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Statistical models, particularly regression models, are ex-
tremely useful devices for extracting and understanding the
essential features of a set of data. These models, however, are
nearly always approximate descriptions of more complicated
processes, and because of this inexactness the study of the
variation in the results of an analysis with minor modifications
of the way the problem is formulated becomes important. There
are a number of common difficulties associated with real
datasets. The first involves the detection and elimination of
outliers in the original data. A problem with outliers is that they
can strongly influence the model, especially when using least
squares criteria, so a multi-step procedure is required, first to
identify whether there are any samples that are atypical of the
dataset, then to remove them, and finally to reformulate the
model. A second problem is that of correlation between
parameters in the model. Strong correlation often leads to an
unstable model, although the data may be predicted well, there
is little physical meaning to the model and predictions on
samples left out of the training set can be poor. This article
addresses these two problems, surveys several methods,
recommends solutions and illustrates these with case studies.
The first part of this paper describes a series of powerful
general diagnostics for detecting observations that differ from
the bulk of the data. These may be individual observations that
do not belong to the general model, i.e. influential points or
outliers. The identification of influential points and regression
diagnostics is a relatively new topic in chemometrics literature,
but is rapidly gaining recognition and acceptance by practitio-
ners as a supplement to the traditional analysis of residuals.
Outliers in multivariate data can severely affect the results of
regression analyses. We think of data as being divided into two
classes (1) good observations (the majority of data) reflecting
population scatter of data and (2) the outliers (if any), being a
part of the so-called influential points. The goal of any outlier
detection is to find this true partition and, thus, separate good
from outlying observations. The detection, assessment, and
understanding of influential points are major problems in
regression model building, as is evident from the many
measures of influential points that have been proposed in the
literature over the last two decades.3-37 This area was initially
studied in regression analysis as a single case approach to the
detection of outliers by Belsey et al.,2 Cook and Weisberg,3
Atkinson,* Chatterjee and Hadi,5 Barnett and Lewis,® Welsch,”
Welsch and Peters,8 Weisberg,® Rousseeuw and Leroy,!0 and
Brownlee.!! A single case approach to the detection of outliers
can, however, fail because of the masking effect, in which
outliers go undetected because of the presence of another,
usually adjacent, observation. A single masked outlier is easily
detected by deletion diagnostics, in which one observation at a
time is deleted, followed by the calculation of new residuals and
parameter estimates. With two outliers, pairs of observations
can be deleted, and the process can be extended to the deletion
of several observations at a time. A difficulty both for
computation and interpretation is the explosion of the number of
combinations to be considered. An alternative is the repeated
application of single deletion methods. Regression diagnostics
represent procedures for an examination of the regression
triplet (data, model, method) for identification of (a) the data
quality for a proposed model; (b) the model quality for a given
set of data; (c) a fulfillment of all least-squares assumptions.
The main difference between the use of regression diagnostics
and classical statistical tests is that there is no necessity for an
alternative hypothesis, but all kinds of deviations from an ideal
state are discovered. Our concept of exploratory regression
analysis is based on the question: ‘does the user know more
about the data than the computer?”. Numerous influence
measures have been proposed for data analysis assessing the
influence of individual cases over the last two decades;12-35 they
also represent a relatively new topic in the chemometrics
literature, especially in the last ten years. In this paper influence
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diagnostics are critically surveyed, commented on and com-
pared using as an illustrative example a model of the cadmium
content in wheat for food, in particular the variation of the
cadmium content of the ear, the leaf, culm and node, and the
root system.

The second part of the paper examines the problem of
collinearity in multiple linear regression (MLR), defined as
approximate linear dependencies among the independent varia-
bles. This problem arises when at least one linear combination
of the independent variables is very nearly equal to zero, but the
term collinear is often applied to the linear combination of two
variables. It is known that given strong multicollinearity the
parameter estimates and hypotheses tests are affected more by
the linear ‘links’ between independent variables than by the
regression model itself. The classical t-test of significance is
highly inflated owing to the large variances of regression
parameter estimates and the results of statistical analysis are
often unacceptable. The problem of multicollinearity has been
addressed by means of variable transformation, several biased
regression methods, Stein shrinkage,0 ridge regression,41:42
and principal component regression and its variations:43-44 for a
brief review, see for example Wold et al.45 Belsey,*¢ Bradley
and Srivastava,*? and Seber,*8 among others, have discussed the
problems that can be caused by multicollinearity in polynomial
regression, and have suggested certain approaches to reduce the
undesirable effects of multicollinearity. Although ridge regres-
sion has received the greatest acceptance, all have been used
with apparent success in various problems. Biased regression
methods attack the multicollinearity problem by computation-
ally suppressing the effects of the collinearity, but should be
used with caution.#® While ridge regression does this by
reducing the apparent magnitude of the correlations, principal
component regression attacks the problem by regressing y on
the important component variables to the original variables. In
this paper discussion is limited to examples of polynomial
regression, but the results can be readily extended to other forms
of regression models providing the number of variables is less
than the number of samples. Regression estimators based on
generalized principal components are adopted. This general-
ization of classical principal component regression (PCR)
avoids problems with ‘jump’ in regression results due to
neglecting small principal components. The results of regres-
sion are continuously changed as the precision parameter P
varies. Suitable bias selection based on the mean error of
prediction (MEP) is used. The method of generalized principal
component regression is demonstrated on an illustrative
example solving a problem in clinical biochemistry: for the age
dependence of 17-hydroxypregnenolone, a polynomial regres-
sion model was built and the question answered as to whether
age-related changes in the concentration of this steroid in men
are significant.

1. Indication of single influential points, outliers
and high-leverages

1.1 Theoretical

1.1.1 Best linear unbiased estimate of the regression
parameters (BLUE). A linear regression model is a model
which is formed by a linear combination of explanatory
variables x or their functions, y = X + & Vector y has
dimensions (n X 1) and matrix X dimensions (n X m and m <
n). Linear means linear according to model parameters. For
linear parameters, the sensitivity:

_¥(x.p)
8=

J

=constant, j =1....,m



Individual explanatory variables x; define geometrically the m-
dimensional co-ordinate system or the hyperplane L in n-
dimensional Euclidean space E". The vector y usually does not
have to lie in this hyperplane L. The least-squares method is the
most frequently used method in regression analysis and the
estimates b of parameters 8 may be calculated by minimization
of the distance between the vector y and the hyperplane L. This
is equivalent to finding the minimal length of the residual vector
é = y — jp, where §, = Xb is the predictor vector. In Euclidean

a

space the length of vector é is expressed by the relation

VI€.€] The square of the length of vector & is consistent with the

residual sum of squares criterion U(b) of the least-squares
method, so that the estimates of model parameters b minimize
the expression

2
Ub) =Y (3, - Fi,)' = Z{y, - ZX!,-b,] ~minimum ~ (1.1)
i=l 1

i= =0

The residual vector € for which the function U(b) is minimal lies
in an (n — m)-dimensional hyperplane L+ that is perpendicular
to the hyperplane L. The perpendicular projection of y into the
hyperplane L can be made using projection matrix H and may
be expressed!

