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Abstract

The determination of the number of components in a mixture is an important tool for qualitative and quantitative analysis
in spectroscopy. The accuracy of nine selected indices for an estimation of the number of components that contribute to
a set of spectra was critically tested on experimental data sets of protonation equilibria of four drugs using the INDICES
algorithm in S-Plus. Methods are classified into two categories:precise methodsbased on a knowledge of the instrumental
error of the sabsorbance data,sinst(A), andapproximate methodsrequiring no such knowledge. Indices of precise methods
predict the correct number of components, even the presence of a minor one, when the quality of data is high and instrumental
error is known. Improved identification of the number of species uses the second or third derivative function for some
indices, namely when the number of species in the mixture is higher than four and when, due to large variations in the
indicator values even at logarithmic scale, the indicator curve does not reach an obvious point where the slope changes.
The number of variously protonated components and their dissociation constants for four drugs—mycophenolate, ambroxol,
silybin and silydianin—at 25◦C were determined using SQUAD(84) regression and INDICES principal component analysis
of the pH-spectrophotometric data. A proposed strategy of efficient experimentation in protonation constants determination,
followed by a computational strategy, is presented with the goodness-of-fit tests for various regression diagnostics enabling
the reliability of parameter estimates to be accessed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Determining the number of compounds in mixtures
is an important tool for qualitative and quantitative
analysis. In the study of protonation equilibria, for
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instance, a reliable determination of the number of
components involved will help to obtain a reason-
able interpretation of variously protonated oligomers,
monomers, etc. Approaches to determining the num-
ber of components that contribute to a given set of
spectra are based on two different methods: pure prin-
cipal component analysis PCA, and PCA combined
with cross-validation[1–3]. Using PCA, a set of
correlated variables are transformed into a set of un-
correlated variables, principal components, of which
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the first few components explain most of the variation
within the data. PCA will extract some noise sources,
i.e. experimental and/or random error, which will
usually be represented by the principal components
with the smallest size or variance. When no noise
in spectra exists, the number of eigenvalues of the
covariance matrixATA which are larger than zero is
equivalent to the number of componentsr, assuming
that the spectra of the components in the mixture are
linearly independent.

As all real data contain experimental noise, how-
ever, the number of eigenvalues different from zero is
usually larger than the number of componentsp. In or-
der to estimate the number of components in a mixture
from the eigenvalues calculated by decomposition of
the covariance matrixATA, various indices methods
have been designed. Their advantages and limitations
have been discussed elsewhere[1–14].

All real data sets contain experimental and/or ran-
dom error and it is the level of this error which can
mask the identification of the true dimensionality of
a data set. Malinovski[1,3] split this error into two
sources—imbedded error and extracted error. Ex-
tracted error XE is the error which is contained within
the minor PC dimensions((p + 1)th, (p + 2)th,
. . . ,mth) and which can therefore be extracted from
the data by retaining only the firstp dimensions.
Imbedded error IE is the error which mixes into the
factor scheme and is contained within the firstp di-
mensions: this error can never be completely removed
from a data set but may be scaled to a minimum[3];
thus, even a data set reproduced from the true number
of PCs (p) contains some error. The level of imbed-
ded error within a data set will therefore affect the
reproduction of the data space.

In this paper, a critical comparison of nine selected
indices methods applied to the protonation equilibria
of four various drugs will be provided and the most
reliable indices will be recommended.

2. Theoretical

2.1. Notation

The following notation will be used throughout the
paper: in its generalized form,A = εC represents
the n × m absorbance data matrix containing then

recorded spectra as rows,ε is them×p matrix of mo-
lar absorptivities, andC is thep×n concentration ma-
trix. Here,m denotes the number of wavelengths for
which each spectrum was recorded this being equal to
the number of columns in theA matrix,n is the num-
ber of solutions for which spectra have been recorded,
this being equal to the number of rows in theA ma-
trix, and p is the number of components that absorb
in the chosen spectral range. The rank of the matrixA

