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Abstract Temporal bone histological findings can be
evaluated from several points of view. The most basic con-
sists of a description of the characteristics and abnormali-
ties of particular temporal bones. The second one is the
measurement of various structures in a larger set of tem-
poral bones and the monitoring of these structures over
time. The height of stapes was measured in a set of 40 tem-
poral bones from 27 fetuses, and the growth of stapes from
the 13th to 36th weeks of pregnancy was determined.
A computer-assisted nonlinear regression analysis of di-
agnostics enabling simultaneous examination of data (in-
fluential points, i.e., outliers and leverages) was carried
out, a growth curve model proposed and a mathematical
method with Ratkowski criteria for estimation applied to
find the best descriptive model of the height of stapes ver-
sus time y=f{x) growth curve; the results of 13 growth
models were examined. It was found that the maximum
growth of the height of stapes was between the 13th and
the 24th weeks of pregnancy. The average height of stapes
was 1.05mm in the 13th week and 2.6 mm in the 24th
week. Later, after the 25th week, the growth of the height
of stapes was slower, and the average height in the 30th
week was 3.0 mm.
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Introduction

Histological assessment of the temporal bones of fetuses
and newborns can bring new ideas into clinical practice.
Besides the traditional methodological approach of the
microscopic examination of temporal bones, some mathe-
matical methods such as statistics may also be applied to
obtain better knowledge. For example, determination of
the height of stapes enables the design of the prothesis
used in middle ear surgery [18].

In the embryonic development of stapes [2, 17], the
primordial form of stapes is clearly apparent in the em-
bryo at 6.5 weeks. The stapes has two developmental ori-
gins, the first being Reichert’s cartilage (for the supras-
tructure and the tympanic part of the footplate) and the
second the otic capsule (for the vestibular part of the foot-
plate). The stapes is largely formed by true cartilage by
7.5 weeks, and changes from an annular (embryonic) to a
stapedial (adult) form between 2 and 4 months. Ossifica-
tion starts in the 19th week. The sole ossification center is
present on the footplate and continues upward along each
crus. The stapes attains its maximal growth at the midfe-
tal stage of development.

Recently, there has been considerable interest in devel-
oping a nonlinear growth model to summarize the pattern
in stature during pregnancy and childhood. Following the
triple-logistic model of Bock and Thissen [4], Jolicoeur,
Pontier, Pernin and Sempé [10] described an elegant model
with seven parameters covering the entire childhood and
showed that it performed considerably better than the
models of Preece and Baines [20] or Shohoji and Sasaki
[29]. Ledford and Cole [13] presented growth models for
predicting child stature summarizing both the pattern and
timing of growth in individuals.

Generally, regression growth model building is among
the most complex problems solved in biometrics and clin-
ical practice today [3, 6, 7, 12, 26, 30]. An interactive ap-
proach to model building can be divided into the follow-
ing four steps: (1) selection of the set of provisional mod-
els, (2) extension and modification of the models pro-
posed, (3) analysis of model assumptions and model rele-
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Table1 Selection of non-linear regression models of the growth
curve

Model Growth curve models Reference
proposed

A B1/(1+B, exp(B; B,-x))!/p4 Schnute [27]

B By (1-exp(Bs B>-B5 x)) Mitscherlich [16]

C B1/(1+exp(B,-P; x)) /P4 Richards [25]

D B1 exp(-exp(B,-B; x)) Gompertz [9]

E B1/(1+exp(B,-B5 x)) Logistic [22]

F B1-B exp(-B; x) [15]

G Bi (1-exp(-x-B,) Bs) [15]

H BI‘eXP(‘Bz‘ﬁ3 X) [15]

I Bi-exp(-B, B; x) [15]

J Bi+(B, x)183 [24]

K L/(B+B, xB3) [8]

L (B2 Bs+B; xBa)/(Bs+xBy) [15]