Ve = Xb = X X™X)~'XTy = Hy (1.2)
The conventional least-squares estimator b has the form
b = (XTX)~1XTy (1.3)
with the corresponding variance
D) = 02 (XTX)~! (1.4)

Statistical analysis related to least-squares (LS) is based on the
normality of estimates b. The projection matrix P is orthogonal
to the hyperplane L, P = E — H, where E is an (n X n) identity
matrix. With the use of these two projection matrices, H and P,
the total decomposition of vector y into two orthogonal
components may be written as

y=Hy+Py=j3p+é (1.5)
The geometric interpretation is that vector y is decomposed into
two mutually perpendicular vectors, the prediction vector ¥p and
the vector of residuals é, Fig. 1.

In the determination of the statistical properties of random
vectors Jp, €, and b, some basic assumptions are necessary for
the least-squares method to be valid:! (1) The regression
parameters 3 are not bounded. In chemometric practice,
however, there are some restrictions on the parameters, based
on their physical meaning. (2) The regression model is linear in
the parameters, and an additive model for the measurement of
errors is valid, y = Xf + & (3) The matrix of non-random
controllable values of the explanatory variable X has a column
rank equal to m. This means that the two columns x;, x; are not
collinear vectors. This is the same as saying that the matrix XTX

Fig. 1 Geometric illustration of a linear regression model for two
independent variables.

is a symmetric regular invertible matrix with a non-zero
determinant. That is, plane L is m-dimensional, and vector Xb
and the parameter estimates b are unambiguously determined.
(4) The mean value of the random errors & is zero; E(g;) = O.
This is valid for all correlation type models and models having
intercept term. (5) The random errors ¢; have constant and finite
variance, E(¢2) = o©2. The conditional variance o2 is also
constant and therefore the data are said to be homoscedastic (6)
The random errors &; are uncorrelated and therefore cov(g;, €) =
E(g;, &) = 0. When the errors follow the normal distribution
they are also independent. This corresponds to independence of
the measured quantities y. (7) The random errors & have a
normal distribution N0, ©2). The vector y then has a
multivariate normal distribution with mean X and covariance
matrix 02E where E is the identity matrix.

When the first six conditions are met, the parameter estimates
b found by minimization of a least-squares are the best linear
unbiased estimate (BLUE) of the regression parameters f: (i)
The term best estimates b means that any linear combination of
these estimates has the smallest variance of all the linear
unbiased estimates. That is, the variances of the individual
estimates D(b;) are the smallest from all possible linear unbiased
estimates (the Gauss-Markov theorem). (ii) The term linear
estimates means that they can be written as a linear combination
of measurements y with weights Q;; which depend only on the
location of variables x;,j = 1,....m.and 0 = (XTX)~ !XT for the

weight matrix, so we can say 2, = ZQU Yi. Each estimate b, is
g y i=1 Y

the weighted sum of all measurements. Also, the estimates b
have an asymptotic multivariate normal distribution with
covariance matrix D(b) = 62(XTX)~1. When condition (7) is
valid, all estimates b have a normal distribution, even for a finite
sample size n. (iii) The term unbiased estimates means that E(f§
— b) = 0 and the mean value of an estimate vector E(b) is equal
to a vector of regression parameters . It should be noted that
there exist biased estimates, the variance of which can be
smaller than the variance of estimates D(b;).

1.1.2 Criteria for regression model building. Various test
criteria for a search of regression model quality may be used.!
One of the most efficient seems to be the mean quadratic error
of prediction, MEP, being defined by the ‘cross-validation
relationship’

i (y4 - x:Tb(n )2

MEP=2
" (1.6)

where b(; is the estimate of regression parameters when all
points except the ith one were used and x; is the ith row of matrix
X. The statistic MEP uses a prediction §p; from an
estimate constructed without including the ith point. Another
mathematical expression is ‘autoprediction relationship’
MEP=) — %
= (1-H,)n
tends to zero (H; = 0) and then MEP = U(b)/n. The MEP also
can be used to express the predicted determination coeffi-
cient,

. For large sample sizes n the element H;

R n—MEP
p =1———— 1.7)

Zy‘z —nx
i=l

Another statistical characteristic in quite general use is derived
from information theory and entropy,!? and known as the
Akaike information criterion,

AIC=nln[U(b))+2m (1.8)

n
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The most suitable model is the one which gives the lowest value
of the mean quadratic error of prediction MEP and Akaike
information criterion (AIC) and the highest value of the
predicted determination coefficient, R;2.

1.1.3 Residuals analysis. Examination of data quality
involves detection of the influential points, which cause many
problems in regression analysis by shifting the parameter
estimates or increasing the variance of the parameters. Accord-
ing to the terminology proposed by Rousseeuw, 10 the influential
points may instead be classified according to data location into:
(i) Outliers (denoted in graphs by the letter O), which differ
from the other points in value on the y-axis; (ii) High-leverage
points, also called extremes (denoted in graphs by the letter E),
which differ from the other points in value on the x-axis or (iii)
Both O and E, standing for a combination of outlier and high-
leverage together. Outlier identification by examination of the
residuals is relatively simple, and can be done once the
regression model is constructed. Identification of all high-
leverage points is based on the X space only and takes no
account of information contained in y as the high-leverages are
found from the diagonal elements H; of the projection hat
matrix H.

Analysis of various types of residuals, or some transforma-
tion of the residuals, is useful for detecting inadequacies in the
model or influential points in the data.

(a) Ordinary residuals. é; are defined by é; = y; — x;b, where
x; is the ith row of matrix X. Classical analysis is based on the
wrong assumption that residuals are good estimates of random
errors €. Reality is more complex: the residuals é are a
projection of vector y into a subspace of dimension (n — m), é
= Py = P(XB+ €) = Pc = (E — H )¢ and therefore, for the
ith residual the following is valid:

e=(1-H,)y,-> Hy =(1-H)e -y H, ¢,

JE S

Each residual é; is a linear combination of all random errors &;.
The distribution of residuals depends on (i) the random error
distribution, (ii) the elements of the projection matrix H, (iii) the
sample size n. Ordinary residuals have non-constant variance
and may not indicate strongly deviant points.

(b) Normalized residuals or scaled residuals. én; = é/8 are
often recommended in chemometrics. It is falsely assumed that
these residuals are normally distributed quantities with zero
mean and variance equal to one, éy,; = N(0,1). In reality these
residuals are correlated and have non-constant variance.

(c) Standardized residuals or internally Studentized re-

siduals. é;, = ¢ /(61— H,) exhibit constant unit variance and

their statistical properties are the same as those of ordinary
residuals. Here H;; is the ith diagonal element of the H matrix.
Standardized residuals behave much like a Student’s ¢ random
variable except for the fact that the numerator and denominator
of és; are not independent.

(d) Jackknife residuals or externally Studentized residuals.