is obtained from the equation rank(A) = min[rank(ε),
rank(C)] ≤ min(m, p, n). Since the rank ofA is equal
to the rank of orε or C, whichever is the smaller, and
since rank(ε) ≤ p and rank(C) ≤ p, then providedm
andn are equal to or greater thanp, it will only be nec-
essary to determine the rank ofA to find the minimum
number of absorbing species[11]. The rank of this
absorbance matrix is the order of the largest non-zero
determinant that can be obtained from its elements.
Since the determinant ofA is zero if its rows and
columns are linearly dependent, the rank(A) is equal
to the number of linearly independent columns ofA.
That is to say, the rank of orε or C will be less than
p only if (1) the concentration of one or more species
is zero in all experiments, (2) the concentrations of all
species are zero in more thanp experiments, and (3)
the concentrations of one or more species can be ex-
pressed by a linear combination of the other species
in all experiments. The first two conditions are triv-
ial, while the third can be affected by choosing dif-
ferent concentration levels in some experiments. The
law of mass action states that this is possible even if
only oneλ differs from zero,cij = λjcj; j = 1, . . . , n
[11]. Throughout this paper the level of noise in data
will be considered. The concept of the instrumental
error of absorbance measured for spectrophotometer
sinst(A) is used with the signal-to-error ratio SER be-
ing defined as the ratio of the maximum signal to this
instrumental errorsinst(A).

2.2. Absorbance matrix decomposition

Principal component analysis PCA performs the de-
composition of an absorbance matrix into a product
of two matricesT andP T and the residual matrix or
the matrix of undescribed variabilityE according to
A = TPT + E. Then× o score matrixT , also called
the matrix of latent variables, containso column vec-
tors or main components. Them × o loading matrix



M. Meloun et al. / Analytica Chimica Acta 489 (2003) 137–151 139

P containso column vectors which represent a mea-
sure of the contribution of a particular latent variable.
The indexo is the least ofn and m which in spec-
troscopy is usuallyn but generally also whenE is
zero. The second moment of an absorbance matrix is
definedZ = ATA/(n − 1) whereA is usually the
absorbance matrix. The matrixZ is often called the
variance-covariance matrix and contains information
about the scatter of points in multi-dimensional space.
In fact, it describes the elliptical covariance structure
of the data. The latent root and vector decomposition
is defined by two equations:

|Z − gaI | = 0 (1a)

and

Zpa = gapa (1b)

Sometimes data can be scaled so that each variable
is standardized to equal variance down the columns,
in which case the matrixZ becomes the correlation
matrix, the matrixI is the unit matrix, and0 is a ma-
trix of zeroes.Eq. (1b)is a constrained maximization
in which g is called the Lagrange multiplier; thega
are thep latent roots and are obtained as the roots of
the polynomial equation of orderm defined by the de-
terminant. The corresponding latent vectorspa of di-
mensionn have two constraints: they have unit length
and they are mutually orthogonal.

2.3. Exact size of the true component space

The various indicator function PC(k) techniques de-
veloped to deduce the exact size of the true component
space can be classified into two general categories: (a)
precise methods based upon a knowledge of the ex-
perimental error of the absorbance data,sinst(A), and
(b) approximate methods requiring no knowledge of
the experimental error[8]. In general, most precise
and approximate methods are based onthe first cri-
terion concerning the procedure on finding the point
where the slope of the indicator function PC(k) = f(k)

changes. Elbergali et al.[7] proposed a modification
of index methods using derivatives to improve identi-
fication of the number of components. Thederivative
criteria SD(k) are based on the point where the slope
changes and reaches a maximum. The SD(k) is de-
fined as SD(k) = log[PC(k + 1)] − 2 × log[PC(k)] +

log[PC(k − 1)] andp − k should be at the first maxi-
mum of the SD(k) function. Thethird derivativeTD(k)
value crosses zero and reaches a negative minimum
which can be used as a criterion. The TD(k) is defined
as TD(k) = log[PC(k + 2)] − 3 × log[PC(k + 1)] +
3× log[PC(k)] − log[PC(k−1)] andp should be equal
to k value where TD(k) has its first minimum. The
change in slope can also be found by calculating the
derivatives ratioROD(k) by ROD(k) = {PC(k− 1)−
PC(k)}/{PC(k)− PC(k + 1)}. Ideally ROD(k) should
have a maximum at the point wherek = p.

2.3.1. Precise indices
Besides the first criterion applied, indicator func-

tion PC(k) methods are also based on a comparison of
an actual index PC(k) of method used with the exper-
imental error of the instrument used,sinst(A). These
are described elsewhere[15]:

1. Kankare’s residual standard deviation, sk(A): The
sk(A) values for different numbers of components
k are plotted against an indexk, sk(A) = f(k), and
the number of significant components is an integer
p = k for which sk(A) is close to the instrumental
error of absorbancesinst(A) [11,15].

2. Residual standard deviation, RSD(k), is used anal-
ogously as in previous methodsk(A).

3. Average error criterion, AE(k), is used analogously
as in the preceding methodsk(A).

4. Bartlett χ2 criterion, χ2(k) is used when the true
number of significant components corresponds to
the firstk value for whichχ2(k) is less than critical
χ2(k)expected= (n − k)(m − k).

