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Abstract

The main aim of data analysis in biochemical metrology is the extraction of relevant information from biochemical
data measurements. A system of extended exploratory data analysis (EDA) based on the concept of graphical tools
for sample data summarization and exploration is proposed and the original EDA algorithm in S-Plus is available on
the Internet at http://www.trilobyte.cz/EDA. To check basic assumptions about biochemical and medical data is to
examine the independence of sample elements, sample normality and homogeneity. The exact assessment of the
mean-value and the variance of steroid levels in controls is necessary for the correct assessment of the samples from
patients. Data examination procedures are illustrated by a determination of the mean-value of 17-hydroxypreg-
nenolone in the umbilical blood of newborns. For an asymmetric, strongly skewed sample distribution corrupted with
outliers the best estimate of location seems to be the median. The Box—Cox transformation improves a sample
symmetry. The proposed procedure gives reliable estimates of a mean-value for an asymmetric distribution of
17-hydroxypregnenolone when the arithmetic mean can not be used. © 2002 Elsevier Science Ireland Ltd. All rights
reserved.
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1. Introduction

Metrology is one of those important disciplines

enabling the evaluation of measurements and ob-
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reliable results with biological, biochemical and
clinical data which meet certain requirements [1—
71. These requirements are represented by certain
assumptions about the nature of the data, or
observations. If our data do not meet the assump-
tions, the results may give incorrect answers. The
most usual assumptions are: independence of the
observations, normal distribution of errors and
absence of gross errors (outliers). If one observa-
tion does not affect other observations, the obser-
vations are said to be independent.

When an exploratory data analysis (EDA) indi-
cates that the sample distribution strongly differs
from a symmetrical and normal one, we are faced
with the problem of how to analyze the data. We
transform the data by applying a single mathe-
matical function to all of the raw data values. The
reasons for transforming original data include
transformation for symmetry. Symmetry in a data
batch is often a desirable property, as many esti-
mates of location give the best results and are best
understood when the data come from a symmetric
distribution. In perfectly symmetric data, all mid-
sums would be equal to the median. If the data
are skewed to the right, the midsums increase as
they come from quantiles which reflect the asym-
metric behaviour of the tails. For data skewed to
the left, the midsums decrease.

This paper provides a description of some
statistical procedures applied for an examination
of all of the above sample assumptions for bio-
chemical or clinical data. Data examination pro-
cedures are illustrated on a case study concerning
an assessment of the mean-value of 17-hydrox-
ypregnenolone in the umbilical blood of
newborns.

2. Theoretical

Statistical treatment of experimental data sup-
poses that the data are independent random vari-
ables coming from the same distribution,
obviously normal, and that the sample size is
sufficient for precise estimates of location and
spread to be obtained. When some of these as-
sumptions are not met, the data analysis is rather
complicated. These assumptions must be exam-

ined by confirmatory data analysis (CDA) before
interval estimation and testing.

2.1. Examination for independence of sample
elements

The basic assumption of good measurement is
that the individual measurements, observations in
the biochemical sample batch, are independent.
Interdependence of measurements can obviously
be caused by
1. instability of the measurement device, for ex-

ample, a shift in readings with temperature;

2. variable conditions for the measurements,
which could suddenly change;

3. neglect of important factor(s) which have a
major influence on measurement, for example,
the sample volume, temperature, purity of
chemicals, etc.; and

4. false and non-random (stratified) choice of
values in a sample.

When some experimental conditions change
over time, a time dependence in the observations
may be indicated. When there is a sudden change
in observations, a heterogeneous sample is
formed. In both of these cases, a higher value of
variance is found than for a homogeneous sample.

A time dependence or dependence on the order
of observations can be tested for by examining the
significance of the first order autocorrelation co-
efficient p, according to

T, J(n+1) (1a)

t, =
VU —=T)
where
T\ /n*—1
=12 1
h (1 2) n*—4 (16)
and T is the von Neumann ratio defined by
n—1
Z (X1 — xi)2
r—i=t . (10)
Z (x;— 3?)2

i=1

When the null hypothesis H,: p, =0 is valid,
the test criterion ¢, has a Student distribution with
(n+ 1) degrees of freedom. The alternative hy-
pothesis H,: p, #0. When |t,| > £, _,»(n + 1), the
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null hypothesis about the independence of sample
observations is rejected at the significance level a.

