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Abstract

Building a calibration model with detection and quantification capabilities is identical to the task of building a
regression model. Although commonly used by analysts, an application of the calibration model requires at first
careful attention to the three components of the regression triplet (data, model, method), examining (a) the data
quality of the proposed model; (b) the model quality; (c) the LS method to be used or a fulfillment of all least-squares
assumptions. This paper summarizes these components, describes the effects of deviations from assumptions and
considers the correction of such deviations: identifying influential points is the first step in least-squares model
building, the calibration task depends on the regression model used, and finally the least squares LS method is based
on assumptions of normality of errors, homoscedasticity, independence of errors, overly influential data points and
independent variables being subject to error. When some assumptions are violated, the ordinary LS is inconvenient
and robust M-estimates with the iterative method of reweighted least-squares must be used. The effects of influential
points, heteroscedasticity and non-normality on the calibration precision limits are also elucidated. This paper also
considers the proper construction of the statistical uncertainty expressed as confidence limits predicting an unknown
concentration (or amount) value, and its dependence on the regression triplet. The authors’ objectives were to provide
a thorough treatment that includes pertinent references, consistent nomeclature, and related mathematical formulae
to show by theory and illustrative examples those approaches best suited to typical problems in analytical chemistry.
Two new algorithms, calibration and linear regression written in S-PLUS and enabling regression triplet analysis, the
estimation of calibration precision limits, critical levels, detection limits and quantification limits with the statistical
uncertainty of unknown concentrations, form the goal of this paper. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Linear regression is perhaps the most used and
abused statistical method in calibration. Even
though there is a huge literature on univariate
calibration application [1–24], textbooks and re-
views [25–45], a common mistake is to blindly
force a ‘classical’ regression fit onto any set of
calibration data with a presumed linear relation-
ship. Most analytical procedures involve linear
regression either in the calibration straight line or
in the calibration curve mode. Little, if any, atten-
tion is paid to the selection of suitable calibration
points or to the examination of influential points,
outliers and leverages, and heteroscedasticity in
the regression analysis [19,24,30,34,38,44]. Appli-
cation of the ordinary least squares (OLS) in
calibration is based on the assumptions of nor-
mality, homoscedasticity and independence of the
measurements [46–50,53]. A source of problems
may be found in the components of the regression
triplet (data, model and method of estimation).
OLS provides statistically accurate estimates only
when all assumptions about calibration data and
about a calibration model are fulfilled. When
some assumptions are not fulfilled, OLS is incon-
venient. Regression diagnostics represent proce-
dures for the identification of (a) the calibration
data quality of a proposed calibration model, (b)
the calibration model for a given set of data, and
(c) fulfillment of all least-squares assumptions. In
reality, the least-squares assumptions hold only
approximately, and one can expect the calibration
data to contain either errors or observations that
are somewhat unusual compared with the rest of
the data.

OLS gives equal weight to every point of cali-
bration data. However, every point does not have
equal impact on the various least-squares results.
For example, the slope in a simple calibration
straight line is influenced most by the points
having values of the independent variable farthest
from the mean. A single point far removed from
the other data points can have almost as much
influence on the calibration results as all the other
points combined. Such points are called high-
leverage points. In designed experiments these
points are not present. The term outlier refers to a

calibration point, which is in some sense inconsis-
tent with the rest of the points in the calibration
data set.

Heterogenous variances in calibration points
imply that some observations are more precise
than others. Rational use of the data would re-
quire that more weight be given to those that
contain the most information. Two approaches to
handling heterogeneous variance are the transfor-
mation of the dependent variable (signal) and use
of weighted least-squares. Weighted least-squares
uses the original metric of the dependent variable,
but gives each observation weight according to
the relative precision.

The effect of influential points, heteroscedastic-
ity and non-normality on calibration precision
limits are discussed. The authors’ objectives were
to survey the relevant literatures on linear regres-
sion, to provide a thorough treatment that in-
cludes pertinent references, consistent
nomeclature, and related mathematical formulae,
and to show by theory and practical examples
those approaches best suited to typical problems
in analytical chemistry. The new algorithms Cali-
bration and Linear Regression in S-PLUS, which
enable regression triplet analysis and estimation
of alternative approaches to calibration precision
limits, are used.

2. Theoretical

2.1. Consistant nomenclature

2.1.1. Calibration models
Constructing calibration model g(x), a relation-

ship between the measurable quantity y, called a
signal (potential, electric current etc.) or a output
and the quantity x called a measurand or input, a
property (content, composition, concentration,
temperature etc.) being more difficult to monitor,
is created. In the first stage of the calibration
experiment for n samples with known (or precisely
adjusted) values xi the corresponding signal values
yi are measured. As a model of experimental
measurements in the chemical measurement pro-
cess CMP, the additive model of measurement
errors is usually assumed yi=g(xi, �)+�i. Here �
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is the set of adjustable parameters and �i is error
term containing errors of measurement, error due
to blank, etc. It is often assumed that �i are
normally distributed and have constant variance
�2. In calibration model building, the suitable
model g(x) is selected and the parameters � are
estimated from n pairs of data (xi, yi) by regres-
sion analysis. In many experiments, there are
some restrictions on the measured variable yi,
i=1, …, n. For example, yi may take only posi-
tive values, with non-constant variance, �2(yi),
but with constant relative error, �2(y)/y. All such
conditions are valid in the multiplicative model of
measurement errors. The combined model of
measurement errors

yi=g(xi, �)exp(�i)+�i

is also used, where the errors �i and �i are assumed
to be independent.

For linear regression type models, according to
model parameters, this task leads to the solution
of the equation system. For nonlinear regression
type models minimization algorithms must be
used. Building a calibration model is identical
with the task of building a regression model.

The second step of calibration involves inver-
sion of the model g(.), i.e. for a measured re-
sponse y* for unknown concentration the
corresponding value x* and its statistical charac-
teristics are calculated.

Calibration tasks have been classified according
to criteria by Rosenblatt and Spiegelman [51] into
(a) absolute calibration and (b) comparative
calibration.

With reference to the application of the calibra-
tion model, the following cases may be distin-
guished; (a) single application of the calibration
model, the calibration model is constructed from
n measured points {xi, yi}, i=1, …, n, and then
one estimate x̂*with its confidence interval is cal-
culated from one y* value; (b) multiple applica-
tion of the calibration model, from the calibration
model, several estimates x̂* are determined from
values of the analytical signal; (c) single or multi-
ple application in combination with other mea-
surements, the results of the second phase of
calibration are used together with other variables
and constants for determination of a quantity

which is a function of more variables. Here, any
bias in the estimates x̂* will be included in the
final systematic error of the result.