2.3.2. Approximate methods
A more difficult problem is to deduce the number

of components without relying on an estimation of the
instrumental error of absorbance,sinst(A); then the first
criterion only remains. Most of the techniques pre-
sented are empirical functions[15]. Eigenvaluesgk are
conventionally used as a measure of the size of a prin-
cipal component[14]. The firstp eigenvalues, called
a set of primary eigenvalues, contain a contribution
from the real components and should be considerably
larger than those containing only noise. The second
set, called the secondary eigenvalues contains (o − p)
eigenvalues and these are referred to as non-significant
eigenvalues.
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1. Exner functionψ(k): The Exnerψ(k) function may
be used for the identification of the true dimen-
sionality of a data. Exner proposed thatψ = 0.3
can be considered a fair correlation,ψ = 0.2 can
be considered a good correlation andψ = 0.1 an
excellent correlation. It means that forψ < 0.1
the correspondingk can be taken as the number
of light-absorbing species in solution. However,
the first criterion is often preferred as the more
reliable.

2. Scree test, RPV(k): The scree test for the identi-
fication of the true dimensionality of a data set is
based on the observation that the residual variance
should level off before those dimensions contain-
ing random error are included in the data reproduc-
tion. When the residual percent variance is plotted
against the number ofk PC dimensions used in
the data reproduction, RPV(k) = f(k), the curve
should drop rapidly and level off at some point.
According to the first criterion, the point where the
curve begins to level off, or where a discontinuity
appears, is taken to be the dimensionality of the
data space[1,16].

3. Imbedded error function, IE(k): The imbedded
error function IE(k) is an empirical function[1]
developed to identify thosek latent variables which
contain error without relying upon an estimate of
the error associated with the absorbance data ma-
trix. The imbedded error is a function of the error
eigenvalues. The behavior of the IE(k) function,
as long ask varies from 1 too, can be used to de-
duce the true dimensionality of the data. The IE(k)
function should decrease as the true dimensions
are used in the data reproduction. However, when
the true dimensions are exhausted, and the error
dimensions are included in the reproduction, the
IE(k) should increase.

4. Factor indicator function, IND(k): The factor
indicator function IND(k) is an empirical func-
tion which appears more sensitive than the IE(k)
function to identify the true dimensionality of an
absorbance data matrix[1]. This function, like the
IE(k) function, reaches a minimum when the cor-
rect number of latent variables ork PC dimensions
is employed in the data reproduction. However,
it has been seen that the minimum is more pro-
nounced and/or can often occur even in situations
where the IE(k) function exhibits no minimum.

5. Ratio of eigenvalues calculated by smoothed PCA
and those by ordinary PCA, RESO(k): The rec-
ommended procedure for determining the number
of components in mixtures using RESO(k) [18]
contains principal components analysis for the
measured spectra set using the SVD algorithm to
find the eigenvaluesg0

i which correspond to ordi-
nary PCA. Details may be found in original paper
describing RESO[6]. The testing criterion calcu-
lates the index RESOai or the ratios betweengsa,i
andg0

i for differenta and plot log(RESOai ) versus
component number. It estimates the number of
components by examining the log(RESOai ) versus
component number plots. RESO then locates the
number of log(RESOai ) which are very close to
each other and do not change substantially with the
variation of k in comparison with the remaining
log(RESOai ). This is the number of components
existing in the mixture examined.

2.4. Determination of protonation/dissociation
constants

For dissociation reactions realized at constant ionic
strength the so-called “mixed dissociation constants”
are defined asKa,j = [Hj−1L]aH+/[HjL]. These
constants are found in experiments where pH values
are measured with glass and reference electrodes,
standardized with the practical pH(s) = paH+ activity
scale recommended internationally. If the protonation
equilibria between anion, L (the charges are omitted
for the sake of simplicity) of a drug and the proton,
H, are considered to form a set of variously proto-
nated species L, LH, LH2, LH3, etc. (which have a
general formula LqHr in a particular chemical model
and are represented byp the number of species,
(q, r)i, i = 1, . . . , p where indexi labels their par-
ticular stoichiometry), then the overall protonation
(stability) constant of the protonated species,βqr,
may be expressed as

βqr = [LqHr]

[L] q[H] r
= c

lqhr
(2)

where the free concentration [L]= l, [H] = h and
[LqHr] = c. For theith solution measured at thejth
wavelength, the absorbance,Ai,j, is defined as