2.2. Examination for normality of sample
distribution

Normality of a sample distribution is the basic
assumption for most statistical data treatment,
because many statistical tests require normality.
When the type of deviation from normality of the
sample is known before statistical inference, direc-
tional tests are used; when the type of deviation
from normality is unknown, the omnibus tests are
used.

Generally, statistical tests are less sensitive to
deviations from normality than are diagnostic
graphs of EDA [8]. Moreover, deviation from
normality can also be caused by the presence of
outliers. When the normality of a sample distribu-
tion is not proven, the data should be analyzed
with great care. For testing the normality of a
sample distribution, the rankit plot of the EDA
{8] is one of the most useful tools, but other useful
tests are available.

Test of combined sample skewness and kurto-
sis: the testing criterion is defined as

_ 8® @ -3)
DE() " D)

where g,(x) is the sample skewness and D(g,(x))
is its variance, g,(x) is the sample kurtosis and
D(g,(x)) is its variance. For a normal distribu-
tion, the test criterion C,; has approximately an y>
distribution, so that when C, > x3_,(2), the null
hypothesis about normality of sample distribution
is rejected.

&

(2)

2.3. Examination for minimum sample size

The sample size » has an influence on the
precision of estimates, and controls the size of
confidence intervals. For very small sample sizes it
may happen that hypothesis tests are affected
more by the sample size n than by the variability
of the data. The procedure for finding the sample
size that is sufficient is as follows: From n, start-
ing values, the sample variance s3(x) is calculated.
The minimum size n,,;, of a sample taken from a

normal distribution is calculated in such a way
that for a given probability (1 — «) and value of d,
the confidence interval will be y—d<x<u-+d.
Then n,,;, is given by

e
o= s3] 2220 =0

(3)
where 1, _,(n, — 1) is the quantile of the Student
distribution with (n, — 1) degrees of freedom.

2.4. Examination of sample homogeneity

Sample heterogeneity becomes evident when a
sample contains outliers or when the sample can
logically be divided into several subsamples, each
of which can be analyzed separately. Testing the
difference of subsample averages may indicate
whether the separation into subsamples can be
taken as significant or not. We limit ourselves
here to the situation where outliers exist in a data
batch. Qutliers differ significantly from all other
values and can be readily identified by EDA plots.
Outliers cause distortion of the X and s? estimates
and may impair the subsequent statistical testing.

There are many different techniques, for exam-
ple, cf. Ref. [5], for identifying outliers when a
normal distribution of data can be assumed. One
of the simplest and most efficient methods seems
to be Hoaglin’s modification of inner bounds Bf
and BY

Bt = X525 — K(X9.75 — Xg.25) (4a)
and
By = Xp.75 + K(Xp 75 — Xo.25) (4b)

where X, ,5 18 the lower quartile, X, ;5 1s the upper
quartile and the value of parameter K is selected
such that the probability P(n, K) that no observa-
tion from a sample of size n will lie outside the
modified inner bounds [B¥, Bf] is sufficiently
high, for example, P(n, K} =0.95. For P(n, K) =
0.95 and 8 <n <100, Hoaglin [4] derived the fol-
lowing equation for the calculation of X:

K ~2.25—(3.6/n). (4¢)

All elements lying outside the modified inner
bounds [B¥, B¥] are considered to be potential



190 M. Meloun et al. / Computer Methods and Programs in Biomedicine 70 (2003) 187-197

outliers. This test cannot be used for outliers
detection for non-normal data distribution.