R R n—-m-1 . . . .
€. =6, f—n o are residuals which with an assumption
- TS

of normality of errors have a Student distribution with (n — m
— 1) degrees of freedom. The jackknife residual?s examines the
influence of individual points on the mean quadratic error of
prediction, MEP. An approximate rule may be formulated:
strongly influential points have squared jackknife residuals é3,
greater than 10. In the case of high-leverage points, however,
these residuals do not give any indication.
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(e) Predicted residuals or cross-validated residuals.
n €

i

“T1"H

i

=y, —xb, sensitively monitor the magnitude of
shift C in the equationy = Xb + Ci + ¢, where i is the identity
vector with the ith element equal to one and other elements
equal to zero. This model expresses the case of an outlier where
C'is directly equal to the value of deviation, but also the case of
a high-leverage point C = dT,8 where d; is the vector of the
deviation of the individual x components of the ith point.

(f) Recursive residuals. have been described by Hedayat and
Robson,?6 Brown, Durbin and Ewans.2” Galpin and Hawkins28
and Quesenberry.2® These residuals are constructed so that they
are independent and identically distributed when the model is
correct. They are computed from a sequence of regression
starting with a base of m observations (m is the number of
parameters to be estimated) and adding one observation at each
step. The regression equation computed at each step is used to
compute the residual for the next observation to be added. This
sequence continues until the last residual has been computed.
There will be (n — m) recursive residuals; the residual from the
first m observations will be zero, ég ; = 0,i = 1, ..., m, and then
the recursive residual is defined as

é _ Y —x:b:»l
Y ex XX )

Ji=m+1l,...n

(1.9)

where b;_; are estimates obtained from the first (i — 1) points.
The recursive residuals are mutually independent and have
constant variance 02. They allow identification of any instabil-
ity in a model, for example, instability in time, autocorrela-
tion.

1.1.4 Diagnostics based on the diagonal elements of the
hat matrix. Since the introductory paper by Hoaglin and
Welsch,30 the hat matrix H has been studied by many authors
from different perspectives. For computational reasons, these
measures were originally based on the diagonal elements of H;;.
Hoaglin and Welsch30 suggested declaring observations with
H; > 2 m/n as high-leverage points. The rationale behind this
cut-off point is that m/n is the average of the n diagonal elements
of H. Therefore, observations with H;; greater than twice the
average are declared to be high high-leverage points. Ob-
viously, this cut-off point will fail to nominate any observation
when n < 2m, because 0 < H; <I.

1.1.5 Diagneostic plots constructed from residuals and hat
matrix elements. For analysis of residuals a variety of plots
have been widely used in regression diagnostics; Cook and
Weisberg,® Atkinson,* Chatterjee and Hadi,> Anscombe,3!
Draper and Smith,32 Carrol and Ruppert33 and others. For the
identification of influential points, i.e. outliers and high-
leverages, various types of residuals are combined with the
diagonal elements H;; cf. page 72 in ref. 1.

(1) The graph of predicted residuals34 has on the x-axis the
predicted residuals ép; and on the y-axis the ordinary residuals
€;. The high-leverage points are easily detected by their location,
as they lie outside the line y = x, and are located quite far from
this line. The outliers are located on the line y = x, but far from
its central pattern.

(2) The Williams graph®S has on the x-axis the diagonal
elements H;; and on the y-axis the jackknife residuals é; ;. Two
boundary lines are drawn, the first for outliers, y = fg95 (n — m
— 1) and the second for high-leverages, x = 2 m/n. Note that
to.95 (n — m — 1) is the 95% quantile of the Student distribution
with (n — m — 1) degrees of freedom.

(3) The Pregibon graph3%has on the x-axis the diagonal
elements H;; and on they-axis the square of normalized residuals
é;‘i,,i . Since the expression E(H;; + e‘%ﬁ ) = (m+ 1)/nis valid for



this graph, two different constraining lines can be drawn,y = —
x+2(m+1)/n,andy = — x+ 3(m + 1)/n. To distinguish among
influential points the following rules are used: (a) a point is
strongly influential if it is located above the upper line; (b) a
point is influential if it is located between the two lines. The
influential point can be either an outlier or a high-leverage
point.

(4) The McCulloh and Meeter graph's has on the x-axis
In[H;i/(m(1 — H}))] and on the y-axis the logarithm of the square
of the standardized residuals In(€3 ; ). In this plot the solid line
drawn represents the locus of points with identical influence,
with slope —1. The 90% confidence line is defined by y = — x
— InFg o(n — m, m). The boundary line for high-leverage points
is defined as x = In[2/(n — m) X (pgs (n — m)] where g5 (n
— m) is the 95% quantile of the Student distribution with (n —
m — 1) degrees of freedom.

(5) The Gray’s L-R graph!® has on the x-axis the diagonal
elements H;; and on the y-axis the squared normalized residuals
€% ; = é4U(b). All the points will lie under the hypotenuse of a
triangle with a 90° angle in the origin of the two axes and the
hypotenuse defined by the limiting equality H;; + é% ; = 1. Inthe
Gray’s L-R graph, contours of the same critical influence are
plotted, and the locations of individual points are compared with
them. It may be determined that the contours are hyperbolic as

2x—x" -1
x(1-K)-1
and c is a constant. For ¢ = 2, the constant K corresponds to the
limit 2/vm/ 7 The constant c is usually equal to 2, 4 or 8.

(6) The Index graph has on the x-axis the order index i and on
the y-axis the residuals és;, ép;, &, ér, or the diagonal
elements Hj;, or estimates b;. It indicates the suspicious points
only which could be influential, i.e. outliers or high-lever-
ages.

(7) The Rankit graph (Q-Q plot) has on the x-axis the
quantile of the standardized normal distribution up; for P; = i/(n
+ 1) and on the y-axis the ordered residuals és ;, ép ;, €, ér.; i.e.
increasingly ordered values of various types of residuals.

described by v = , where K = n(n — m — 1)/(c?m)

1.1.6 Diagnostics based on scalar influence measures.
Proper normalization in influence functions3’ leads to scalar
measures. These measures express the relative influence of the
given point on all parameter estimates.

(1) The Cook measure D25 expresses directly the relative
influence of the ith point on all parameter estimates and has the
form

(rJ)TXTX(b (l)) eSJ Sy H

mxa

D =

i

L (1.10)

m 1-H,

The Cook measure D; expresses the influence of the ith point on
the parameter estimate b only. When the ith point does not affect
b significantly, the value of D; is low. Such a point, however,
can strongly affect the residual variance @2. It is generally useful
to study cases that have D; > 0.5 and it is always important to
study cases with D; > 1. These benchmarks are intended as an
aid in finding influential cases, but they do not represent a test.
There is no significance test associated with D;.

(2) The Atkinson measure A; enhances the sensitivity of
distance measures to high-leverage points. This modified
version of Cook’s measure D; suggested by Atkinson? is even
more closely related to Belsey’s DFFITS; and has the form
n-m H

X —1 1.11
m 1-H ( )

i

A: = |eJ.t I x

This measure is also convenient for graphical interpretation;
Atkinson recommends that signed values of A; be plotted in any
of the ways customary for residuals. With designed experi-
ments, usually H; = m/n, and the Atkinson measure A; is

numerically equal to the jackknife residual é; ; and A; could also
be large because the ith jackknife residual is large. Large
jackknife residuals are due to outliers, points whose response
falls far from the fitted function.