Ai,j =
p∑

n=1

εj,ncn =
p∑

n=1

(εqr,jβqrl
qhr)n (3)
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where εqr,j is the molar absorptivity of the LqHr

species with the stoichiometric coefficientsq, r mea-
sured at thejth wavelength. The absorbanceAi,j

is the element of the absorbance matrixA of size
(n × m) measured forn solutions with known to-
tal concentrations of two basic components,cL and
cH, at m wavelengths. The multi-component spectra
analyzing program SQUAD(84)[17–19] can adjust
βqr andεqr for absorption spectra by minimizing the
residual-square sum function,U,

U =
n∑
i=1

m∑
j=1

(Aexp,i,j − Acalc,i,j)
2

=
n∑
i=1

m∑
j=1

(
Aexp,i,j −

p∑
k=1

εj,kck

)2

= minimum

(4)

whereAi,j represents the element of the experimen-
tal absorbance response-surface of sizen × m and
the independent variablesck are the total concentra-
tions of the basic componentscL and cH adjusted
in n solutions. Unknown parameters may be divided
into two equal groups: (1) a hypothetical chemical
model which is supplied by the user and should con-
tain (a) an estimate of the number of light-absorbing
species in solution,p, and (b) a list of variously pro-
tonated species of stoichiometry indices(q, r)i, i =
1, . . . , p; (2) the best estimates of the protonation
constants,βqr,i, i = 1, . . . , p, which are adjusted by
the SQUAD(84) regression algorithm. At the same
time, a matrix of molar absorptivities (εqr,j, j =
1, . . . , m)k, k = 1, . . . , p, as non-negative reals is
estimated, based on the current values of protonation
constants. For a set of current values ofβqr,i, the
free concentrations of ligandl (as h is known from
pH measurement), for each solution is calculated,
followed by the concentrations of all the species in
equilibrium mixture [LqHr]j, j = 1, . . . , p, forming
for n solutions the matrixC. Various hypotheses of
chemical models with refined parameters have been
tested and the statistical characteristics describing the
test-of-fit of regression spectra through experimental
points have been calculated. The calculated stan-
dard deviation of absorbances(A) and the Hamilton
R-factorare used as the most important criteria for a
fitness test. If, after termination of the minimization
process, the conditions(A) ≈ sinst(A) is met and the

R-factor is less than 1%, the hypothesis of the chem-
ical model is taken as the most probable one and is
accepted.

3. Experimental

3.1. Chemicals

Mycophenolate, ambroxol, silybin and silydianin
were generously donated by IVAX Pharmaceuticals,
Czech Republic. A silymarin extract of pharma-
copoeial quality (DAB IX) was prepared fromSily-
bum marianum, var. Silyb (L.) Gaertn (Asteraceae).
Individual components were isolated and purified
by ethylacetate extraction, crystallization and chro-
matography. The final purities achieved by IVAX
Pharmaceuticals, Czech Republic, were:sodium my-
cophenolatewas prepared by neutralization reaction
with sodium methanolate.Ambroxol hydrochloride,
was purchased from Boehringer Ingelheim, Germany,
with a purity of 99.9% (titration).Silybin: IVAX Phar-
maceuticals, company standard AB023, Batch No.
190194, 97.5% (HPLC).Silydianin IVAX Pharma-
ceuticals, company standard RD, Batch No. 090680,
99.9% (HPLC).Perchloric acid, 1 M, was prepared by
dilution of concentrated HClO4 (p.a., Lachema Brno)
with redistilled water and standardization against HgO
and NaI with a reproducibility better than 0.2% ac-
cording to the equation HgO+4NaI+H2O � 2NaOH+
Na2[HgI4] and NaOH+ HClO4 � NaClO4 + H2O.
Sodium hydroxide, 1 M, was prepared from an exact
weight of pellets (p.a., Aldrich Chemical Company)
with a carbon-dioxide free redistilled water. The so-
lution was stored for several days in a polyethylene
bottle. This solution was standardized against a solu-
tion of potassium hydrogen-phthalate using the Gran
method with a reproducibility of 0.1%.Mercury oxide,
sodium iodide, andsodium perchlorate(p.a., Lachema
Brno) were not further purified.Twice-redistilled
waterwas used in the preparation of solutions.