2.5. Data transformation

When the EDA indicates that the sample distri-
bution strongly differs from a normal one, we are
faced with the problem of how to analyze the
biochemical or medical data. When examining
data we must often find the proper transforma-
tion leading to symmetric data distribution, stabi-
lizing the variance, or making the distribution
closer to normal. Transformation for symmetry is
carried out by a simple power transformation

A

x for parameter £ > 0
y=g(x)= Inx  for parameter A =0 (5)
—x~* for parameter A <0

which does not retain the scale, is not always
continuous, and is suitable only for positive x.
Optimal estimates of parameter /4 are sought by
minimizing the absolute values of particular char-
acteristics of asymmetry. Transformation leading
to approximate normality may be carried out by
the family of Box—Cox transformations defined as

(x*—=1)/4 for parameter A # 0
In x for parameter A =0

y=glx)= {
(6)

where x is a positive variable and the power 1 is
a real number. The Box-Cox transformation can
be applied only on positive data. To extend this
transformation means to make a substitution of x
values by (x—x,) values which are always positive.
Here x, is the threshold value x, < x(;,. When the
value 1 is covered by the confidence interval of
estimated power /, the data transformation is not
efficient.

After an appropriate transformation of the
original data {x} has been found so that the
transformed data give an approximately normal
symmetrical distribution with constant variance,
the statistical measures of location and spread for
the transformed data {y} are calculated. These
include the sample arithmetic mean y, the sample
variance s(y), and the confidence interval of the

+ ) pn— 1)s(y)/ﬁ. These estimates
must then be recalculated for the original data
{x}. The correct re-expression is based on the
Taylor series expansion of the function y =g(x)
in the neighbourhood of the vaiue y. The re-ex-
pressed mean Xg is then given

. 1d d -2
szg—‘{y—E (ifx)( i(;)) sz(y)} Q)

mean } +

For the variance it then holds

) ¥ (dg (x))_ S0), ®)

dx

where individual derivatives are calculated at the
point x = Xz. The 100(1 — «)% confidence interval
of the re-expressed mean for the original data is

L <u<ly ©)
where
IL=g_l[f+ G— 1t _ypn— 1)'{\(/)}—;)] (10)
IU=g—1|:J7+G+tl—a/2(n_1)s—\(;;—1):l (11)
and

1 d%g(x)(dgx)\7? ,
0= =574 ( dx ) ) (12)

On the basis of the (known) actual transforma-
tion y = g(x) and the estimates y, s*(»), it is easy
to calculate re-expressed estimates Xg and s2(xg):

1. For a logarithmic transformation (when 4 =
0) and g(x)=Inx, the re-expressed mean and
variance are calculated

Fr & exply + 0.55%(¥)] (13)
and
sHFp) = ZR()S?(0)- (14)

2. For 4 # 0 and the Box—Cox transformation,
the re-expressed mean ¥ will be represented by
one of the two roots of the quadratic equation

)-C'R,I,Z == [05(1 + /1)7)

+0.5./1+ 240 + s3(0) + 2% — 25O
(15)
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which is close to the median £, 5 =g~ '(Jys). If Xg
is known, the corresponding variance may be
calculated from

s2(x) = X 2+ Ds(y). (16)

Note:

As an alternative to transformation, the maxi-
mal likelihood method may be used to find
parameters of a selected distribution (e.g. log-nor-
mal, gamma, Cauchy), and the mean value calcu-
lated analytically. This method, however, needs
the type of distribution to be known, is rather
elaborate for practical use and sometimes the
optimization may fail to find the correct parame-
ter values.

Some other robust estimates of mean values
based on influence functions, such as iteratively
calculated M-estimates, will give similar values to
Zg. but the confidence intervals are symmetric and
they assume a symmetric underlying distribution
with several outliers.

3. Procedure

3.1. Procedure of extended exploratory data
analysis

The extent of EDA and CDA of univariate
biochemical data is best chosen according to expe-
rience from prior data analysis [8]. We consider
here two common situations: (a) the treatment of
routine data; and (b) the treatment of new data
when no preliminary information is available.

