therefore indicates necessity of data transformation.

Fig. 4 The sector pattern shape for the polynomial dependence of pregnenolone sulphate in serum for
179 men calculated with the OLS analysis from Fig. 1 proves heteroscedasticity and therefore
indicates necessity of data transformation.

Fig. 5 Williams graph of jackknife residuals é, on the diagonal elements of the hat matrix H;; proves

outliers (i. e. points above the horizontal boundary line y = ¢, s(n-m-1)) and high-leverages (i.
e. points located right to the vertical boundary line x = 2m/n) concerning the age dependencies
of pregnenolone sulphate in the serum of 179 men calculated with the OLS analysis from Fig.
1.

Fig. 6 A search for an optimum value of the criterion P for the age dependencies of pregnenolone
sulphate in the serum of 179 men calculated with the generalized principal compoments
regression GPCR from Fig. 1 according to which the terms corresponding to small eigenvalues
are omitted. The optimum value concerns the minimum on curve of the mean error of prediction
MEP in dependence on the GPCR criterion P.

Fig. 7 A search for an optimum power A in the power transformation of the dependent variable y* is
based on the maximum of the curve R, = {A) for the age dependencies of pregnenolone
sulphate in the serum of 179 men calculated with GPCR from Fig. 1

Fig. 8 The scatter plot of 6-th polynomial regression of the age dependencies of pregnenolone sulphate
in the serum of 179 men from Fig. 1 calculated with the use of transformed dependent variable
y* and GPCR analysis. The curves of the mean prediction (the full line), the 95% Working-

Hotteling interval bands of prediction (the dashed lines) permit prediction of y outside the data



interval. All of the parameters of the polynomial were statisticaly significant (z-tests).
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Fig. 9 The scatter plot of 4-th polynomial regression of the age dependencies of pregnenolone sulphate

in the serum 0f230 women in age 10-70 years calculated with the use of transformed dependent

variable y*? and OLS analysis. The curves of the mean prediction (the full line), the 95%

Working-Hotteling interval bands of prediction (the dashed lines) permit prediction of y outside

the data interval.

Tables:

Table 1. A search for an optimum power A in the power transformation of the dependent variable y*

is based on the maximum of the curve R’ = f{A) for the age dependencies of pregnenolone sulphate

in the serum of 179 men aged 4-69 years from Fig. 1 calculated with the use of the generalized

principal component regression GPCR is based on an examination of following variables and test

results: n=179, m =6, P=0.0002 (GPCR), R = f(A), 100R’ = f(A), R,* = f(A), for normal distribution

the skewness g; should zero and the kurtosis g, equal to 3, Cook-Weisberg test of homoscedasticity:

homoscedastity can be accepted or rejected, Jarque-Berra normality test: normality can be accepted or

rejected.
Exponent A is equal to

-0.27 -0.25 -0.20 -0.18 -0.15 -0.10 -0.01
R 0.5534 0.5544 0.5562 0.5566 0.5569 0.5567 0.5542
100R? [%] 30.63 30.74 30.93 30.98 31.02 31.00 30.31
R’ 50.66 50.79 51.04 51.11 51.18 51.22 51.03
MEP 7330.5 7285.7 7220.2 7212.1 7219.0 7280.4 7548.1
AIC 1594.7 1593.6 1592.1 1592.0 1592.2 1593.9 1600.6
RSS(A) *10°° 1.2250 1.2170 1.2070 1.2060 1.2080 1.2190 1.2660
Skewness g;(e) -1.52 -1.43 -1.21 -1.13 -1.00 -0.82 -0.50
Kurtosis g,(e) 7.93 7.42 6.32 5.94 542 4.73 3.89
Found A can be Not used Not used Not used Used Used Not used Not used