M Bi-B exp(-B5 xBy) [15]

vance, regression diagnostics in the classical sense and (4)
testing of model quality and prediction capability [1, 14].
According to earlier studies (e.g., Weber [32], Peschel [19],
Todorovic [31], Prodan [21], Wenk [33] and Kuzmitschev
[11]), a true growth model must meet the following crite-
ria [5]: (1) it must have a zero-point; (2) it must be in-
creasing; (3) it must have an asymptote that is parallel to
the time (age) axis; (4) it must have one inflection point.
The present study was limited to growth models that de-
scribe growth as a function of time only, y=f(t). The most
important sigmoidal growth models selected from the lit-
erature and tested in this paper are given in Table 1. They
contain between three and five parameters and describe
the growth curve as the change of the height of stapes
measures with the time of gestation. This table clearly
shows the diversity of the available models. The choice of
the most convenient growth regression model is not a triv-
ial task and is best made respecting the five Ratkowski
criteria: parsimony, parametrization, range of applicabil-
ity, stochastic specification and interpretability (for details
see [22, 23]). The aims of this study were (1) to review dif-
ferent growth functions and estimation methods to find a so-
lution that can be proposed as a standard procedure of
growth model building and (2) on the basis of the Ratkowski
criteria to develop a predictive regression model and to pre-
dict the growth of the height of stapes in gestation.

Materials and methods
Subjects and data

The 40 temporal bones from 27 fetuses were removed within 24 h,
usually after spontaneous abortion. After fixation in 10% formal-
dehyde solution, specimens were decalcified in 10% formic acid,
embedded in paraffin wax and sectioned horizontally (midmodio-
lar plane) at a thickness of 10 um. Every tenth section was stained
with hematoxylin-eosin and examined microscopically.

Measurement of the height of stapes

The height of stapes is shown in Fig. 1 and was measured in the set
of 40 temporal bones from fetuses from the 13th to 36th weeks of

middle
ear

Fig.1 Histological picture of the height of stapes

gestation. A microscopic ruler with a precision of 0.1 mm was
used. The age of fetuses was determined on the basis of knowledge
of the week of gestation, the weight and the height. All fetuses
used for this study were without any malformation or develop-
mental or genetic defects. The average outcomes of measured pa-
rameters in millimeters in particular weeks of gestation are shown
in Table 2. The measured values were used in regression analysis,
and results are shown in a graph of the growth curve (Figs. 2, 3).

Growth curve model fitting

In searching for the best growth model, the nonlinear regression
model y=f{x )+€ was first considered, where y is the response (de-
pendent) variable or regresand and is an nx1 vector of observa-
tions, x is a fixed nx/ regressors vector of time, (n>m), B is the
mx1 vector of unknown parameters and € is the nx1 vector of ran-
dom errors, which are assumed to be independent and identically
distributed with mean zero and an unknown variance o2 [14]. Us-
ing the least-squares estimation method, we obtain the vector of
fitted values $p; = f (x;; b) and the vector of residuals é

RSS(B) =Y (yi — f(xi. §))> 1)
i=1

where # = b and the quantity
s* = RSS(B)/(n — m) ©)

is an unbiased estimator of 62, and n—m is the number of degrees
of freedom (DF) of a model fit, where # is the number of data
points and m the number of model parameters. The number of data
points n affects the residual sum of the squares (RSS) of a fit.
Moreover, a model with more parameters is likely to yield a better
fit than a model with fewer parameters. In the literature many
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Table2 Data of the growth curve expressing the height of stapes y (mm) dependent on time of gestation x (weeks), measured for 40