3.1.1. The analysis of routine data

With routine biochemical data, some knowl-
edge of the sample distribution is assumed—it is
usually normal, and the data elements are homo-
geneous and independent. Tests for examining all
assumptions about data should include: (i) a test
for the independence of sample elements; (i) a
test for normality; (iii} a test for the homogeneity
of the sample. Graphical EDA techniques such as
the rankit plot and quantile—box plot are often
used. When no preliminary information about the
data is available, the full range of EDA plots

should be followed by determination and con-
struction of the sample distribution. Where no
suitable distribution is found, the power transfor-
mation of data is recommended [6].

3.1.2. The analysis of new data

Analyzing a new data batch, there are several
cases that require different strategies for the EDA
procedures:

3.1.2.1. Data Case I. No independence of sample
elements: when the sample elements are not
proved to be independent, a danger of systemati-
cally biased and over-evaluated estimates arises.
Therefore, a new logical analysis of the experi-
mental equipment and data measurement proce-
dures is necessary: after an improvement in the
experimental strategy, the new data should be
examined again. Alternatively, the data should be
treated as a time series and a time series model
should be found and explained.

3.1.2.2. Data Case II. No normality of sample
distribution: the actual sample distribution is not
normal in nature, or outliers are present in the
data. When the distribution is not normal, the
deviation can be in the lengths of tail (kurtosis) or
in non-zero skewness. When tails differ in length,
robust estimates may be used; for skewed distri-
butions, a power transformation should always be
used. When a power transformation is successful
and the optimal value of the power J is found, the
estimates of the measures of location and spread
can be calculated and re-expressed in the measure
of the original variables.

3.1.2.3. Data Case I1I. Sample is not homogeneous,
outliers: it should first be considered whether the
distribution is skewed or not, because some points
appearing to be outliers in a symmetrical (normal)
distribution would be accepted in a skewed distri-
bution. When some points are suspected outliers
there are two alternatives: (a) to exclude the out-
liers from the data batch, which for a small
sample size may lead to a loss of valuable infor-
mation; or (b) to apply robust methods. In some
biochemical or clinical data batches no outliers
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may be excluded because of the danger of losing
valuable information. In such cases the experi-
menter should be consulted about the suspect
points from a physical point of view, in order to
consider the possibility of gross errors. QOutliers
can completely distort descriptive statistics. Com-
paring the mean, median, mode, and trimmed
mean if the outliers are only to one side of the
mean, the median is a better measure of location.
On the other hand, if the outliers are equally
placed on each side of the center, the mean and
median will be close together, but the standard
deviation will be inflated. The interquantile range
is the only measure of variation not greatly, if at
all, affected by outliers. Outliers may also con-
taminate measures of skewness and kurtosis as
well as confidence limits.

3.1.2.4. Data Case IV. The sample size is not
sufficient, missing data: whenever data are miss-
ing, question need to be asked: (a) Is the absence
due to incomplete data collection? if so, try to
complete the data collection; (b) Is the absence
due to non-response from a survey? If so, attempt
to collect data from the non-responders; (c) Are
the absence data due to a censoring of data
beyond or below certain values? If so, some differ-
ent statistical tools will be needed; (d) Is the
pattern of absence random? If only a few data
points are missing from a large data set and the
pattern of absence is random, there is little to be
concerned with; however, if the data set is small
or moderate in size, any degree of absence could
cause bias in interpretations.

Where missing values occur without positive
answers to the above questions, there is little that
can be done: the best solution is to carry out new
experimental measurements. As a general rule,
when the variance of the data is small, a relatively
smaller size will be required for any given preci-
sion of estimate. When no extra experiments can
be carried out, the technique for small sample
sizes should be applied. This is convenient for
routine data analysis, but for new data ex-
ploratory data analysis should be used first, so
that any statistical peculiarities of the sample may
be determined.

3.2. Software used

For the creation of EDA diagnostic graphs and
the computation of the quantile based characteris-
tics of sample distribution, the EDA algorithm in
S-Plus was written. This enables a test of sample
independence based on the autocorrelation coeffi-
cient, a test of normality and a test of homogene-
ity based on the normality assumption, too. The
original EDA algorithm is available on the inter-
net at http://www.trilobyte.cz/EDA.