3.2. Apparatus and pH-spectrophotometric titration
procedure

The apparatus used and the pH-spectrophotometric
titration procedure has been described previously
[22].
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3.3. Procedure for protonation constants estimation

The experimental and computation a scheme for
the determination of the protonation constants of the
multicomponent system is taken from Meloun et al,
cf. [20] and five steps are described in[22]:

(1) Instrumental error of absorbance measurements,
sinst(A): The INDICES algorithm should be used
with solutions of potassium dichromate to evalu-
ate sinst(A), cf. [15]. The scree plot ofsk(A) =
f(k) consists of two straight lines intersecting at
{s∗k(A); k∗} wherek∗ is the matrix rank for the sys-
tem. Sincek∗ = 1 for K2Cr2O7, the value ofsk(A)
for k∗ = 1 is a good estimate of the instrumen-
tal error of the spectrophotometer used,sinst(A) =
s∗1(A), reaching a value ofs1(A) = 0.25 mAU,
RSD = 0.20 mAU and AE= 0.18 mAU for the
Cintra 40 (GBC, Australia) spectrophotometer.

(2) Number of light-absorbing species: When no out-
liers (grossly erroneous points) are present in the
spectra examined,s∗k(A) ≤ sinst(A) is valid. The
INDICES[15] determine the number of dominant
species present in the equilibrium mixture. All
spectra evaluation and data simulation were per-
formed in the S-Plus programming environment
and the INDICES algorithm is available on inter-
net, http://meloun.upce.cz/indices. Most indices
methods are functions of the number of PC(k)
into which the spectral data are usually plotted
againstk, and when the PC(k) reaches the value
of the instrumental error of spectrophotometer
used,sinst(A), the correspondingk represents the
number of significant components in a mixture,
p = k. In general, most of the methods are based
on finding the point where the slope of the in-
dicator function PC(k) = f(k) changes (the first
criterion). The dependencef(k) decreases steeply
with an increasing number of PCs as long as
the PCs are significant. Whenk is exhausted the
indices fall off, some of indices even displaying
a minimum. At this pointp = k for all indices
exceptg for which p = k + 1 is valid. The in-
dices values at this point can be predicted from
the properties of the noise, which may be used as
a criterion to determinep.

(3) Choice of experimental and computational strat-
egy: In a titration, the total concentration of one

of the components changes incrementaly over a
relatively wide range, but the total concentrations
of the other components change only by dilution,
or not at all if they are present at the same concen-
tration in the titrant and titrand. The protonation
equilibria of drugs are studied in the visible re-
gion, 190–760 nm. The wavelength range selected
is such that every species makes a significant
contribution to the absorbance. Little information
is obtained in regions of great spectral overlap
or where the molar absorptivities of two or more
species are linearly interdependent, as the change
of absorbance following changes incL and cH
becomes rather small. If only a small number of
wavelengths is used, then maxima or shoulders
should be chosen, because small errors in setting
the wavelength are then less important. It is best
to use wavelengths at which the molar absorp-
tivities of the species differ greatly, or a large
number of wavelengths spaced at equal intervals.

(4) Diagnostics indicating a correct protonation
model: When a minimization process in a regres-
sion analysis of an absorbance matrix terminates,
some diagnostics are examined to determine
whether the results should be accepted: the phys-
ical meaning of parametric estimates,βqr and
εqr should be neither too high nor too low, and
εqr should not be negative. The absolute values
of s(βj), s(εj) give information about the last
U-contour of the hyperparaboloid in vicinity of
the pit, Umin. For well-conditioned parameters,
the lastU-contour is a regular ellipsoid, and the
standard deviations are reasonably low. High
s values are found with ill-conditioned param-
eters and a “saucer”-shaped pit. The relation
s(βj)×Fσ < βj should be met whereFσ is equal
to 3. The set of standard deviations ofεpqr for
various wavelengths,s(εqr) = f(λ), should have
a Gaussian distribution; otherwise, erroneous es-
timates ofεqr are obtained. The physical meaning
of the species concentrations means that the cal-
culated distribution of the free concentration of
the basic components and variously protonated
species of the chemical model should show mo-
larities down to about 10−8 M. Since a species
present at about 1% relative concentration or less
in an equilibrium behaves as numerical noise in
regression analysis, a distribution diagram makes

http://meloun.upce.cz/indices
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it easier to judge the contributions of individual
species to the total concentration quickly. Since
the molar absorptivities will generally be in the
range 103–105 l mol−1 cm−1, species present at
less than ca. 0.1% relative concentration will sig-
nificantly affect the absorbance only if theirε is
extremely high.