(3) The Belsey DFFITS; measure, also called Welsch—Kuh'’s
distance,? is obtained by normalization of the sample influence
function and using the variance estimate 6'(2,) obtained from
estimates b(;. This measure has the form

DFFITS’ —ej, n H, (1.12)

i

Belsey, Kuh, and Welsch? suggest the test that the ith point is
considered to be significantly influential on prediction $p when
DFFITS; is larger in absolute value than 2vm/n,

(4) The Anders—Pregibon diagnostic AP35 expresses the
influence of the ith point on the volume of the confidence
ellipsoid

det(XT

AP, = Xm0 X)) (1.13)
" det(X1X,)

where X,, = (x]y) is the matrix having as least column the
vector y. The diagnostic AP; is related to the elements of the
extended projection matrix H,, by the expression AP;= 1 — H;
— &%, = 1 — H,,;; A pointis considered to be influential if H,,, ;
=1—AP; >2(m+ 1)/in

(5) The Cook—Weisberg likelihood measures LD 36 represent
a general diagnostic defined by

LD; = 2[L(6) — L(O»)] (1.14)

where L(@)is the maximum of the logarithm of the likelihood
function when all points are used and L( @(,) )is the correspond-
ing value when the ith point is omitted. For strongly influential
points LD; > x3_ (m + 1) where ¥2_ (m + 1) is the quantile of
the 2 distribution.

With the use of different variants of LD; it is possible to
examine the influence of the ith point on the parameter
estimates or on the variance estimate or on both:36(a) The
likelihood measure LD{b) examines the influence of individual
points on the parameter estimates b by the relationship

d,-H
LD, (b) = nx In| S22 1] :
(b) nxn[]_H +] (1.15)

it

where d; = é5 /(n — m).

(b) The likelihood measure LDy 62) examines the influence of
individual points on the residual variance estimates by the
relationship

-D
a’

i

-1 (1.16)

n—

LD,(6%) = nxlnl: J+nln(1 d)+

(c) The likelihood measure LD (b, 62) examines the influence
of individual points on the parameters b and variance estimates
62 together by the relationship
d(n-1)

1-d)Y1-H)
N ) (L17)

LD,(b.67%) = nxln[ |:|+nln(]—d)

1.2 Methodology

1.2.1 Procedure for regression model building. The
procedure for examination of influential points in data and the
construction of a linear regression model consists of the
following steps:

Step 1. Proposal of a model for original data:. the procedure
usually starts from the simplest model, with individual
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explanatory controllable variables not raised to powers other
than the first, and with no interaction terms of the type xyx
included. Exploratory data analysis in regression provides a
scatter plot of individual variables and all possible pair
combinations are examined. Also, in this step the influential
points causing multicollinearity are detected.

Step 2. Significance test of parameter estimates:. the
parameters of the proposed regression model and the corre-
sponding basic statistical characteristics of this model are
determined by the ordinary least-squares method (OLS).
Individual parameters are tested for significance by using the
Student r-test. The following are computed: the correlation
coefficient R and the determination coefficient or, multiplied by
100%, the regression rabat J00D. The mean quadratic error of
prediction, MEP, and the Akaike information criterion, AIC, are
calculated to examine the quality of the model.

Step 3. Detection of influential points:. the statistical analysis
of ordinary residuals, different diagnostic graphs and numerical
measures are used to examine influential points, namely outliers
and leverages. If outliers are found, it has to be decided whether
these points should be eliminated from the data. If points are
eliminated, the whole data treatment must be repeated.

Step 4. Construction of a more accurate model.. according to
the test for fulfillment of the conditions for the least-squares
method, and the results of regression diagnostics, a more
accurate regression model is constructed.

1.2.2 Software used. For the creation of regression diag-
nostic graphs and computation of the regression based charac-
teristics, an algorithm in S-Plus was written, and the linear
regression module of the ADSTAT package used, cf. ref. 38.

1.3 Case study

1.3.1 Dataset: Cadmium content in wheat for food and the
variation of its content in the ear, stem and leaf, and root.
The cadmium content was examined in samples of food wheat
to determine its variation in the ear, the stem and leaf, and the
root system. Cadmium content was determined quantitatively in
the grain of wheat y; in the ear, i.e. in the part that contains the
seeds, x;; in the stem and leaves x;; and in the root x3. The main
aim is to propose a regression model and to find influential
points in the data. Table 1

Tablel Dataset for cadmium content in the ear of corn x;, in the stem and
leaves of grain x,, in the root of plant system x3 and in the corn, grain of
wheat y

Cadmium content/mg dm—3

Stem and leaves of Root of plant Com, grain
Ear of com x; grain x, system x3 of wheat y
1.50 1.50 1.50 1.60
1.50 1.60 1.30 1.60
2.00 1.90 2.20 2.10
2.00 2.00 220 2.10
6.60 7.10 7.60 8.10
7.10 8.20 6.60 7.90
7.80 9.10 7.10 8.40
8.40 10.30 7.80 10.30
8.40 9.60 8.60 9.60
8.60 10.00 9.10 10.80
9.00 12.30 10.50 13.10
10.20 13.10 11.80 15.10
1.30 1.30 1.30 1.30
1.10 1.30 1.20 1.20
1.30 1.60 ’ 1.30 1.50
1.50 1.60 1.20 1.50
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1.3.2 Proposal of a model for original data. Using the
original set of data, the ordinary least-squares method OLS
finds the regression model
y = —0.073(0.138, R) — 0.685(0.192, A) x,+ 0.896(0.161, A)

x> + 0.838(0.133, A) x3
where the standard deviations of the parameters estimated, are
in brackets and the letter R means that § is rejected as a
statistically nonsignificant estimate while the letter A means
that 8 is accepted as a statistically significant estimate.

1.3.3 Significance test of parameter estimates. The critical
quantile fg75(16—4) = 2.179 of a Student #-test at 5%
significance level was used to examine the statistical sig-
nificance of the individual regression parameter estimates: fo =
0.5269, t; = 3.5746, t, = 5.5761, t3 = 6.2879. All values
except #p are not less than #5,975(16—4) and therefore estimates
of parameters (3;, B, and B are significant (denoted by the letter
A in brackets) while the estimate of parameter f, is not
significant (denoted by the letter R). The model was described
with the correlation coefficient R = 0.9986, the determination
coefficient D = 99.72% thus expressing a percentage of points
which fulfil the model proposed; the mean error of prediction,
MEP = 0.2101, the Akaike information criterion, AIC =
—36.18 and the residual standard deviation s(e) = 0.290 were
also calculated. All these statistics can be used as resolution
criteria for the selection of the best model among several
plausible ones.

1.3.4 Detection of influential points. (a) Residual analysis:
generally it is valid that outliers are identified by an examination
of the residuals while the high-leverage points are found from
the diagonal elements H;; of the projection hat matrix, Table
2.