temporal bones from 27 fetuses; data are {x y;}

Right side
13 1.1; 19 22; 20 2.5; 20 224 21 2.7; 21 2.8;
22 1.8; 22 2.4; 23 2.5; 24 2.5; 24 2.5; 24 2.5;
27 2.3; 28 2.6; 29 2.6; 29 2.9; 30 2.73 31 2.9;
32 29
Left side
13 1.0; 19 2.2; 20 2.4, 20 2.5; 20 215 21 2.7,
21 2.6; 21 2.6; 22 2.3; 22 2.5; 23 2.3; 23 2.4;
24 2.6; 24 2.6; 24 2.8; 28 2.8; 29 2.8; 30 3.3;
31 3.1; 32 2.5; 36 2.4;
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Fig.2 The Mitscherlich growth curve (model B in Table 1) fitted
to the data set of the height of stapes (mm) on gestation time
(weeks) from Table 2 plus confidence band
=5
£
0
growth curve models were found and tested, a selection of most %
suitable models being given in Table 1. ié’
i<
2
Resolution criteria for model selection T
Various criteria for testing regression model quality can be used
[14]. One of the most efficient is the mean quadratic error of pre-
diction, MEP, being defined by the relationship: b
L 2
> (% — x{b@)
MEP == 3)
n
where b, is the estimate of regression parameters when all points
except the ith one were used and x; is the ith row. The MEP can be s
used to express the predicted determination coefficient: E
R MEP g
Rp=1-5——— 4) g
Yy¥-ny? 5
i=1 E
where ¥ is the mean of all n values y,, i=1, ..., n. Another statistical X
characteristic in quite general use is derived from information en-
tropy theory [14] and is known as the Akaike information crite-
rion:
RSS(b) 0 5 10 15 20 25 30 35 40
AIC =n In - +2m %) c Time [weeks]

The most suitable model is that which gives the lowest value of the
mean quadratic error of prediction (MEP) and Akaike information
criterion (AIC) and the highest value of the predicted determina-
tion coefficient, sz. The mean of the absolute values of relative
residuals (MR) and the residual standard deviation s(e) should be
of similar magnitude to the experimental error s(€) of the depen-

Fig.3 Graphical presentation of a search for the optimal regres-
sion growth model for the data set of the height of stapes (mm) on
gestation time (weeks) (both sides’ data from Table 2) when (a)
models A, B, C, D and E, (b) models F, G, H, I and J and (¢) mod-
els K, L, M, N and P were tested. Statistical diagnostics of the fit-
ness test are in Table 3
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dent variable y, i.e., s(e)=s(€) or the relative value of this error
MR=s,,(€).

Experimental method
Procedure of regression model building

The procedure for construction of a growth curve using nonlinear
regression model building consists of the following steps: (1) the
proposal of a model, and the procedure should always start from
the simplest model, (2) examination of the statistical significance
of the parameter estimates and (3) construction of a more accurate
model; on a basis of MEP or AIC the most convenient regression
model of the data is determined. If some parameters are statisti-
cally insignificant the model is revised.

Software used

For computation of the nonlinear regression, a unique linear re-
gression module of the ADSTAT package was used [1].

Results

Computer-assisted nonlinear regression analysis of re-
gression diagnostics performing simultaneous examina-
tion of data (influential points, i.e., outliers and lever-
ages), the growth curve model proposed and the mathe-
matical method for estimation are vital parts of regression

model building. For resolving of these types of problems,
the MINOPT nonlinear regression procedure [1] and the
procedure of regression model building according to the
Ratkowski criteria [22, 23] can be used (Table 2).

With an initial estimate of parameters b;,V=1, b,¥=1
and b;©=1 for the Mitscherlich model and the data set of
the height of stapes versus time of gestation from Table 2,
the residual sum of squares RSS(b) reached at the minimum
was 2.0687, with the best estimates of parameters b=
2.784 (0.098), b,=10.575 (0.761) and »3=0.1963 (0.0400).
The low values of the parametric standard deviation (in
parentheses) proves that all of the parameters are statisti-
cally significant.

Figure 2 proves that the Mitscherlich model closely re-
sembles the data. This is also obvious from the regression
curve fitting with 95% confidence intervals. The good-
ness-of-fit is proven by the low value of the residual stan-
dard deviation s(e)=0.2365 for model B (Mitscherlich) in
Table 3, the regression rabat D=71.106%, and the mean of
relative residuals MR=7.054%.