The goodness-of-fit test contains the criteria for
testing the correctness of a hypothetical chemical
model. To identify the “best” or true chemical model
when several are possible or proposed, and to estab-
lish whether or not the chemical model represents the
data adequately, the residualse should be analyzed.
The goodness-of-fit achieved is easily seen by exam-
ination of the differences between the experimental
and calculated values of absorbance,ei = Aexp,i,j −
Acalc,i,j. Examination of the spectra and the graph of
the predicted absorbance response-surface through
all the experimental points should reveal whether
the results calculated are consistent and whether any
gross experimental errors have been made in the mea-
surement of the spectra. One of the most important
statistics calculated is the standard deviation of the
absorbance,s(A), calculated from the set of refined pa-
rameters at the termination of minimization process.
It is usually compared with the standard deviation of
absorbance calculated by the INDICES program[15],
sk(A), and if s(A) ≤ sk(A), or s(A) ≤ sinst(A) (the
instrumental error of the spectrophotometer used),
the fit is considered to be statistically acceptable. Al-
though this statistical analysis of residuals (cf. in[21],
p. 62) gives the most rigorous test of the degree-of-fit,
realistic empirical limits must be used. For example,
whens(A) ≤ 0.002, the goodness-of-fit is still taken
as acceptable, whereass(A) > 0.010 indicates that a
good fit has not been obtained. Alternatively, some
statistical measures of residualse can be calculated:
the mean residual|ē| and the residual standard devi-
ation s(e) = s(A) should be close to the absorbance
standard deviation known as the instrumental error of
spectrophotometer usedsinst(A); a HamiltonR-factor
of relative fit, expressed as a percentage,(R×100%),
of <0.5% is taken as an excellent fit, but that one of
>2% as a poor one. TheR-factor may be used as a
rigorous test of the null hypothesisH0 (giving R0)
against the alternativeH1 (giving R1). H1 could be
rejected at the significance level ifR1/R0 > R(k,n-k,α),

where n is the number of experimental points,k is
the number of unknown parameters, and (n − k)
is the number of degrees of freedom. The value of
R(k,n−k,α) can be found in statistical tables.

3.4. Software used

All spectra evaluation and data simulation were
performed in the S-Plus programming environment
and the INDICES algorithm is available on internet,
http://meloun.upce.cz/indices [15]. Computation re-
lating to the determination of dissociation constants
was performed by regression analysis of UV-Vis
spectra using the SQUAD(84) program[19].

4. Results and discussion

The UV-Vis spectra of sets of protonation equilib-
ria of four drugs serve as an excellent example of the
practical use of the proposed methodology of princi-
pal components analysis. A strategy for efficient ex-
perimentation in protonation constants determination
followed by spectral data treatment is presented with
the protonation equilibria of four drugs: sodium my-
cophenolate with two light-absorbing species L and
HL in mixture, ambroxol with three, silybin with five
and silydianin with six. While the simple protonation
equilibria for mycophenolate are quite trivial L and
HL, and were used for demonstration of methodol-
ogy, for ambroxol, one dimer L2H was indicated and
in case of silybin and silydianin there are five and six
variously protonated species in equilibrium mixture.
pH-spectrophotometric titration enables absorbance
matrix data (Figs. 1–4) to be obtained for analysis by
non-linear regression. The reliability of unknown pa-
rameter estimates pK andε may be evaluated on the
basis of the goodness-of-fit test of residuals (Table 1).
The SQUAD(84) program[19] analysis process starts
with data smoothing followed by a factor analysis on
the Kankare method using the INDICES procedure
[15]. The position of a break-point on thesk(A) =
f(k) curve in the scree plot is calculated and givesp
with the corresponding coordinatesp(A) which also
represents the instrumental errorsinst(A) of the spec-
trophotometer used. Due to the large variations in the
indicator values, these are plotted on a logarithmic
scale (Figs. 1–4). Protonation constants and molar

http://meloun.upce.cz/indices
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Fig. 1. Protonation of sodium mycophenolate presented on (a) pH-absorption spectra at 25◦C, (b) the spectra of molar absorptivities vs.
wavelengths for all of the variously protonated species, (c) a distribution diagram of the relative concentrations of all of the variously
protonated species. The logarithm dependence of 12 indices methods as a function of the number of principal componentsk for the
pH-absorbance matrix.Second row: Kankare’s residual standard deviation,sk(A); residual standard deviation, RSD; average error criterion,
AE. Third row: Bartlettχ2 criterion; Exnerψ function; Scree test RPV.Fourth row: imbedded error function, IE; factor indicator function,
IND; RESO function.
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Fig. 2. Protonation of ambroxol presented according toFig. 1.
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Fig. 3. Protonation of silybinin presented according toFig. 1.
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Fig. 4. Protonation of silydianin presented according toFig. 1.
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Table 1
Examination of the estimated number of light-absorbing species in a mixture using various PCA methods of the INDICES pro-
gram and a search for a chemical equilibrium model of mycophenolate, ambroxol, silybin and silydianin using regression analysis of
pH-spectrophotometric data with SQUAD(84)