The difficulty of the calibration task depends
on the model used. For nonlinear regression mod-
els the solution is sought in the form x̂*=
g−1(y*). On the basis of the Taylor series for this
function, the approximate formula for the vari-
ance D(x̂*) may be found in the form [52]

D(x̂*)�
��g(x, b)

�x
n−2�D(y*)

M
+D(g(x, b))

n
(1)

where D(y*) is the variance of y* values, usually
equal to �2 and D(g(x, b))=D(ŷ) is the variance
of prediction, estimated from the Taylor series of
function g(x, b). For the linear regression model
the variance of prediction is given by

D(ŷ)=�2�1
n
+

(x*− x̄)2

�
n

i=1

(xi− x̄)2

�
=�2�1

n
+

(y*− ȳ)2

b1
2 �

n

i=1

(xi− x̄)2

�
(2)

where b1 is the estimate of the slope of the regres-
sion line. On substituting into Eq. (1) the relation-
ship results:

D(x̂*)�
�2

b1
2

� 1
M

+
1
n
+

(y*− ȳ)2

b1
2 �

n

i=1

(xi− x̄)2

�
(3)

Difficulties are caused by the generally non-
symmetric distribution of quantity x*. Only in the
case of a calibration straight line and small resid-
ual variance can the distribution of x* be as-
sumed to be symmetric and approximately normal
[10].

2.1.2. Calibration straight line
A straight line is the usual calibration model in

a chemical laboratory. In some cases, however,
the straight-line model is valid only in a limited
interval, and above a limiting point {xA, yA} there
is a significant departure from linearity. For ex-
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ample, the Lambert–Beer law is valid only up to
some limiting concentrations, above which curva-
ture occurs. The model being in the form

yi=�0+�1x+�i, i=1, …, n,

the signal for the unknown concentration is

yi*=�0+�1�+� i*, j=1, …, M.

The task of calibration is to find an estimate x̂*
of parameter �, the parameter of primary interest,
and of parameters �1 and �2, the supplementary
parameters. The estimation assumes normality of
the errors �i and � j*. The estimate x̂* and its
confidence interval may be calculated by several
procedures, the straight estimate of parameter � is
obtained in the form x̂*= x̄+ (y*− ȳ)/b1, where
y* is the measured signal (or the average ȳ* for
M�1 repeated measurements, respectively) and
b1 is the estimate of the slope �1. This estimate is
generally biased and a correction can be made
with Naszodi’s estimates [54]

x̂B* = x̄+
(y*− ȳ)b1

b1
2+�2/ �

n

i=1

(xi− x̄)2

(4)

In the construction of confidence intervals of
the estimates x̂* and x̂B* for more scattered data,
the simplest is the determination of D(x̂*) with an
assumption of normality. The limits of the 95%
confidence interval are calculated by LL= x̂*−
1.96�D(x̂*) and LU= x̂*+1.96�D(x̂*). When
the slope estimate is sufficiently precise for the
approximate confidence interval for unknown
parameter � to be used in the form

LL, U=x*� t1−�/2(n−2)
�̂

�b1�
�1

n
+

(y*− ȳ)2

b1
2 �

n

i=1

(xi− x̄)2

(5)

where the variance of measurement, �2, is known.
When there are replicate values of y, and mean ȳ*
has been determined, the corresponding confi-
dence straight lines UL and UU should be calcu-
lated. The intersection of straight line UU with the
lower confidence parabola PL of the calibration
straight line leads to point LU and the intersection
of straight line UL with the upper confidence
parabola PU leads to point LL, Fig. 1.

If the variance of measurement, �2, is known it
is easy to define the 100(1−�)% confidence inter-
val of signal y* in the form UL, U= ȳ*�u1−�/2 �,
where u1−�/2 is the quantile of the normalized
normal distribution. If �2 is unknown, the in-
equality �2� ((n−2)�̂2)/��/2

2 (n−2)M may be
used, where ��/2

2 is the lower 100�/2% quantile of
the �2 distribution. The confidence interval of
signal UL, U is then calculated from

UL, U= ȳ*�u1−�/2

�̂

�M

� n−2
��/2

2 (n−2)
(6)

Instead of the quantile u1−�/2 in this equation,
for M=1 the more convenient quantile of the
Student distribution t1−�/2(n−2) is used, and the
variance �2 is replaced by its estimate s2.

For the limiting 100(1−�)% confidence
parabola of linear calibration model the Work-
ing–Hotteling relationship (cf. page 22 in [50])

PL, U=b1x+b0

� �̂
�

2F1−�(2, n−2)
�1

n
+

(x− x̄)2

�
n

i=1

(xi− x̄)2

�
(7)

Fig. 1. Determination of the confidence interval of the concen-
tration x for a calibration straight line: the absolute calibration
and a procedure for determination x* for the mean value of
analytical signal response being referred with the horizontal
line and the confidence intervals of the signal of concentration,
and f(x, b) is the predicted calibration straight line with its
confidence intervals for a predicted observation. The horizon-
tal x axis refers to the concentration and the vertical y axis to
the signal response.
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is valid. The limiting value LU represents the
solution of the equation UU=PL with respect to
variable x. The limiting value LL is the solution of
the equation UL=PU. Both equations are
quadratic with respect to variable x. From Fig. 1
it can be seen that in some cases the intersection
of a straight line with the parabola does not exist,
but in other cases the straight line of the signal
may intersect too large when the slope of the
calibration straight line is small, and such a cali-
bration straight line is a poor model. The quality
of the confidence interval around the parameter x
can be improved by:
1. repeating the signal measurement y*, i.e. in-

creasing the number of measurements M. For
a sufficient number of replicates, M, the esti-
mate UL, U can be calculated from the relation-
ship UL, U= ȳ*�u1−�/2�̂/�M with �2

replaced by the variance sy
2* and the quantile

u1−�/2 replaced by the quantile of the Student
distribution t1−�/2.

2. Narrowing the confidence parabola by elimi-
nation of influential points, as will be shown in
this paper: the examination of calibration data
quality involves the detection of influential
points, outliers and high-leverages, which
cause many problems in regression analysis by
shifting the parameter estimates or increasing
the variance of parameters. In polynomial cali-
bration models the confidence bands may be
narrowed by the use of biased estimates calcu-
lated by the method of principal component
regression [56].

3. Decreasing the residual variance s2 and so
increasing the precision of measurement, or by
the use of a correct calibration model for a
given data set. The quality of a proposed
model can be considered in case of one con-
trollable variable x directly from the scatter
plot y versus x.

2.1.3. Application of the spline function for a
calibration cur�e

For some physical dependencies which are not
of an associative nature, polynomials are quite
unsuitable and piecewise regression models (poly-
nomials) are more convenient. Unless experimen-
tal data (xi, yi), i=1, …, n, is available another

Fig. 2. Determination of the confidence interval of the concen-
tration x for a nonlinear calibration curve: the absolute cali-
bration and a procedure for determination x* for the mean
value of analytical signal response being referred with the
horizontal line and the confidence intervals of the signal
indicated by the hatched area. LL and LU are the lower and
upper limits of the confidence interval of concentration, and
f(x, b) is the predicted calibration curve with its confidence
intervals for a predicted signal response. The horizontal x axis
refers to the concentration and the vertical y axis to the signal
response.

set of knots are determined tj, j=1, …, k. Knots
form the boundaries of intervals in which individ-
ual piecewise functions are defined. In each inter-
val Ij bounded by knots [tj−1, tj ] the calibration
function is expressed by the model gj(x). The
quality of approximation here is dependent on the
number and location of individual knots tj, a form
of the function gj(x) and on the class Cm from
which the calibration model g(x) comes. Note
that function g(x) of class Cm is continuous up to
the first m derivatives. A special type of piecewise
polynomial functions are called splines, Fig. 2.