The employed regression method will find one of the
growth curve models in two steps. The first step investigates
whether some of the less complex models [Schnutte’s (A),
Mitscherlich’s (B), Richard’s (C), Gompertz’s (D) or lo-
gistic (E)] and the second step models F through M of
Table 1 could be used to describe the data satisfactorily. If

Table3 Search for the opti-

b b el Model ~ RSS D (%) AIC MR (%)  s(e) MEP x100 Outliers
sides’ data from Table2 A 3 =0.13282/(1-1.9472 exp(0.15129 (7.5505-x)))"(1/-1.9472)

2.066 71.16 11055 7.07 0.2395 62477 7,47
B v =2.7840 (1-exp((0.19627 10.575)-(0.19627 x)))

2.069 71.106 11248 7.054 0.2365 5.8505 7,57
& 3 =1.0/(1+(exp((-8.1455-(0.20182 x)))))(1/2.4343E-05)

2.158 69.86 10879  7.592 0.2448 6.8497 7,36, 37
D vy =2.7551 exp(-exp(3.2084-(0.25082 x)))

2.082 70.92 q1222 704 0.2372 5.8688 7.3
E y =2.7328/(1+(exp(4.4723-(0.31162 X))))

2.106 70.59 11176 7.047 0.2386 5.9285 7.5
F y =2.7840-(22.140 (exp(-0.19624 x)))

2.069 71.11 11248 7.056 0.2365 5.8509 7. 87
) y =2.5479 (1-(exp(- x +4.3303) 3426.8))

2.892 59.61 -99.08 8.176 0.2796 5.227 7.57
H y =2.7840-(exp(3.0973-(0.19617 x)))

2.069 71.11 11248 7.054 0.2365 5.8508 7,37
I 3 =2.5669-(exp(-5.5950E-08 (2.3754A x)))

2.987 58.28 -97.79 9.505 0.2841 8.2824 7,57
J y =(-528.04-+(40.724 x))7(1/6.5297)

2.104 70.61 e, s 0.2385 6.0286 7,57
K y =1/(0.35887+(2.0855E+05 (x A-4.9867)))

2.079 70.97 11229 7.044 0.237 5.8645 7,50
L  =((-8.7664 745.71)+(2.8637 (x A3.2372)))/(745.71+(x 3.2372))

2.069 ] 1047 7067 0.2398 6.2735 7.5
M 3 =2.8098-(106.91 (exp(-0.76370 (x £0.65597))))

2.068 9192 -110.5 7.06 0.2397 6.3488 7,57

3972 543 -86.14 10.42 0.3149 0.1271




so, its parameters are refined and other regression diag-
nostics computed. The growth curve is fitted through given
data plus confidence band and the residual plot against the
independent variable (here time of gestation) or against
prediction is plotted (Fig. 3).

The authors were able to identify the maximum growth
of the height of stapes, which was from the 13th to 24th week
of pregnancy. The average height of stapes was 1.05 mm
in the 13th week and 2.6 mm in the 24th week. The later
growth of the height of stapes after the 25th week was slower,
and the average height in the 30th week was 3.0 mm.
Schuknecht [28] has published the average height of adult
stapes as being 3.26 mm. The adult stapes showed con-
siderable variations in size, the minimum height being
2.56 mm and the maximum height 3.78 mm.

In this study the authors were aware of possible inac-
curacies in the measurement of particular parameters as a
result of the processing of every tenth sample, which might
influence the results. The other factor that influenced ac-
curacy was the difficulty of ensuring the ideal horizontal
plane of some cuts of the temporal bone. It is supposed,
however, that with computer-assisted nonlinear regression
analysis and respecting all Ratkowski criteria it is possible
to use the Mitscherlich model for the normal fetal devel-
opment of stapes height.

Conclusion

The use of mathematical methods and regression analysis
brings new possibilities for the assessment of histological
findings in the temporal bone. The measurement of the size
of middle ear ossicles helps to design surgical tools and
middle ear implants. Knowledge of the normal develop-
ment and the normal size of stapes can help to distinguish
the abnormal development and stapes malformations.
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