Precise methods Approximate methods

sk(A) RSD AE χ2 ψ RPV IE IND RESO

(1) Sodium mycophenolatea

2 2 2 2 1 2 2 2 3
sk(A) (mAU) = 0.14 s(A) (mAU) = 1.41 |ē| (mAU) = 1.03 R-faktor (%) = 0.45

(2) Ambroxolb

3 3 3 3 2 3 3 3 3
sk(A) (mAU) = 0.25 s(A) (mAU) = 1.21 |ē| (mAU) = 0.86 R-faktor (%) = 0.33

(3) Silybinc

5 5 5 5 3 5 5 5 5
sk(A) (mAU) = 0.3 s(A) (mAU) = 1.01 |ē| (mAU) = 0.67 R-faktor (%) = 0.20

Second derivative used
5 5 5 5 5 5 5 5 –

(4) Silydianind

6 6 6 6 3 6 8 6 5
sk(A) (mAU) = 0.23 s(A) (mAU) = 1.14 |ē| (mAU) = 0.73 R-faktor (%) = 0.23

The standard deviations of the parameter estimates in the last valid digits in brackets. The parameter reliability is proven with goodness-of-fit
statistics such as the residual standard deviationsk(A) (mAU), the standard deviation of absorbance after termination of the regression
process,s(A) (mAU), the standard deviation of residuals (mAU) and the HamiltonR-factor (%). Indices algorithms used:sk(A) Kankare’s
residual standard deviation; RSD, residual standard deviation; AE, average error criterion;χ2, Bartlett χ2 criterion; ψ, Exner function;
RPV, Scree test; IE, imbedded error function; IND, factor indicator function; RESO, the RESO procedure.

a n = 20, m = 10, SER= 4382, pKa1 = 8.23± 0.00, I = 0.008 (KCl), 25◦C.
b n = 28, m = 40, SER= 2308, pKa1 = 7.97± 0.01, logβ21 = 11.34± 0.02, I = 0.006 (KCl), 25◦C.
c n = 20, m = 40, SER= 2784, pKa1 = 6.90± 0.02, pKa2 = 8.67± 0.02, pKa3 = 9.61± 0.01, pKa4 = 11.50± 0.01, I = 0.032

(KCl), 25◦C.
d n = 20, m = 40, SER= 3377, pKa1 = 6.54± 0.07, pKa2 = 7.40 ± 0.07, pKa3 = 9.47± 0.06, pKa4 = 10.41± 0.025, pKa5 =

12.09± 0.01, I = 0.017 (KCl), 25◦C.

absorptivities of the drug form wavelengths consti-
tutem× p unknown parameters which are refined by
the multiple regression (MR) algorithm in the first run
of the SQUAD(84) program. In the second run, the
non-negative least squares (NNLS) algorithm makes
the final refinement of all of the previously found pa-
rameter estimates with all of the molar absorptivities
kept non-negative. The reliability of the parameter
estimates may be tested with the use of SQUAD(84)
diagnostics[19]: the first diagnostic indicates whether
all parametric estimatesβqr and εqr have physical
meaning and reach realistic values. As the standard
deviationss(logβqr) of parameters logβqr ands(εqr)
of parametersεqr are significantly smaller than their
corresponding parameter estimates (Table 1), all of the
variously protonated species are statistically signifi-