Splines Sm+1(x) are functions of class Cm

which are defined as local polynomials of maxi-
mum degree (m+1). Quadratic splines S1(x)
which are continuous and smooth, (continuous in
the first derivative), are suitable for calibration
purposes. Splines S1(x) can be simply defined as
truncated polynomials

S1(x)=�1+�2x+�3x 2+��j+3(x− tj)+
2 (8)

here with (x)+
2 =x2 for x�0 and (x)+

2 =0 for
x�0. For known tj the S1(x) is the linear regres-
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sion model. Flexibility of regression splines may
be achieved by selection of knots ti. In the pro-
posed S-PLUS program Calibration choice from
among three alternatives is possible, (a) a constant
placement of knots, (b) location of knots so that
in each interval Ij the same number of data points
is located, (c) location of knots by the user.

2.1.4. The precision limits of calibration
One of the important goals of analytical chem-

istry is to report the detection and quantification
capabilities of the smallest concentration or,
sometimes, amount of the analyte that may be
achieved with reasonable certainty when using a
given procedure. To express the precision of a
calibration, limiting values of the concentration
for which the measurement signal is still statisti-
cally significantly different from the noise are
defined:
1. The critical value, LC, of the appropriate

chemical variable (estimated net signal y, con-
centration x, or amount x) is the alternate to
the critical level, yC, which represents the up-
per limit of the 100(1−�)% confidence inter-
val of the predicted signal from the calibration
model for a concentration equal to zero, i.e.
the blank measurement. Currie [55] defined the
critical level as ‘a decision limit at which one
may decide whether or not the result of an
analysis indicates detection’, Fig. 3. This level
is concerned with the signal or measured con-
centration that corresponds to unreliable de-
tection. For x=0, an expression for the
critical level yC may be obtained

yC= ȳ−b1x̄

+ �̂t1−�(n−2)
�

1+
1
n
+

x̄2

�
n

i=1

(xi− x̄)2

(9)

Signals above this critical level yC are signifi-
cantly different from the noise. The concentra-
tion xC corresponding to this critical level yC is
determined from the calibration model from

xC=
yC− ȳ

b1

+ x̄ (10)

For decisions regarding the investigation of
actual states only the critical value of the net
state variable or of the response variable is to
be applied. These values derived from a cali-
bration of the measurement process are deci-
sion limits to be used to assess the unknown
states of systems included in this series. Look-
ing at consecutive calibrations of the same
measurement process, the critical values may
vary from one calibration to another. How-
ever, since each of the critical values is a
decision limit belonging to a particular mea-
surement series, it is meaningless to calculate
overall critical value across calibrations, and
logically inappropriate to use these as critical
values.

2. The measure of the inherent detection capabil-
ity of a CMP is the minimum detectable (true)
value, LD, of the appropriate chemical variable
[45,55]. The alternate is the detection limit yD

which corresponds to the concentration for
which the lower 100(1−�)% confidence inter-
val of signal prediction from the calibration
model is equal to yC. The signal value yD and
its corresponding concentration xD are illus-
trated on Fig. 3. The detection limit is the true
concentration at which a given analytical pro-
cedure may be relied upon to lead to detection
[45]. For the linear model the relationship

Fig. 3. Calibration design of the critical level in the response
yC and the concentration xC units and the detection limit yD

and corresponding concentration xD units. It includes the
calibration straight line and Working–Hotteling confidence
bands, cf. page 22 in [50].
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yD=yC+ �̂t1−�(n−2)
�

1+
1
n
+

(xD− x̄)2

�
n

i=1

(xi− x̄)2

(11)

may be used. Oppenhelmer [16] proposed in-
stead of (xD− x̄)2 in Eq. (11) the approxima-
tion x̄2, which is often used only. The
corresponding concentration xD is calculated
from

xD=
yD− ȳ

b1

+ x̄ (12)

The detection limit LD gives the lowest true
signal level yD which still permits detection.
The corresponding quantity xD gives the mini-
mum concentration, which can be distin-
guished from zero with probability (1−�).
The minimum detectable value xD derived
from a particular calibration shows whether
the capability of detection of the actual mea-
surement process is sufficient for the intended
purpose. The xD derived from a set of calibra-
tions may serve for the comparison, the choice
or the judgement of different laboratories or
methods, respectively.

3. As the measure of the inherent quantification
capability of a CMP, the minimum quan-
tifiable (true) value, LQ, of the appropriate
chemical variable is used. The alternate is the
quantification limit yQ, also known as the de-
termination limit, which is the smallest signal
level for which the relative standard deviation
of prediction from the calibration model is
sufficiently small and equal to the number C,
where C=0.1, usually. The quantification
limit is used to decide whether or not the
concentration of an analyte can be reliably
determined. If the predicted value at point xQ

is given by y(xQ)= ȳ+bl(xQ− x̄) and the con-
dition of quantification yQ is then equal to
�D(y(xQ))/ȳ(xQ)=C. Substitution and rear-
rangement leads to the expression

yQ=
�̂

C
�

1+
1
n
+

(xQ− x̄)2

�
n

i=1

(xi− x̄)2

(13)

In practice, in the chemical laboratory, instead
of (xQ− x̄)2 in Eq. (13) the approximation is
often used only, and the corresponding con-
centration xQ is given by

xQ=
yQ− ȳ

b1

+ x̄ (14)

For nonlinear calibration models, Schwartz
[17] recommends that the upper LU and lower
LL limits of the confidence interval of concen-
tration which correspond to different signal
levels y* be determined. Instead of the relative
standard deviation of prediction from the cali-
bration model, Schwartz uses the effective rel-
ative standard deviation

C(x*)=
LU−LL

2x*t1−�/2(n−2)
(15)

4. Alternative approaches to calibration limits:
the modified quantification limit yQ is the
value of x for which C(x)=C. This yQ limit is
found graphically by plotting C(x) against x
and substituting in the calibration model. Eq.
(15) may be used for linear models as well as
nonlinear ones.

All four definitions may be simply used to
calculate the detection limit yD and the quantifica-
tion limit yQ for nonlinear calibration models, and
also for data for which the variance of measure-
ment is not constant (heteroscedasticity), [16].
Generally, it is valid that yC�yD�yQ.

Note: for presentation of the defining relations,
the authors use L as the generic symbol for the
quantity of interest. This is replaced by y when
treating net analyte signals, and x when treating
analyte concentrations or amounts. Thus, LC, LD,
and LQ may represent yC, yD and yQ, or xC, xD

and xQ, as appropriate.
Ebel and Kamm [18] have described an alterna-

tive procedure of determination of the detection
limit yD, and this is illustrated in Fig. 4. Even in
this case for linear calibration models it is easy to
determine xP by the use of LL. Substitution of xP

into expression for LU leads to LU=yD.
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Fig. 4. The graphical procedure for determination of the
detection limit yD and xD according to Ebel and Kamm [18].

dom errors �i is zero; E(�i)=0. This is auto-
matically valid for all regression type models
containing intercept. For models without in-
tercept the zero mean of errors has to be
tested.

5. Homoscedasticity: the random errors �i have
constant and finite variance, E(� i

2)=�2. The
conditional variance �2 is also constant and,
therefore, the data are said to be
homoscedastic.