4. Results and discussion

Many statistical programs offer a list of various
descriptive statistics of location and spread, but
rarely help the user to choose one adequate mea-
sure for an actual sample batch. EDA and an
examination of sample assumptions in CDA will
find an answer to this question. The case study
runs on typical biochemical sample data and illus-
trates the rigorous procedure of statistical data
treatment with EDA and CDA, i.e. the exact
assesment of the mean-value and the variance in
17-hydroxypregnenolone. Lower levels of free 5-
ene steroids in umbilical blood and elevated levels
of 5-ene steroid sulfates indicate a congenital sex-
specific placental sulfatase insufficiency [9]. De-
layed onset of labor, frequently linked with the
necessity of intervention [10] together with rela-
tively low birth weights is a common symptom of
the disease. The defect of recessive X-linked type,
also called the ‘dry skin’ disease, may have pheno-
typic consequences in later postnatal life [11]. The
incidence of this disorder appears to be approxi-
mately one per 2000 male births [12]. The exact
assessment of the mean-value and the variance of
steroid levels in controls is necessary for the cor-
rect assessment of samples from patients. Lower
levels of S-ene steroid sulfates are common in
pregnancies complicated by intrauterine fetal
growth retardation (IUGR) [13]. The levels of
pregnenolone, 17-hydroxypregnenolone in the
umbilical blood of newborns, were evaluated. The
evaluation of levels of 17-hydroxypregnenolon:
was chosen as an example of correct data analy
sis. Statistical assumptions should be tested on th
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Table 1

16

The concentration of 17-hydroxypregnenolone in the umbilical blood of newborns (nmol/l) for sample size n = 100

17.7 19.6 35.1 29.1 23.7 2579 35.6
16.8 34.6 21.8 37.2 31.8 333 25.6
37.8 36.7 354 11.8 5.0 36.2 19.2
321 15.5 59.2 13.7 17.9 16.5 20.8
16.7 27.2 21.8 24.8 7.9 6.0 8.1
15.7 217 237 233 233 41.1 291
443 223 359 20.8 16.5 33.9 243
271 23.6

21.3 30.5 28.0 25.6 155.6 18.0 21.6
25.8 26.7 229 19.2 23.1 26.4 15.3
16.2 219 30.8 34.2 20.9 242 18.7
20.5 19.1 324 38.6 29.8 24.2 222

4.0 21.5 21.0 17.4 16.5 19.8 19.7
21.8 23.0 19.5 25.3 41.6 31.3 24.0
203 20.9 17.8 28.0 33.6 229 224

group of umbilical blood from newborns using
some plots of extended exploratory data analysis
and the statistical tests of basic assumptions. The
estimate of a mean value in 17-hydroxypreg-
nenolone was enumerated (Table 1).

(1) Descriptive statistics: NCSS2000 [14] soft-
ware calculates a survey of descriptive statistics of
location and spread for an actual sample size
n=100 (an elucidation of statistics cf. Ref. [6]).
However, for the user it is rather difficult to select
the single, the most convenient measure of the
exact mean-value: the arithmetic mean x =25.8
nmol/l, the median %, s = 23.2 nmol/l, the geomet-
ric mean }gm23.1 nmol/l, the harmonic mean
x;, = 20.4 nmol/l, the mode £, = 21.8 nmol/], and
following trimmed means x(5%)=24.5 nmol/l
with  s(5%)=6.5 nmol/l and »n(5%) =90,
x(10%) = 24.4 nmol/l with s(10%)= 5.5 nmol/l
and n(10%) =280, x(25%)=23.7 nmol/l with
5(25%) = 2.8 nmol/l and n(25%) = 50, x(45%) =
232 nmol/l with s5(45%)=0.4 nmol/l and
n(45%) = 10; a survey of measures of spread: vari-
ance s2=2484, S.D. s=15.8 nmol/l, unbiased
S.D. s=15.8 nmol/l, interquantile range Rp=
11.1 nmol/l; and a survey of measures of shape:
skewness g, = 5.70, kurtosis g, =47.37.