cant.Figs. 1–4show estimated molar absorptivities of
all the variously protonated species of drugs in depen-
dence on wavelength. Some spectra quite overlap and
such cases may cause resolution difficulties given a
non-linear regression approach. The second diagnostic
tests whether all of the calculated free concentrations
of variously protonated species on the distribution
diagram have physical meaning, which proved to be
the case. The diagram shows that overlapping pro-
tonation equilibria exist in the cases of ambroxol,
silybin and silydianin (Figs. 2–4). The goodness-of-fit
(Table 1) proves that thesk(A) value is mostly equal to
0.25 mAU and is quite close to the standard deviation
of absorbance when the minimization process termi-
nates,s(A). The statistical measures of all residualse
prove that the minimum of the eliptic hyperparaboloid
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Fig. 5. The derivatives detection criteria of indices functions applied to the absorbance data set of the protonation equilibria of silybin from
Fig. 3. First row: Kankare residual standard deviation,sk(k); the second derivative, SD(sk(A)) (left); the third derivative, TD(s(Ak)) (middle);
the derivatives ratio, ROD(sk(A)) (right). Second row: the second derivatives of various indices functions SD(RSD), SD(AE), SD(χ2).
Third row: SD(ψ), log(RPV), SD(IE).Fourth row: SD(IND); 3D-relative absorption spectra for variously protonated species of silybin in
dependence on pH fromFig. 3; 3D-residuals map after regression fitting of absorption spectra of silybin in dependence on pH fromFig. 3.
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U is reached: the mean residual|ē| and the resid-
ual standard deviations(e) = s(A) have sufficiently
low values. The HamiltonR-factorof relative fitness
proves an excellent achieved fitness, and therefore
the parameter estimates may be considered reliable.
For all four drugs studied the most efficient tools,
such as the HamiltonR-factor, the mean residual and
the standard deviation of residuals are applied: as the
R-factor in all cases reaches a value of less then 0.5%,
an excellent fitness and reliable parameter estimates
are indicated. The standard deviation of absorbance
s(A) after termination of the minimization process is
always lower than 2 mAU, the proposal of a good
chemical model and reliable parameter estimates are
proven.

The first problem in the evaluation of the protona-
tion equilibria of three drugs (ambroxol, silybin and
silydianin) concerns the strongly overlapping equilib-
ria, because the difference of two consecutive disso-
ciation constants is less than 3. Such close equilibria
are always difficult to evaluate and therefore the user
should carefully prove the true number of variously
protonated species in the mixture and the reliability
of each dissociation constant estimate. A distribution
diagram of the relative concentrations of all of the var-
iously protonated species also demonstrates the over-
lapping protonation equilibria for close consecutive
dissociation constants.

The second problem concerns small differences of
molar absorptivities in variously protonated species
within a spectrum (Figs. 2–4). It may happen that
non-linear regression can fail when small differences
of absorbance are of the same magnitude as instru-
mental noise,sinst(A).

The number of light-absorbing speciesp can be
predicted from the indices function values by finding
the pointp = k where the slope of indices function
PC(k) = f(k) changes or comparing PC(k) values
with the instrumental errorsinst(A). This is the com-
mon criterion for to determiningp. For a comparison
of effectivity of selected indices methods of PCA
in searching the number of light-absorbing species,
the different sets of spectra concerning the protona-
tion equilibria of the four drugs were applied. Very
low values ofsinst(A) have proven that quite reliable
spectrophotometer and experimental technique were
used. Due to the large variations in the indices val-
ues, instead of indices, their logarithms of 12 selected

methods as a function of the number of principal
componentsk for every drug analyzed were used. For
precise indices methods inFig. 1 (as the Kankare’s
residual standard deviationsk(A), the residual stan-
dard deviationRSD and the average error criterion,
AE), the horizontal line denotes the value of the
instrumental error,sinst(A). The best approximation
of sinst(A) for sodium mycophenolate was found for
k = 2, while higher values ofk do not lead to any
significant decrease ofsk(A). For the Bartlettχ2 cri-
terion the horizontal line denotes a magnitude ofχ2

krit
and a vertical line separates values ofk for which H0
was accepted. In the case of the approximate indices
methods for the Exnerψ function the valueψ ≤ 0.1 is
achieved fork = 2 while higher valuesk do not bring
a significant decrease, in the valueψ. For the scree
test RPV the curve of dependence RPV(k) = f(k)

begins to level off at some point ofk. This k value is
considered to be the dimensionality of the absorbance
data space. For the imbedded error function IE there
is a minimum ofk = 2 on the curve of the function
IE = f(k). Similarly, for the factor indicator function,
a minimum of k = 2 on the curve of the function
IND = f(k) is reached.

A critical comparison of all of the methods of de-
termining the number of light-absorbing species in
solution based on the first criterion was carried out,
and the results are given inTable 1. Our test showed
that most of the indices accurately predict the num-
ber of variously protonated species that contribute
to a set of spectra. When there are more than four
components derivative methods are recommended:
the curve PC(k) = f(k) does not exhibit an obvious
break-point, and the second or third derivative local-
ize this break more reliably.Fig. 5 shows reliable
determination of the number of components using
derivative methods of the protonation equilibria of
silybin.

5. Conclusion

Indices methods are all based on finding the point
where the slope of the indices function changes.
Generally, the most reliable indices methods seem
to be methods based on a knowledge of the instru-
mental error of absorbance,sinst(A) which are usually
preferred.
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