6. Uncorrelated errors: the random errors �i are
uncorrelated, i.e. cov(�i, �i)=E(�i, �i)=0.
When the errors follow the normal distribu-
tion they are also independent. This corre-
sponds to independence of the measured
quantities y.

7. Normally distributed errors: the random er-
rors �i have a normal distribution N(0, �2).
The vector y then has a multivariate normal
distribution with mean X� and covariance
matrix �2E.

When the first six conditions are met, the
parameter estimates b found by minimization of
a least-squares are the best linear unbiased esti-
mate (BLUE) of the regression parameters �.

2.2.1. Examination of the data quality
Examination of data quality involves detection

of the influential point IP (outliers and high-
leverages) [58], which cause many problems in
regression analysis by shifting the parameter esti-
mates or increasing the variance of the parame-
ters. A calibration point may be an outlier or a
potentially influential point because of errors in
the conduct of the study (instrument malfunc-
tion, recording, or data entry errors) or because
the data point is from a different population.
On the other hand, a valid data point may ap-
pear to be an outlier, have an outlier in the
residual, because the model being used is not
adequately representing the calibration. Outliers
are detected by analysis of the various types of
residuals, hat matrix elements and related statis-
tics. Diagnostic plots for detecting influential
points are sometimes also able to detect non-
normality and heteroscedasticity; a survey is pro-
vided in [57]. The most reliable tools seem to be

2.2. Regression triplet

A source of problems in an OLS application
may be found in components of the regression
triplet, i.e. the data quality for a proposed
model, the model quality for a given data set,
and the regression method quality when all as-
sumptions used in OLS are not fulfilled; regres-
sion diagnostics are used because there is no
necessity for an alternative hypothesis but all
types of deviations from an ideal regression
triplet are discovered [50,57]. There are some ba-
sic assumptions necessary for OLS to be valid.
1. Restricted parameters: the regression parame-

ters � are not bounded. In chemometric
practice, however, there are some restrictions
on the parameters, based on their physical
meaning.

2. Linearity: the regression model is linear in
the parameters, and an additive model of the
measurement errors is valid, y=X�+�.

3. Multicollinearity: the matrix of non-random
controllable values of the regressors X has a
column rank equal to m. This means that the
all pairs xj, xk are not collinear vectors. This
is the same as saying that the matrix XT X is
a symmetric regular invertible matrix with a
non-zero determinant.

4. Random errors: the mean value of the ran-
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the graph of predicted residuals [58], the Williams
graph [58] and the L–R graph [59].

2.2.2. Examination of model quality
Examination of model quality can be consid-

ered directly from the scatter plot of y versus x.
Individual parameters are tested for significance
using the Student’s t-test. The Fisher–Snedecor
F-test of significance of the regression model pro-
posed is based on the testing criterion FR=
R� 2(n−m)/[(1−R� 2)(m−1)] which has the
Fisher–Snedecor distribution with (m−1) and
(n−m) degrees of freedom, means an estimate of
the determination coefficient, n is a number of
data points and m is the number of parameters,
for a straight line m=2. With the use of FR the
null hypothesis H0: R2=0 may be tested and
concerns a test of significance of all regression
parameters �. Other statistical characteristics cal-
culated are the determination coefficient R2, the
mean quadratic error of prediction MEP, the
Akaike information criterion AIC, and the pre-
dicted coefficient of determination R� P

2 while the
standard deviation of ordinary residual s(e) ex-
amining the linearity of the proposed model can
be used as a resolution criterion among various
models; a definition may be found in [50,57]. To
check a proposed regression model with reference
to the data, a simple test based on the residuals is
the sign test. Incorrectness of a proposed model
causes non-randomness of residuals, and this non-
randomness may be tested by a sign test. The
number of sequences nU of the same sign of
residuals is estimated, for example, for residuals
−1, −1, 1, −1, 1, 2, 1 the number of sequences
is equal to 4, nU=4. Then, the number of residu-
als with a positive sign (n+) and a negative sign
(n−) is determined. For medium sample sizes the
theoretical number of sequences nt and its vari-
ance Dt are defined by

nt=1+
2n+n−

n+ +n−

�1+
n
2

(16)

Dt=
2n+n−(2n+n− −n+ +n−)
(n+ +n−)2(n+ +n− −1)

�
n
4

(17)

When nU=nt−2�Dt, there is a trend in the
residuals and the model is incorrect.

2.2.3. Examination of the regression method used
Several tests for the fulfilment of three impor-

tant assumptions for the least-squares method are
performed, namely, homoscedasticity, absence of
autocorrelation, and normality of random errors.

The Cook–Weisberg test of the homoscedastic-
ity of residuals; identification of heteroscedasticity
in data is based on the idea that the variance of a
measured quantity at the ith point is an exponen-
tial function of the variable xi� of the type � i

2=�

exp(� xi �) where xi is the ith concentration. The
test for homoscedasticity is carried out by check-
ing the null hypothesis H0: �=0. Cook and Weis-
berg [60] introduced the test criterion

Sf=

� �
n

i=1

(ŷi− ȳ)ê i
2n2

2�̂4 �
n

i=1

(ŷi− ȳ)2

(18)

where ȳ= (	n
i=1ŷ)/n. When the null hypothesis is

valid the test statistics has approximately the
�2(1) distribution with one degree of freedom.

The test of the normality of errors: at first, the
normality of errors may be simply examined by a
Q–Q plot containing the order statistics of classi-
cal residuals ê(i ) in dependence on the quantile of
the normalized normal distribution uPi

for Pi= i/
(n+1). Since small samples exhibit a supernor-
mality effect, independent recursive residuals are
used instead of classical, because this effect then
does not exist [50]. At second, the most conve-
nient test for linear models seems to be the Jar-
que–Berra test [61] which is based on the criterion

L(ê)=n
�ĝ1

6
+

(ĝ2−3)2

24
n

(19)

where ĝ1 is the residual skewness, ĝ2 is the
residual kurtosis. When L(ê)��0.95

2 =5.99, the
null hypothesis H0 about the error normality is
rejected. In this test, the supernormality effect of
small samples may again disturb statistical testing.

Violation of some assumptions for OLS
method: according to the test for fulfillment of the
assumptions for the least-squares method LS, and
the result of regression diagnostics, a more accu-
rate regression model is constructed as follows:
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(a) When heteroscedasticity is found in the
data, the weighted least-squares method
WLS is used, cf. page 102–104 in [50].

(b) When autocorrelation is found in the data,
the generalized least-squares method GLS is
used, cf. page 110 in [50].

(c) When some restrictions apply to the
parameters, the conditioned least-squares
method CondLS is used, cf. page 98 in [50].

(d) When multicollinearity is found in the data
or when polynomial calibration models are
used, the principal component method PCR
is used, cf. page 116 in [50,56].

(e) When all variables are subject to random
errors, the extended least-squares method
ELS is used, cf. page 121 in [50].