A survey of all the diagnostics for detection of influential
points shows that diagnostics plots are the most efficient
because they are able to separate influential points into outliers
and high-leverages. Table 2 gives numerical values of various
types of residuals and diagnostics of influential points.
Suspicious points are written in italics. Several types of
residuals can be used in statistical tests, and the influential
points IP found are written in bold in Table 2. The Hj; indicates
only leverages and residuals éj, és, ép only outliers, while the
remaining diagnostics indicate both outliers and leverages,
together.

A survey of suspicious points identified by various types of -
diagnostic measures is given in Table 3. It is clear that there are
some local differences arising from the severity of cut-off for
individual values but the majority of measures indicate the same
points.

Ordinary residuals (Fig. 2a, b) are always associated with a
non-constant variance; they may not indicate strongly deviant
points. Even though the common practice of chemometrical
programs for the statistical analysis of residuals is to examine by
use of statistical characteristics such as the mean &, the variance
$2(e), the skewness g;(e) and the kurtosis §>(e), these statistics
do not give a correct indication of the influential points. Points
(7,8,9, 10, 11, 12) may be considered to be suspicious and some
testing diagnostics for influential points should be applied.

In the case of normalized residuals (Fig. 2c), the rule of 30'is
classically recommended: outliers are quantities with én,; of
magnitude greater than +30 of all values and lie outside the
interval € + 36. Such assumptions about normalized residuals
are misleading. Points (2, 8, 9, 10, 11, 12) may be denoted as
suspicious in this graph. However, normalized residuals are not
able to indicate high-leverage points.

The statistical properties of standardized residuals (Fig. 2d)
are the same as those of the ordinary residuals. The maximum

values of & are bounded V7 —m = 3.46. This influential points
criterion also seems to be misleading.



Table 2 A survey of the influential points which were indicated with the use of various tabular diagnostic tools. Suspicious points (SP, written in italics)
are data points which obviously differ from the others. Influential points (IP, written in bold) are points which are detected and separated into outliers and
high-leverages with the use of various testing criteria: n = 16, m = 4, é: no testing limit for IP, it detects SP only; és,: no testing limit for IP, it detects SP
only; é;,;: when &y,2 > 10 then the i-th point is an outlier; ép,;: no testing limit for IP, it detects SP only; H;: when H; > 2 m/n = 0.5 then the i-th point is
a high-leverage; H,, ;: when H,, ;; > 2 m/n = 0.5 then the i-th point is a high-leverage; D;: when D; > 1 then the i-th point is an IP; DFFITS;: when

|DFFITS,| > 2{ym/n = 1 then the i-th point is an IP; AP;: when AP; < 1—2 (m + 1)/n = 0.375 then the i-th point is an IP; LD;: generally, when LD;
> y21—o(m + 1) = 11.07 then the i-th point is an IP

i Yi e s(v) é és, ér, ép,; H,;; Hm;; D A; AP; DFFITS; LDb) LDy(s?) LDyb,s?)
1 1.60 1.50 0.10 0.10 0.37 0.35 0.11 0.12 0.13 0.00 023 0.87 0.13 0.03 0.02 0.05
2 1.60 142 0.11 0.18 0.66 0.64 0.20 0.13 0.16 002 043 084 0.25 0.09 0.01 0.09
3 2.10 2.10 0.11 0.00 —0.01 —0.01 0.00 0.14 0.14 0.00 0.01 086 0.00 0.00 0.03 0.03
4 2.10 2.19 0.10 —-0.09 —-0.34 -0.33 -—-0.11 0.13 0.14 0.00 022 086 —-0.13 0.02 0.02 0.05
5 8.10 8.14 021 -0.04 —-0.18 —0.17 -0.07 0.52 0.52 0.01 030 048 -0.17 0.04 0.03 0.07
6 7.90 794 0.13 —0.04 -0.16 —-0.15 —-0.05 021 0.21 0.00 0.14 0.79 —0.08 0.01 0.03 0.04
7 8.40 8.69 0.16 —-0.29 —1.19 —122 —-042 031 0.39 0.16 142 0.61 —0.82 0.84 0.03 0.95
8 10.30 9.94 0.18 0.36 1.59 1.71 0.59 0.38 0.51 039 232 049 1.34 1.94 0.25 2.69
9 9.60 998 0.14 —0.38 —1.48 —157 —049 022 0.36 0.15 144 0.64 —0.83 0.80 0.16 1.10
10 10.80 10.62 0.13 0.18 0.69 0.68 022 020 0.23 0.03 0.59 0.77 0.34 0.16 0.00 0.16
11 13.10 13.58 0.23 —048 —2.68 —4.06 —126 0.62 0.85 291 894 0.15 —5.16 10.86 7.83 44.18
12 15.10 1457 0.19 0.54 240 3.19 0.91 041 0.69 1.01 4.62 031 2.67 4.63 344 13.13
13 1.30 1.29 0.11 0.01 003 0.03 0.01 0.13 0.13 0.00 0.02 0.87 0.01 0.00 0.03 0.03
14 1.20 1.34  0.12 —0.14 —0.54 —0.53 -0.17 0.16 0.18 001 040 0.82 —0.23 0.07 0.01 0.08
15 1.50 1.56 0.12 —0.06 -022 -—-022 -0.07 0.16 0.17 0.00 0.16 0.83 —0.10 0.01 0.03 0.04
16 1.50 1.34 0.11 0.16 0.60 0.58 0.19 0.14 0.17 0.02 041 0.83 0.24 0.08 0.01 10.09

Table3 A survey of the influential points which were indicated using various graphical diagnostic tools: Suspicious points (SP) are data points in diagnostic
graphs which obviously differ from the others; influential points (IP) are data points which are detected and are separated into outliers and high-leverages
using the following testing criteria: n = 16, m = 4, 1. Graph of predicted residuals: outliers are far from the central pattern on the line y = x; 2. Williams
graph: the first line is for outliers, y = 1905 (n — m — 1) = 1.796, the second line is for high-leverages, x = 2 m/n = 0.5; 3. Pregibon graph: two constraining
lines are drawn, y = —x +2(m + 1)/n, andy = —x + 3(m + 1)/n, a strongly influential point is above the upper line; an influential point is between the two
lines; 4. McCulloh and Meeter graph: the 90% confidence line is for outliers, y = —x — InFpgs(n — m, m) while the boundary for high-leveragesis x = In[2/(n
—m) X (2095 (n — m)1; 5. Gray’s L-R graph: points towards the upper corner are outliers while those towards the right angle of the triangle are high-leverages;

6. D;: when D; > 1 then the i-th point is an IP; 7. A;: when A2> 10 then the i-th point is an outlier; 8. DFFITS;: when |DFFITS,| >2{ym/n