(2) Exploratory data analysis were used for the
graphical visualization of 17-hydroxypreg-
nenolone data: the quantile plot (Fig. 1) shows a
small systematic deviation from a normal distri-
bution and two outliers are detected. The classic
curve for a normal distribution differs from the
empirical, robust one. Both dot diagrams (Fig. 2)
and the box-and-whisker plot (Fig. 3) indicate a
nearly asymmetric distribution with two outliers.
The halfsum plot (also called the midsum plot)
(Fig. 4) and the symmetry plot (Fig. 5) indicate an

asymmetric distribution with many points outsid
the tested confidence bound.

(3) Determination of sample distribution: ik
sample distribution represented by a symmetr
skewness and kurtosis is examined by four plot
the histogram (Fig. 6) exhibits an asymmetr;
distribution of the sample analyzed. The kern
density estimator of the probability density fun

A
1607 .
y |
120-

80 -

40 -

""a‘.', - .

T T T T Y 1>
60 80 100 120 140 160 x

Fig. 2. The dot and jitter dot diagram for 17-hydroxypreg
nenolone data.
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Fig. 3. The box-and-whisker plot for 17-hydroxypregnenolone
data.

Fig. 5. The symmetry plot for 17-hydroxypregnenolone data.

tion (Fig. 7) does not prove a normal distribution
as both curves, the theoretical of a normal distribu-
tion and the sample, significantly differ. The rankit
plot, i.e. the quantile—quantile plot for normal dis-
tribution (Fig. 8), does not prove a normal distri-
bution because not all the points are located on a
straight line. In regression analysis of the quantile—

quantile plot the various distributions with the
sample one are compared, and the highest value of
correlation coefficient r = 0.89897 is for a log-nor-
mal distribution. The quantile—box plot (Fig. 9)
indicates many outliers outside the sedecile box.

j
y ]
20: /

Fig. 6. The histogram for 17—hydroxypregnenolone data.

]

0.051
y

0.04 ]

0.031

0.02 1

0.017

0.00 4 . .
-100 0 100 200

o —

1
300 x

Fig. 7. The kernel estimator of the probability density plot of
17-hydroxypregnenolone data.
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Fig. 8. The quantile-quantile plot for 17-hydroxypre;
nenolone data.
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Fig. 9. The quantile-box piot for 17-hydroxypregnenolone
data.

Tails length Ty =0.577 is close to the tabular
value for a normal distribution T =0.534 and
T =0.809 is also close to the tabular value for a
normal distribution T, =0.822 (Table 2). How-
ever, two outliers at higher values cause a log-nor-
mal distribution. The both point estimate of a
skewness is 5.70 (for a normal distribution it
should be zero) and of a kurtosis 47.37 (for a
normal distribution it should be 3), indicating that
the sample distribution has a strongly asymmetric,
skewed and sharp shape.

(4) Basic assumptions about the sample: apply-
ing an analysis of basic assumptions about data
the following conclusions were drawn:

(a) Examination for independence of sample ele-
ments: a test of sample elements independence
leads to the test statistic z,; = 0.05 being lower
than 7, o75(100) = 1.984 and therefore indepen-
dence of sample elements is accepted.

(b} Examination for normality of sample distribu-
tion: a combined sample skewness and kurto-
sis test leads to the test statistic C, = 10121

Table 2

being higher than %%(0.95,2)=35.992 and
therefore normality is rejected.

(c) Examination of sample homogeneity: there are
two observations outside the interval of both
of Hoaglin’s inner bounds [Bf = - 4.6 nmol/
I; B = 54.1 nmol/l], i.e. x, = 155.6 nmol/],
X@4sy = 39.2 nmol/l may be indicated as out-
liers and sample homogeneity is rejected. The
measures of location, spread and distribution
shape for sample data without the two outliers
are x=24.1 nmol/l, s(x)=8.1 nmol/,
g,(x)=0.08 and g,(x) = 3.12 leading to a the
conclusion that the sample 17-hydroxypreg-
nenolone without the two outliers exhibits a
normal distribution.