(f) When the data have an error distribution
other than normal, heteroscedasticity or the
data contain outliers or high-leverage points,
some robust methods or the iterative
method of reweighted least- squares IRWLS
are used, cf. page 126 in [50]: when the dis-
tribution of the errors in the dependent vari-
able y is not normal (violation of
assumption 7 for OLS method, cf. [57]) the
parameter estimates obtained by OLS are
not the best possible estimates. In such a
case, instead of the least squares criterion
some other robust criterion can be used,
that is not so sensitive to violation of the
assumption about the error distribution, and
also not sensitive to influential points. The
most convenient criteria seem to be the
group of M-estimates: all M-estimates are
related to the minimization criterion

UM= �
n

i=1

	
�ei

�

n
= �

n

i=1

	
�yi−x i

TbM

�

n
(20)

where xi is the ith value of concentration, � is
the parameter of spread and 	(.) is a convenient
function determined from the probability density
p(�). By analytical minimization of UM, a set of
normal equations is obtained:

�
n

i=1



�ei

�

n
xij=0, j=1, …, m (21)

where the function 
(x)=�	(x)/�x represents

the derivative of function 	(x) with respect to x.
Then, if ri=ei/�, this equation may be expressed
in a form which corresponds to the weighted
least-squares method WLS

�
n

i=1

wi(r)yi xij= �
n

i=1

�
m

k=1

wi(r)xij xikbk, j=1, …, m

(22)

where wi(r)=
(ri)/ri. The parameters estimated
by the iterative method of reweighted least-
squares IRWLS by using the following proce-
dure:
1. Select wi(r)=1, i=1, …, n and set j=1.
2. Estimate the residuals by OLS method. In

order to reach convergence, corrected least-
squares estimates are used [63].

3. Calculate the weights wi(rj) from Eq. (22),
for j= j+1.

4. Use the reweighted least-squares to estimate
bj and the residuals rj.

5. If the estimates bj and bj+1 are not close
enough, go to step 3, otherwise bj=bM.

It should be noted that in the jth iteration the
weights used have been calculated from residuals
êj−1 in the ( j−1)th iteration. By applying this
method, the robust estimate of parameter and
can be evaluated. An independent estimate �̂

from the residuals êj−1 determined in the previ-
ous iteration seems to be most convenient. A
useful expression is

�̂=
med(�êi−med(êi)�)

0.6745
(23)

where med(êi) is the median calculated from all
residuals and for sake of simplicity, the indices
( j−1) denoting the actual iteration used for
residual estimation, are omitted. The constant
0.6745 for large sample size fixes the value �̂ to
be equal to the residual standard deviation �̂

but forms a normal error distribution. A simpler
option is �̂=2.1med(�êi �). The advantage of the
IRWLS method is the fact that after termination
of iterative refinement of parameter estimate the
covariance matrix of OLS method is already the
estimate D(bM). The regression model identifica-
tion and parameters estimation also may be
found in the book by Walter and Pronzato [64].
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3. Methodology

3.1. Procedure of calibration model building

The quality of the calibration model is evalu-
ated with the use of classical tests, regression
diagnostics and some supplementary information
about the ‘data+model+method’. The proce-
dure for construction of a calibration regression
model consists of following steps:
1. Proposal of a calibration model: the procedure

should always start from the simplest linear
model of the straight line.

2. Regression triplet analysis.
(a) Examination of the data quality: if influ-

ential points are found, it is necessary to
decide whether these points should be
eliminated from the data. If points are
eliminated, the whole data treatment must
be repeated.

(b) Examination of the model quality: if some
parameters are statistically insignificant,
they are omitted in the new model.

(c) Examination of the regression method
used: according to the test for fulfilment of
assumptions for the least-squares method,
and the result of regression diagnostics,
the more accurate regression model is
constructed.

3. Construction of the more accurate calibration
model: on base of results of the regression
triplet the new and more accurate calibration
model is proposed.

4. Precision limits of calibration and the point
and interval estimates of unknown concentra-
tion: the precision of a calibration is expressed
with three limiting values of the concentration
for which the measurement signal is still statis-
tically significantly different from the noise:
the critical value, LC (Eqs. (9) and (10)), the
minimum detectable (true) value, LD (Eqs. (11)
and (12)), and the minimum quantifiable (true)
value, LQ (Eqs. (13)–(15)).

3.2. Software used

For creation of regression diagnostic graphs
and the computation of regression based charac-

teristics the in-house constructed algorithms Cali-
bration and Linear Regression in S-PLUS were
written, and are freely available on the Internet at
the address URL: http://www.trilobyte.cz/cali-
bration. On basis of the authors’ own experiences
with both algorithms, the commercial software
ADSTAT 2.5 (Advanced Statistics) (Trilobyte Statis-
tical Software Ltd., Pardubice, Czech Republic)
was constructed cf. [62].

4. Results and discussion

4.1. Case study 1. The effect of influential points
on precision limits and inter�al estimate in the
additi�e model of measurement errors

The relationship between absorbance y and the
concentration of nitrate x in solution is described
by the Lambert–Beer law, y=�dx+const, where
d is the cuvette length in cm (here d=1 cm), � is
the molar absorptivity and const is the ab-
sorbance of the blank. It is to estimate the
parameters of the Lambert–Beer law and three
precision limits, the critical level LC, the detection
limit LD and the quantification limit LQ with the
interval estimate of one unknown sample which
with replicate absorbances of y*=0.601, 0.602,
0.600, 0.599, M=4.

4.1.1. Data
Calibration graph for n=16, {1000*x [mg of

NO3
−], y [mAU]}: 5 110, 16.1 272, 16.5 224, 21.3

274, 27.5 338, 32.4 389, 38.2 449, 45.3 522, 52.3
595, 57.5 649, 63.2 708, 71.2 791, 80.3 885, 86.2
946, 91.8 1005, 98.2 1067.

4.1.2. Solution

4.1.2.1. Proposal of a calibration model. OLS
method and original data gives the calibration
straight line model y=64.78(�6.35)+10.20(�
0.11) x, where the standard deviations of the
parameter estimates are given in brackets. Pres-
ence of influential points causes the interval esti-
mates [LL, LU] for b0 and also for b1 to be rather
broad.

http://www.trilobyte.cz/calibration
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4.1.2.2. Regression triplet
Examination of the data quality. In step 1 three

diagnostic plots, i.e. the graph of predicted residu-
als (Fig. 5a), the Williams graph (Fig. 5b) and
Gray’s L–R graph (Fig. 5c) indicate that point
number 2 is an outlier. When this masking point
is removed and influential points detection is re-
peated, points numbers 1, 16 and 15 are detected
as outliers with the graph of predicted residuals
(Fig. 5d), points number 1 and 16 with the
Williams graph (Fig. 5e) and points numbers 1
and 16 with the Gray’s L–R graph. It is evident
that, apart from point number 2 which is strongly
masking the influence of other points, that there
are two other influential points, numbers 1 and
16, and to some extent number 15. Point number
2 also causes heteroscedasticity in the data and
the non-normality of random errors being de-
tected in residuals (Table 1). The mean quadratic
error of prediction MEP is 190.43, AIC=82.86,
and the statistics describing fitness are: the resid-
ual standard deviation s(e)=12.57 mAU and the
mean of the absolute values of residuals ē=

6.53 mAU. The residual skewness is 8.92 and the
residual kurtosis 11.30 so that the residual distri-
bution is strongly asymmetrical with a sharp
peak, and, therefore, non-normal. In step 2 three
outliers (number 1, 2, 16) were removed from the
data and OLS was applied again. Better fit was
proven by all regression diagnostics: lower value
MEP=0.11 and AIC= −30.73, much lower val-
ues of s(e)=0.29 mAU and ē=0.19 mAU. The
resulting residuals distribution is symmetric and
exhibits homoscedasticity. Due to the better fit in
step 2, the calibration results are also more reli-
able (Fig. 6): the point estimate of the unknown
concentration x* is more accurate in step 2 and
its interval estimate [LL, LU] is also nearer, the
interval limits having changed from [51.59, 53.40]
in step 1 to [52.75, 52.80] in step 2.