= 1.0 then the i-th point is an IP; 9. AP;: when AP; < 1 — 2(m + 1)/n = 0.375 then the i-th point is an IP; 10., 11. and 12. LD;: generally, when LD; > %2;—,
(m+ 1) = 11.07 then the i-th point is an IP, 13. &: detects SP only; 14. éy: when éx,; > |30] then the i-th point is an outlier; 15. és: detects SP only; 16. é;:
when &y,2 > 10 then the i-th point is an outlier; 17. ép: detects SP only; 18. H;;: when H;; > 2m/n = 0.5 then the i-th point is a high-leverage; 19. H,, ;: when
Hpu > 2m/n = 0.5 then the i-th point is a high-leverage, 20., 21. and 22. the rankit graph (Q-Q plot) examines whether the ordered residuals &s ;, ép, én
exhibit a normal distribution

Diagnostic indicating SP and IP Suspicious points, SP  Influential points, IP Outliers, O High-leverages, E
A. Diagnostic plots constructed from various residuals and hat matrix elements
1. Graph of predicted residuals 8,11,12 8, 11,12 8, 11,12 11
2. Williams graph 5,8,9,11, 12 58,11, 12 , 11,12 5,11
3. Pregibon graph 11,12 11, 12 — —_
4. McCulloh-Meeter graph 5,8,9,11,12 5,8,9,11,12 8,9,11, 12 5,11
5. Gray’s L-R graph 5,8,11,12 58,11, 12 8, 11,12 5,11, 12
B. Diagnostics based on scalar and vector influence measures
6. Cook measure D 11,12 11, 12 — —_
7. Atkinson measure A 11,12 11, 12 — —
8. Belsey measure, DFFITS 8, 11,12 8, 11,12 — —
9. Anders—Pregibon diagnostic, AP 11, 12 11,12 — —
10. Cook—Weisberg likelihood measure,
LD(b) 11,12 11 — —
11. Cook—Weisberg likelihood measure,
LD(s?) 11,12 11,12 — —
12. Cook—Weisberg likelihood measure,
LD(b,s2) 11, 12, 16 11, 12 — —_
C. Index graphs of various residuals and hat matrix elements
13. Ordinary residuals é 7,89,11,12 — — —
14. Normalized residuals én 8,9,11, 12 — — —
15. Standardized residuals és 7,8,9, 11,12 — — —
16. Jackknife residuals é; 7,8,9,11, 12 11, 12 — —
17. Predicted residuals ép R 7,8,9, 11,12 _— — —
18. Diagonal elements of hat matrix H; 5,11 511 — —_
19. Diagonal elements of modified hat matrix
H, 5,8,11,12 5,8,11,12 — —
D. Q-Q graph of various residuals
20. Jackknife residuals éy 11,12 11, 12 — —
21. Predicted residuals ép ’ 8,11, 12 8,11, 12 — —
22. Nomalized residuals éy 7,8,9, 11,12 8, 11,12 — —
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For jackknife residuals (Fig. 2¢) an approximate rule may be
applied: strongly influential points (i.e. outliers) have &; 2 > 10
but for high-leverages, however, these residuals do not give any
indication: according to this criterion the points &y, = —4.06
and é;,, = 3.19 are outliers.

Predictive residuals are able to find suspicious points only (8,
11, 12) as is shown in Fig. 2f.

(b) Diagnostic plots constructed from residuals and hat
matrix elements: a combination of various types of residuals
with the diagonal elements of the projection hat matrix H;; leads
to five diagnostic graphs of influential points (the data set of size
n=16m = 4)

The graph of predicted residuals (Fig. 3a), one of the
simplest graphs, separates outliers (8, 11, 12) located far from
its central pattern on the line y = x from high-leverage points
(11), outside and far from the line y = x.
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(a)  Ordinary residuals 0307 (b) Squared ordinary residuals

The Williams graph (Fig. 3b) has two testing boundary lines,
the first line for outliers y = #505(n — m — 1) = 1.796 detecting
two outliers (11, 12), and the second for high-leverage points x
= 2m/n = 0.5 detecting two high-leverages (5, 11).

The Pregibon graph (Fig. 3c) is able to distinguish strongly
influential points from medium influential points only. The
points (11, 12) were found as medium influential.

The McCulloh-Meeter graph (Fig. 3d) has two testing
boundary lines, the first for outliers y = Inf(n — m)2pos(n —
m)] = 4.043 behind which two outliers were indicated and the
second for high-leverages x = In[2/(n — 2m)} = —1.386 behind
which two high leverages are found (5, 11).

Gray’s L-R graph (Fig. 3e) indicates strongly influential
points (8, 11, 12) and separates them into outliers (11, 12) points
which lie high in the y-axis, and high-leverages (5, 11) which lie
in direction of the x-axis.
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Fig. 2 Index graphs of various residuals for the data set of Example 1: (a) Ordinary residuals; (b) square of ordinary residuals; (c) normalized residuals;

(d) standardized residuals; (e) jackknife residuals; (f) predicted residuals.
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(c) Diagnostics based on scalar influence measures: in the
classification of influential points, it is important to remember
that they can affect the various regression characteristics
differently. Points affecting the prediction §p;, for example,
may not affect the parameter variance. The degree of influence
of individual points can be classified according to those
characteristics that are affected. For the identification of
influential points, there are many additional diagnostics which
may be divided according to two principal approaches: the first
is based on the examination of changes which occur when
certain influential points are excluded while the second
concerns the validity of the regression model when the variance
of errors is abnormal, the so-called the model of inflated
variance.

For analysis of the diagonal elements of the projection hat
matrix (Fig. 4a,b) the rule is valid that when H;; > 2m/n = 0.5
holds, the actual i-th point is the high-leverage. From that point
of view, the points 5 and 11 are high-leverages. For more
complex analysis, it is useful to form the extension of matrix X
by a vector y to give the matrix X, = (X|y), and the resulting
matrix contains the diagonal element H,,; = Hy+ é/[(n —
m)62]. According to the same rule, H,, ; > 2m/n = 0.5, the
diagonal elements of the extended hat matrix H,, ;; detect both
outliers and high-leverages, (5, 8, 11, 12).

The Cook measure D; (Fig. 4c) is used in connection with an
approximative rule: when D; > 1, the shift of parameter
estimate b only is greater than the 50% confidence region and
the relevant i-th point is rather influential. According to this rule
points (11, 12) are influential.

With designed experiments, usually H; = m/n, the Atkinson
measure (Fig. 4d) is numerically equal to the jackknife residual
éy. The samerule €7 ; > 10 for the detection of influential points
may be used, and points 11 and 12 were found influential.

In the case of Belsey’s DFFITS measure (Fig. 4¢) the i-th
point is tested and found to be significantly influential when

DFFITS > 2v™M/7 = | is true. Three influential points were
indicated (8, 11, 12) with the DFFITS measure.

According to the Anders—Pregibon measure (Fig. 4f), the i-th
point is tested and considered to be influential if AP; < 1 — 2(m
+ 1)/n = 0.375, and two influential points were indicated, (11,
12).

There are three Cook—Weisberg likelihood measures, i. e.
LDy(b) on Fig. 4g, LD«(s?) on Fig. 4h and LDy, s2) on Fig. 4i.
All three measures indicate the i-th influential point if it is
generally valid that LD; > x2 (m+ 1) = 11.07. According to that
criterion LD;(b) detected one influential point (11), LD(s2) two
suspicious points (11, 12) and LD(b, s2) two influential points
(11, 12).