(5) Conclusions about the sample: Table 3 pro-
vides a criticism of various measures of location,
spread and distribution shape, [6]. All EDA dis-
play techniques prove that the sample distribution
comes from a population with a log-normal distri-
bution and that the sample contains two outliers.
The classical measures of location and spread for
the original sample data reaching values of mean
x =25.8 nmol/l and standard deviation s(x)=
15.8 nmol/l are out of statistical significance and
can not be used. For biochemical and clinical data
a general rule is valid: No outliers can be excluded
Jrom the sample batch because of the danger of
losing valuable information; therefore, no trimmed
means can be used. For the best point estimate of
the measure of location, using the Box—Cox and
power transformation leading to the same esti-
mates [6], the re-transformed mean xp =23.5
nmol/l with the confidence interval L; =21.4
nmol/l and Ly = 25.7 nmol/l, and for the measure
of spread the S.D. s =10.8 nmol/l may be used.
Besides the corrected mean by the data transfor-
mation the robust estimate median M with the

The quantile measures of the location, spread and shape of 17-hydroxypregnenoclone in the umbilical blood of newborns (nmol/l)

Quantile P Lower Upper Range R, Halfsum Z, Skewness S, Tails length  Pseudo-sigma
quantile Qr quantile Qy, T, Gq

Median 0.5 23.20 23.20 -

Quartile  0.25 19.42 29.98 10.55 24.70 1.46 0.000 7.83

Octile 0.125 16.50 35.29 18.79 25.89 0.80 0.577 8.17

Sedecile  0.0625 14.00 37.69 23.69 25.84 0.65 0.809 7.74
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Table 3
A survey of the critically commented measures of location,

Measure Point estimate

Arithmetic mean 25.8 22.7

Median 23.2 21.4

Geometric mean 23.1

Harmonic mean 20.4

Trimmed mean (5%0) 24.5 229

Trimmed mean (10%) 24.5 229

Trimmed mean (40%) 239 22.1

M -estimate 24.1 223

Hoog M-estimate 23.3 21.8

Re-expressed mean after Box-Cox 235 214
transformation

Re-expressed mean after power 23.5 214
transformation

S.D. 15.8

Skewness 5.70

Kurtosis 47.37

confidence interval M+ 1.57RL/ﬁ also may be
used, 23.2 £ 1.5 nmol/l, i.e. Ly = 21.7 nmol/l and
Ly =247 nmol/L

5, Conclusions

The classic approach to instrumental data anal-
ysis in practice is based on some strong assump-
tions about the statistical nature of the data, such
as the independence of sample elements, sample
normality, sample homogeneity, and minimal sam-
ple size. To obtain undistorted and accurate results
from univariate biochemical data, exploratory data
analysis (EDA) should be applied to reveal typical
features and patterns. Often, biochemical data are
Jess than ideal and do not fulfill all these assump-
tions. For biochemical and clinical data no outliers
can be excluded from the sample because of the
danger of losing valuable information: robust

spread and

Lower limit

shape of 17-hydroxypregncnolone

Upper limit Criticism of measure used
28.9 Not possible for asymmetric
distribution
25 The best estimate for asymmetric
distribution
The best estimate for log-normal
distribution
Not possible for Jog-normal
distribution
26.2 Unusable for biochemical data
26.2 Unusable for biochemical data
25.7 Unusable for biochemical data
258 A good estimate for asymmetric
distribution
24.7 A good estimate for asymmetric
distribution
25.7 The best estimate for asymmetric
distribution
25.7 The best estimate for asymmetric
distribution
Not possible for asymmetric
distribution
Indicates an asymmetrical, skewed
distribution
Indicates a sharp peak of
distribution shape

statistics (median or M -estimates) or data transfor-
mation methods are recommended. The original
data are then transformed to improve the symmetry
of data distribution. Statistical measures of trans-
formed data are re-transformed to obtain these
unbiased and rigorous measures for the original
data.
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