Examination of the model quality. Even though
both parameter estimates are statistically signifi-
cant at the significance level �=0.05 in step 1, in
step 2 more reliable estimates of intercept and
slope with their standard deviations are achieved.
Therefore, the interval estimates of the intercept

Fig. 5. Diagnostic plots indicating influential points based on residual and hat matrix elements for the original data set of Example
1: (a) graph of predicted residuals, (b) Williams graph, (c) Gray’s L–R graph, and these plots after excluding point number 2 from
data: (d) graph of predicted residuals, (e) Williams graph, (f) Gray’s L–R graph.
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Table 1
The effect of influential points on calibration precision limits
and interval estimates of unknown concentration of nitrate for
16 points of calibration data {x [�g of NO3

−], y [mAU]} in the
additive model of measurement errors

Step 2Characteristic Step 1

Parameters of calibration model y=�0+�Ix, (in brackets
the S.D.)

64.78 (6.35) 53.03 (0.19)Intercept b0(s0),
[mAU]

[LL, LU] for b0 [51.16, 78.39] [52.61, 53.45]
Slope b1(s1) 10.36 (0.00)10.20 (0.11)

[10.36, 10.37][9.96, 10.43][LL, LU] for b1

Critical le�el
53.60, 0.05yC [mAU], xC [�g] 83.38, 1.8

Detection limit
101.47, 3.60yD [mAU], xD [�g] 54.17, 0.11

yD [mAU], xD [�g] 100.99, 3.55 54.17, 0.11
(Ebel, Kamm)

Quantification limit
54.74, 0.16119.07, 5.33yQ [mAU], xQ [�g]

Unknown concentration
52.78x* [�g] for 52.49

y*=600.0 mAU,
M=4

[52.75, 52.80][51.59, 53.40][LL, LU] for x* [�g]

Regression diagnostics for a fitness test of the calibration
straight line
Mean error of 190.43 0.111

prediction, MEP
82.86Akaike information −30.73

criterion, AIC
Residual standard 0.2912.57

deviation s(e)
[mAU]

0.19Mean of absolute 6.53
values of residuals
[mAU]

0.02Residual skewness, g1 8.92
3.42Residual kurtosis, g2 11.30

RejectedHomoscedasticity of Accepted
errors is

Normality of random Rejected Accepted
errors is

False TrueConclusion:
calibration results
are

The repeated signal (M=4) of unknown sample y* [mAU]=
601.0, 602.0, 600.0, 599.0 leads to the mean ȳ* [mAU]=600.0.
Step 1, straight line fitted data with outliers using OLS. Step 2,
straight line fitted data without three outliers using OLS.

and slope also are nearer (Fig. 6), from [51.16,
78.39] for b0 in step 1 to [52.61, 53.45] in step 2
and from [9.96, 10.43] for b1 in step 1 to [10.36,
10.37] in step 2. Fig. 6 shows that the precision
limits and all three regions are lower in step 2
and, therefore, calibration is more precise and
reliable than for the original data with all out-
liers. It can be concluded that influential points
have a strong effect on the values of precision
limits in calibration and also on the interval es-
timate of unknown concentration.

Examination of the regression method used. Of
the seven assumptions of OLS, only ho-
moscedasticity and normality of random errors
need be examined here. Removing outliers from
data, heteroscedasticity (tested with the Cook–
Weisberg test) is now rejected and residuals nor-
mality (tested with the Jarque–Berra test) is
accepted. Therefore, the crucial assumptions are
valid and OLS can be applied to give final re-
sults.

4.1.2.3. Construction of a more accurate calibra-
tion model. When point 2 is omitted, the classi-
cal least-squares method gives the residual
regression model y=54.97(�0.78)+10.33(�
0.01) x, with determination coefficient R� 2=
0.9999, the quadratic error of prediction
MEP=2.93, AIC=82.86 and the residual stan-
dard deviation s(e)=1.40 mAU. All these
statistics demonstrate a significant improvement
in the statistical regression characteristics, too.
Despite the good degree of fit of the regression
straight line to the experimental points, the
residual diagnostics indicate the presence of
some other influential points, i.e. points 1 and
16 and to some extent 15. Since calibration re-
quires the highest precision, points 1 and 16
were removed from the original data set. The
regression model by OLS now has the form y=
53.03(�0.19)+10.36(�0.00)x with determina-
tion coefficient R� 2=0.9999, the mean quadratic
error of prediction MEP=0.11, AIC= −30.73,
the residual standard deviation s=0.29 mAU,
and the mean of absolute values of residuals
ē=0.19. Descriptive statistics of residuals prove
better fitness and, therefore, more reliable cali-
bration results to have been achieved.
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4.1.2.4. Precision limits of calibration. In Table 1
and on Fig. 6 it is shown that in step 1 region I of
unreliable detection is from 0 up to xC=1.80 �g
NO3

−, region II of qualitative estimation is from
xC=1.80 �g NO3

− up to xD=3.60 �g NO3
−, and

region III of quantitative estimation of unknown
concentration is above xQ=5.33 �g NO3

−. In step
2 region I is [0, 0.05 �g NO3

−], region II is [0.05,
0.11 �g NO3

−] and region III above 0.16 �g NO3
−.

Therefore, it may be concluded that the estimates
for the critical level (yC, xC), the detection limits
(yD, xD) and the quantification limits (yQ, xQ)
strongly depend on the influential points.

4.2. Case study 2. The effect of heteroscedasticity
on precision limits and inter�al estimate in the
multiplicati�e model of measurement errors

The calibration model for the determination of
the unknown concentration of silver content [ng
dm−3] in [Bi(m)Sb(n)](2)Ag(z)Te(3) alloy for 40
points of calibration data {x [ng ml−1], y [mAU]}
in the multiplicative model of measurement er-

rors. The signal of unknown sample was
[mAU]=300.0.

4.2.1. Data
Calibration graph, n=40, {x [ppm], y [mAU]}:

0.00 27.88, 0.00 21.46, 0.00 20.69, 0.00 22.17, 0.00
19.10, 0.50 72.59, 0.50 78.04, 0.50 84.45, 0.50
73.89, 0.50 72.50, 1.01 109.16, 1.01 111.66, 1.01
126.21, 1.01 114.88, 1.01 114.08, 1.52 179.86, 1.52
178.19, 1.52 172.80, 1.52 164.17, 1.52 173.14, 2.02
211.92, 2.02 221.80, 2.02 220.57, 2.02 209.45, 2.02
220.93, 2.52 266.71, 2.52 291.74, 2.52 268.55, 2.52
277.55, 2.52 261.50, 3.53 355.50, 3.53 359.75, 3.53
375.93, 3.53 357.84, 3.53 361.24, 4.54 433.34, 4.54
475.18, 4.54 436.88, 4.54 454.61, 4.54 525.00.