If the regression model is correct and if there are no
influential points then the rankir Q-Q graph (Fig. 5) forms a
characteristic sigmoidal curve with quite a long linear straight
line in the middle part of the graph. The rankit 0—Q graph of
Jjackknife residuals is not among the best diagnostic graphs for
influential points. It is based on the phenomenon that the
residuals should exhibit a normal distribution. Three suspicious
points (8, 11, 12), however, do not fulfil this assumption and
therefore they could be tested as they are of an influential
nature. The influential points (11, 12) indicated are also located
beyond the ends of the straight line on the Q—Q graph of
predicted and normalized residuals (Fig. 5b and Fig. 5c).

1.3.5 Construction of a more accurate regression model.
The biological meaning of the intercept term f3, is the cadmium
content in wheat corn y when the cadmium content in the ear of
corn is zero that in the stem and leaf is zero and that in the root

Cook measure
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Fig. 4 Index graphs of vector and scalar influence measures: (a) Diagonal elements of the hat matrix; (b) diagonal elements of the modified hat matrix; (c)
Cook measure; (d) Atkinson measure; (e) Belsey’s DFFITS measure; (f) Anders-Pregibon measure; (g) Cook-Weisberg likelihood measure LD(b); (h)
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system is also zero. Under such circumstances the cadmium
content y must also be equal to zero, and therefore [y should be
equal to zero. The revised model will then be regarded without
this intercept term fo. Since outliers may influence the
regression results they should be treated with care. There are
two possible approaches to the data: either to exclude outliers
from data or to use robust regression method. One of the
greatest disadvantages of the application of robust method is a
preference for the regression model proposed, here y = Bo +
Bix1 + Brx2 + Baxs. If a proposed model is unsuitable (here it is
the presence of false parameter f), robust methods lead to the
suppression of the influence of both individual points and
influential points, and therefore also to a suppression of the
detection of unsuitable proposed models. Therefore, robust
methods should be applied only with careful regard to the
peculiarities of the model and data.

On the basis of previous graphical and numerical diagnostics
of influential points it may be concluded that the three outliers
8, 11, 12 should be excluded from the original data set, and new
parameter estimates should be calculated, Table 4.

1.4 Conclusions

In the interactive PC-aided diagnosis of data, model and
estimation method, the examination of data quality involves the
detection of influential points, outliers and leverages, which
cause many problems in regression analysis by shifting the
parameter estimates or increasing the variance of the parame-
ters. Regression diagnostics represent the graphical procedures
and numerical measures for an examination of the regression
triplet i. e., an identification of (i) the data quality for a proposed
model, (ii) the model quality for a given data set, (iii) a
fulfillment of all least-squares assumptions. Regression diag-
nostics do not require a knowledge of alternative hypotheses for
testing or fulfilling the other assumptions of classical statistical
tests. The various types of residuals differ in suitability for
diagnostic purposes: (i) Standardized residuals és ; serve for the
identification of heteroscedasticity only; (ii) jackknife residuals
&;; or predicted residuals ép ; are suitable for the identification of

outliers; (iii) recursive residuals ég ; are used for the identifica-
tion of autocorrelation and normality testing.

2. Data multicollinearity and generalized principal
component regression

2.1 Theoretical

2.1.1 Terminology in multiple linear regression. Even if all
the assumptions of section 1.1.1 are valid, there may still be
significant numerical difficulties with the OLS (ordinary least
squares) parameter estimates b found by minimization of the
sum of the squared residuals RSS = U(b) for various reasons.
The reasons for numerical difficulties in the computer evalua-
tion of parameter estimates b are as follows: (1) Neglect of the
limited precision of the computer in building the matrix XTX.
(2) Inconvenient numerical procedures for matrix inversion or
for solving the set of linear equations. (3) Multicollinearity
leading to the ill-conditioning of matrix XTX. (4) The linear
dependence of some columns of matrix XTX, leading to its non-
invertability because of a singularity.

For these reasons, there can be difficulties in producing a
stable model. Although a good least squares fit for the data may
indicate a certain level of success, if the parameter estimates are
to be interpreted physically or used to predict unknown samples,
there can be serious problems in the validity of the model. For
a test of the simple hypothesis Ho: f; = fjo against the
alternative Ha: ; # 0, the z-test criterion is defined by

b -
f ='—C—ﬁ""~| @1

a C.U

where c;; is the jth diagonal element of the matrix (X"X)~! and
an unbiased estimate of the variance of errors o2 is defined as 62
= RSS/(n — m) When Hj is valid # has approximately the
Student z-distribution with (n — m) degrees of freedom.

2.1.2 Origins of multicollinearity. The multicollinearity
problem in regression refers to the set of problems created when
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Fig. 5 Rankit Q-Q graph of (a) jackknife residuals., (b) predicted residuals, (c) normalized residuals.

Table4 Estimates of four unknown parameters of the linear regression model before and after outliers removal in a process of regression model building

and testing

Standard

Parameter estimate deviation

Student
t-test criterion

Estimated
significance level

Statistical significance
of parameter

(1) The original data and the model y = o+ Bx1 + Boxz + Byxs used: OLS: #;_g0s2 (16—4) = 2.179R = 0.9986, D = 99.72%, MEP =

0.21014, AIC = —36.18, s(e) = 0.290

Bo —0.0727 0.1379
B —0.6851 0.1917
B 0.8962 0.1607
Bs 0.8377 0.1332

—0.5269
—3.5746
5.5761
6.2879

Insignificant 0.608
Significant 0.004
Significant 0.000
Significant 0.000

(2) The data without outliers 8, 11, 12 and the model without Sy used: OLS: #,_¢0s2(13—3) = 2.228,R = 0.9992, D = 99.83%, MEP =

0.05101, AIC = —43.55, s(e) = 0.170

Bo 0.0000 — —
B —0.8545 0.3715
B 0.9542 0.2509
B 09155 0.1322

—2.3002
3.8038
6.9263

Significant 0.044
Significant 0.003
Significant 0.000

442 Analyst, 2002, 127, 433450



there are near-singularities among the columns of the X matrix;
certain linear combinations of the columns of X are nearly zero.
This implies that there are near redundancies among the
independent variables; essentially, the same information is
being provided in more than one way. Geometrically, collinear-
ity results when at least one dimension of the X-space is very
poorly defined in the sense that there is almost no dispersion
among the data points in that dimension.

Multicollinearity does not mean a violation of the assump-
tions for the least-squares methods (LS), .! The columns of
matrix X are understood as the column vectors which define the
hyperplane L in n-dimensional Euclidean space E". According
to the angle 6 between two vectors x; and x; (or between
columns of matrix X) two limiting cases may be distin-
guished:

(1) Orthogonality occurs when the cosine of angle 8y is zero,

<X, x>
€088, =—r—— and also the scalar product < x;,x; > = 0,
[ <] !

where”x,“= V< X;,X, > is the length of vector x;. If all the

columns of matrix X are mutually orthogonal, then the matrix
XTX is diagonal and the regression analysis simplifies.