4.2.2. Solution

4.2.2.1. Proposal of a calibration model. In step 1
the calibration straight line y=23.3(�3.7)+
97.1(�1.6) x was proposed (where the standard
deviation of parameter estimates are in brackets)
and fitted through original data with the use of
OLS, Table 2.

Fig. 6. The three principal analytical regions of calibration precision limits and the point and interval estimates [LL, LU] of the
unknown concentration in dependence on regression triplet analysis for Example 1 and Table 1 where Region I means ‘the region
of unreliable detection’, Region II means ‘the region of qualitative estimation’, and Region III means ‘the region of quantitative
estimation of unknown concentration’. Calibration precision limits xC, xD and xQ, and with [LL, LU] are calculated. In Step 1 the
original data with all outliers are fitted with the straight line using OLS while in Step 2 the data without the three outliers numbers
1, 2, and 16 and using OLS.
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Table 2
The effect of influential points and heteroscedasticity on calibration precision limits and interval estimates of unknown concentration
of silver in [Bi(m)Sb(n)](2)Ag(z)Te(3) alloy for 40 points of calibration data {x, [ng ml−1], y, [mAU]} in the multiplicative model
of measurement errors

Step 2 Step 3Characteristic Step 1

Parameters of calibration model y=�0+�1x, (in brackets the S.D.)
Intercept b0(s0), [mAU] 23.04 (1.99)23.32 (3.77) 24.34 (1.42)
[LL, LU] for b0 [19.02, 27.07][15.68, 30.96] [21.44, 27.25]

97.42 (1.36)97.11 (1.56) 95.16 (0.60)Slope b1(s1)
[94.66, 100.18] [93.94, 96.39][LL, LU] for b1 [93.96, 100.27]

Critical le�el
28.66, 0.06yC [mAU], xC [�g] 28.36, 0.0433.99, 0.11

Detection limit
44.27, 0.22yD [mAU], xD [�g] 34.11, 0.11 32.32, 0.08

33.95, 0.11 32.27, 0.0843.91, 0.21yD [mAU], xD [�g] (Ebel, Kamm)

Quantification limit
39.40, 0.1754.19, 0.32 36.22, 0.13yQ [mAU], xQ [�g]

Unknown concentration
x̄* [�g] for ȳ*=300.0 mAU 2.842.85 2.90

[2.77, 2.93][2.77, 2.93] [2.86, 2.93][LL, LU] for x̄* [�g]

Regression diagnostics for a fitness test of the calibration straight line
Mean error of prediction, MEP 250.6228.9 31.8
Akaike information criterion, AIC 213.8 140.6 82.7
Residual standard deviation, s(e) [mAU] 14.13 5.66 5.53

8.498.65 4.52Mean of absolute values of residuals, ē [mAU]
Residual skewness, g1 3.34 8.10 0.17

13.9510.95 2.45Residual kurtosis, g2

RejectedHomoscedasticity of errors is AcceptedRejected
AcceptedRejected RejectedTrend in residuals is

Normality of random errors is Rejected Rejected Rejected
False TrueFalseConclusion: calibration results are

The signal of unknown sample was y* [mAU]=300.0. Step 1, straight line fitted data with outliers using OLS. Step 2, straight line
fitted data with outliers using IRWLS. Step 3, straight line fitted data without eight outliers using IRWLS.

4.2.2.2. Regression triplet
Examination of the data quality. The straight line

was fitted through points with the use of OLS and
8 outliers were detected (point numbers 8, 11, 27,
33, 36, 37, 38, 40). Heteroscedasticity in the data
was detected.

Examination of the model quality. Original data
were fitted with the straight line and using the
IRWLS method. Regression diagnostics prove that
better fit was achieved. The IRWLS method found
the model y=23.0(�2.0)+97.4(�1.4)x.

Examination of the regression method quality. As

heteroscedasticity and non-normality of random
errors in signal values were detected, the IRWLS
method was applied again on the data without the
eight outliers. The resulting model y=23.3(�
1.4)+95.2(�0.6)x seems to be more reliable as the
regression diagnostics achieved better values than
in previous steps.

4.2.2.3. Precision limits of calibration. Table 2 and
Fig. 7 show that from step to step precision limits
decrease and the confidence interval for unknown
concentration is nearer.
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4.3. Case study 3. The effect of the calibration
model proposed on precision limits and inter�al
estimate in the multiplicati�e model of measure-
ment errors

The calibration model of chromium content
[ppm] measured spectrophotometrically leads to
the calibration curve. It is to examine a regres-
sion triplet and its effect on the precision limits
and point and interval estimates of the unknown
concentration for straight line and IRWLS and
for the spline function. The signal of the un-
known sample for M=4, y* [mAU] is 500.3,
501.4, 499.5, 499.8 leading to ȳ*=500.0.

4.3.1. Data
Calibration graph, n=14, {x [ppm], y

[mAU]}: 0.99 59.0, 2.01 111.0, 2.98 162.0, 5.02
257.0, 6.99 343.0, 9.03 422.0, 11.10 486.0, 13.70
558.0, 17.40 642.0, 20.02 711.0, 24.90 807.0,
29.70 865.0, 35.30 899.0, 38.10 919.0.

4.3.2. Solution

4.3.2.1. Proposal of a calibration model. In step
1 the calibration straight line y=40.4(�14.7)+
39.5(�2.7)x was proposed (where the standard
deviation of parameter estimates are in brackets)
and fitted through original data with the use of
the IRWLS method.

4.3.2.2. Regression triplet
Examination of the data quality. As the

straight line does not fit the data well, influen-
tial points of a straight line model were not
indicated. Poor fitness proves false calibration
results (Table 3) and the model must be
changed.

Examination of the model quality. Original
data were fitted with the quadratic spline func-
tion with the use of the IRWLS method. Re-
gression diagnostics for a fitness test prove that
the quadratic spline fits the data better and,

Fig. 7. The three principal analytical regions of calibration precision limits and the point and interval estimates [LL, LU] estimates
of the unknown concentration in dependence on regression triplet analysis for Example 2 and Table 2. Description of regions is the
same as in Fig. 6: in Step 1 the original data with all outliers are fitted with the straight line using OLS, in Step 2 the same as in
Step 1 but using the IRWLS method, and in Step 3 the original data without eight outliers and using the IRWLS method were fitted
with the straight line.
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Table 3
The effect of the model proposed and heteroscedasticity on
calibration precision limits and interval estimates of the un-
known concentration of chromium for 14 points of calibration
data {x [ppm], y [mAU]} in the multiplicative model of
measurement error

Characteristic Step 2Step 1

Parameters of calibration model y=�0+�1x (+�2x2),
where in brackets the S.D.

40.4 (14.7) 26.6 (4.5)Intercept b0(s0),
[mAU]

[LL, LU] for b0 [8.3, 72.4] [16.8, 36.4]
Slope b1(s1) 47.4 (0.6)39.5 (2.7)

[46.0, 48.8][33.8, 45.3][LL, LU] for b1

----Quadratic term b2(s2) −0.6 (0.0)
[−0.7, −0.6][LL, LU] for b2 [---, ---]

Critical le�el
54.4, 0.54yC [mAU], xC [�g] 74.9, 0.87

Detection limit
yD [mAU], xD [�g] 78.0, 1.05105.3, 1.64

102.0, 1.56 76.7, 1.02yD [mAU], xD [�g]
(Ebel, Kamm)

Quantification limit
yQ [mAU], xQ [�g] 100.3, 1.54132.6, 2.33

Unknown concentration
x̄* [�g] for ȳ*=500.0 11.62 12.03

mAU, M=4
[11.54, 12.54][LL, LU] for x̄* [�g] [10.37, 13.31]

Regression diagnostics for a fitness test of the calibration
graph
Mean error of 82772.8 267.9

prediction, MEP
112.0 59.6Akaike information

criterion, AIC
7.66Residual standard 51.09

deviation, s(e)
[mAU]

75.50 9.41Mean of absolute
values of residuals,
ē [mAU]

Residual skewness, 4.21 0.53
g1(e)

Residual kurtosis, 4.90 2.04
g2(e)

RejectedHomoscedasticity of Accepted
errors is

Trend in residuals is RejectedAccepted
AcceptedNormality of random Rejected

errors distribution
is

Conclusion: TrueFalse
calibration results
are

The repeated signal (M=4) of unknown sample y* [mAU]=
500.0, 501.0, 499.0, 500.0 mAU leads to the mean ȳ* [mAU]=
500.0. Step 1, calibration straight line fitted data using
IRWLS. Step 2, calibration curve fitted data using the
quadratic spline and IRWLS.

therefore, the calibration results are more reli-
able in step 2 than in step 1.

Examination of the regression method quality.
As heteroscedasticity and non-normality of ran-
dom errors in signal y were proven in the data
(the multiplicative model of measurement er-
rors), OLS does not seem to be a convenient
regression
method and the IRWLS must be used. Fig. 8
shows calibration precision limits in step 1 and
in step 2. It is obvious that the more convenient
calibration model with an application of the
weighted least squares IRWLS leads to a more
optimistic calibration precision and nearer confi-
dence interval of the unknown concentration.

5. Conclusions

The major goal of this study was to propose
a procedure that allows the use of regression
triplet examination, namely when some assump-
tions for OLS are violated. For testing assump-
tions for OLS regression diagnostics are
recommended as they do not require a knowl-
edge of an alternative hypothesis or the fulfill-
ment of some conditions of the classical test,
but all kinds of deviations from the ideal state
are discovered. Selected diagnostic plots were
chosen as suitable to give reliable indication
of influential points. The spread of points
around the calibration straight line is related
to the precision of the instrument. This has
a significant effect on the critical level, detection
and quantification limit, and also on the
confidence interval for the unknown concen-
tration. In evaluating calibration experiments,
attention should be paid to the model and
to the data quality, i.e. the influential points de-
tection.

Another major objective of this study was to
provide a comprehensive guide to the regression
triplet effect on the statistical uncertainty of the
unknown concentration (amount) and on preci-
sion limits. It was proven that all three precision
limits strongly depend on the influential points,
model proposed and the heteroscedasticity in
data.
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Fig. 8. The three principal analytical regions of calibration precision limits and the point and interval estimates [LL, LU] of the
unknown concentration in dependence on regression triplet analysis for Example 3 and Table 3. Description of regions is the same
as in Fig. 6: in Step 1 the original data with all outliers are fitted with the straight line using IRWLS, and in Step 2 the original data
are fitted with the quadratic spline and using IRWLS.
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[7] H. Scheffé, A statistical theory of calibration, Ann. Stat.
1 (1973) 1–37.

[8] L.T. Frazier, An analysis of a bayes inverse regression
method of confidence intervals in linear calibration, J.
Stat. Comp. Simul. 3 (1974) 99–103.

[9] J.D. Ingle, R.L. Wilson, Difficulties with determining the
detection limit with nonlinear calibration curves in spec-
trometry, Anal. Chem. 48 (1976) 1641–1642.

[10] L.M. Schwartz, Nonlinear calibration curves, Anal.
Chem. 48 (1976) 2287–2289.

[11] L.M. Schwartz, Nonlinear calibration, Anal. Chem. 49
(1977) 2062–2068.

[12] ACS Committee on Environmental Improvement, Guide-
lines for data acquisition and data quality evaluation in
environmental chemistry, Anal. Chem. 52 (1980) 2242–
2249.

[13] T. Lwin, J.S. Maritz, A note on the problem of statistical
calibration, Appl. Stat. 29 (1980) 135–141.

[14] P.J. Brown, Multivariable calibration, J. R. Stat. Soc. B
44 (1982) 287–321.

[15] W. Merkle, Statistical methods in regression and calibra-
tion analysis of chromosome aberration data, Rad. Env.
Biophys. 21 (1983) 217–233.

[16] L. Oppenhelmer, T.P. Capizzi, R.M. Weppelman, H.
Mehta, Determining the lowest limit of reliable assay
measurement, Anal. Chem. 55 (1983) 638–643.

[17] L.M. Schwartz, Lowest limit of reliable assay measure-
ment with nonlinear calibration, Anal. Chem. 55 (1983)
1424–1426.

[18] S. Ebel, U. Kamm, Statistische definition der Bestim-
mungsgrenze, Fresenius Z. Anal. Chem. 318 (1984) 293–
294.

[19] D.L. Massart, L. Kaufman, Least median of squares: a
robust method for outlier and model detection in regres-
sion and calibration, Anal. Chim. Acta 187 (1986) 171–
179.

[20] A. Dobrigal, D.A.S. Fraser, Line calibration and condi-
tional inference, Commun. Stat. Theory Meth. 16 (1987)
1037–1048.

[21] R. Smith, M. Corbett, Measuring marathon courses: an
application of statistical calibration theory, Appl. Stat. 36
(1987) 283–295.



M. Meloun et al. / Talanta 57 (2002) 721–740 739

[22] R. Tibshirani, Noninformative priors for one parameter
of many, Biometrika 76 (1989) 604–608.

[23] B.P. Carlin, A.E. Gelfand, A sample reuse method for
accurate parametric empiricas bayes confidence intervals,
J. R. Stat. Soc. B 53 (1991) 189–200.

[24] J.J. Lee, A note on the conditional approach to interval
estimation in the calibration, Biometrics 47 (1991) 1573–
1580.

[25] C.h. Osborne, Statistical calibration: a review, Int. Stat.
Rev. 59 (1991) 309–336.

[26] D.L. MacTaggart, S.O. Farwell, Analytical use of linear-
regression, part. I: regression procedures for calibration
and quantitation, J. AOAC Int. 75 (1992) 594–608.

[27] R.L. Cooley, Exact scheffé-type confidence intervals for
output from groundwater flow models, Water Resources
Res. 29 (1993) 35–50.

[28] R.D. Fisch, G.A. Strehlau, A simplified approach to
calibration confidence sets, Am. Stat. 47 (1993) 168–171.

[29] L.A. Currie, G. Svehla, Nomenclature for the presenta-
tion of results of chemical analysis, Pure Appl. Chem. 66
(1994) 595–608.

[30] M.C. Ortiz, J. Arcos, J.V. Juarros, J. López-Palacios,
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