(2) Collinearity occurs when the cosine of angle 8; is equal
to 1, cos 8 = 1, because the angle between vectors x; and x; is
zero, 6y = 0, and the two vectors x; and x; are parallel i.e.
linearly dependent, and the following expression holds for
them

CiX; + CpXx = 0 (2'2)
where c; and ¢, are nonzero constants. When eqn. (2.2) holds for
q pairs of columns of matrix X, its rank is equal to m — g and
the matrix XTX is singular.

Eqn. (2.2) may be valid for more vectors still, when one of the
columns x; is the result of a linear combination of several
columns. This situation is called perfect collinearity. The term
multicollinearity, however, can include other cases when some
columns of matrix X have nearly zero angle and are therefore
approximately linearly dependent,

(2.3)

j=1

where §is the vector with components near zero, and the vector
¢ with elements c; is nonzero, |ic|| > ||8|. The multicollinearity
causes ill-conditioning of the matrix XTX, and has two
consequences: (a) the determinant of matrix XTX is close to
zero; (b) some of the first m eigenvalues of matrix XTX are close
to zero (note that there will never be more than m non-zero
eigenvalues).

Multicollinearity causes many difficulties in inversion of
matrix X7X and also numerical errors, depending on the quality
of the algorithm for matrix inversion and the machine precision
of the computer used. Multicollinearity causes also the
following statistical difficulties: (a) Instability of parameter
estimates is caused by the great sensitivity of parameter
estimates to small changes in the data.50-52 The estimates often
have the wrong sign and magnitude, and this damages their
physical interpretation. (b) Large variances D(b;) of individual
estimates cause f-tests to indicate that parameter f3; in regression
model y = fx + € is statistically insignificant. (c) Strong
correlation between elements of the estimates vector b means
that they cannot be interpreted separately. (d) Dangerous
extrapolation: prediction is restricted to points within the
sample X-space. Extrapolation beyond the data is dangerous in
any case, but can quickly lead to serious errors of prediction
when the regression equation has been estimated from highly
collinear data. ‘

With reference to multicollinearity in data, we can identify
three cases of interest: (a) The over-estimated regression model

contains too many controllable variables expressing the same
basic factors. An example is a structure/properties model in
which properties of substances are described by various
measureable changeable structures. Generating new variables
as transformations of other variables can produce a multi-
collinearity among the set of variables involved. Ratios of
variables or powers of variables will frequently be nearly
collinear with the original variables.53(b) The inappropriate
location of experimental points causes multicollinearity to form
‘artificially” because of the choice of location of points. Often
the values of significantly important variables oscillate in a
small range and seem to be nearly constant, and they are
collinear with the vector corresponding to the intercept
term.54(c) Physical constraints in the model or data refer to the
limits on the values of the controllable variables derived from
the chemistry of the system. An example is the investigation of
multicomponent compositional mixtures. Orthogonality is im-
possible in such situations because each variable depends on the
others. Similar restrictions may apply to the stoichiometric
ratio, etc. Another example concerns the various measures of
size of an organism, which will show dependencies, as will the
amounts of chemicals in the same biological pathway, or
measures of rainfall, and elevation in an environmental system.
(d) A bad experimental design may cause some model effects to
be nearly completely confounded with others. This is the result
of choosing the levels of experimental factors in such a way that
there are near linear dependencies among the columns of X
representing the different factors. Factorial designs are usually
constructed so as to ensure that linear and interaction effects are
orthogonal, or very nearly orthogonal, to each other,55-56 but this
is not possible for designs with squared terms such as the central
composite design.

Given knowledge of the controllable variables, and their
significances and restrictions, multicollinearity can be removed
from the data. In the case of polynomial models, multi-
collinearity is defined by the model structure. If the experi-
mental strategy cannot be changed, other techniques for
decreasing the influence of multicollinearity should be used,
despite the fact that the parameter estimates are then biased, as
in the case of the generalized principal component regression
PCR method described below. One may not always be able to
clearly identify the origin of this problem, but it is important to
understand its nature as far as is possible.

2.1.3 Multicollinearity diagnostics. It is important to check
whether variables show multicollinearity. There are various
diagnostics that help demonstrate if there is potential multi-
collinearity in the data, and so take action to prevent the
unstable parameter estimates. A major problem is limited
dispersion in an independent variable which results in a very
poor (high variance) estimate of the regression parameter for
that variable. This can be viewed as a result of the near-
collinearity between the variable and the column of ones (for the
intercept) in X. This is an example of multicollinearity that is
easy to detect by simple inspection of the amount of dispersion
in the individual independent variables. The more usual, and
less easily detectable, multicollinearity problem arises when the
near-singularity involves several independent variables. The
dimension of the X-space in which there is very little dispersion
is some linear combination of the independent variables, and
may not be detectable from inspection of the dispersion of the
individual independent variables. The result of multicollinearity
involving several variables is high variance in the regression
parameters of all of the variables involved in the near-
singularity.57

It is possible to detect multicollinearity from the scatter plots
of columns x; and x; of matrix X where the approximate linear
dependence proves strong multicollinearity. However, multi-
collinearity may be exposed or masked by the presence of
influential points, and especially by high leverage points, and
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also there are a large number of possible graphs. Multi-
collinearity can be removed by, for example, selecting the
location of experimental points such that the columns of matrix
X will be mutually orthogonal, i.e. their scalar product will be
zero,

<x,x,>=Y x,x,=0forjzk (2.4)

i=1

If all the columns of matrix X are mutually orthogonal, then
matrix XTX is diagonal and a solution of equation b =
(XTX)~1XTy can be expressed in the form

%,
= = ke @.5)

2
25

i=1

The significance of the multiple correlation coefficients can be
calculated using F-test
-1
g
1

3

i

_
K=
m-—

=1, (2.6)

—

where g is an average value of all the test statistics rj2 defined by
eqn (2.1) for § = 0. Note that the f3,, is the intercept term. The
Fr is the F-test criterion for testing multiple correlation
coefficient significance.!

The presence of multicollinearity can be identified on the
basis of numerical and statistical criteria. Instead of the matrix
XTX, its standardized version R is used after X has been scaled
so that the length of each vector, the sum of squares of each
column, is one. This standardization is necessary to prevent the
eigenvalues from being dominated by one or two of the
independent variables, and is especially important if the raw
variables are of very different magnitudes. The sum of the
eigenvalues equals the trace of the matrix being analyzed, which
is the sum of the squares of the independent variables including
an absolute term. Matrix R is formally identical with the
correlation matrix of the controllable variables. For further
discussion on this topic, the reader is referred to ref. 58 and the
discussions following Belsey’s article by Cook,5° Gunst,50 Snee
and Marquardt! and Wood.62 The following numerical criteria
are commonly used to see whether there is multicollinearity in
matrix R:

(a) If the determinant of matrix R, det(R) = Hik, where A;
J=1
are eigenvalues of the matrix R, is less than 10—3, there is good
evidence for multicollinearity.

(b) The condition number K = Apx/Amin contains A,, and
Amin, the largest and the smallest of the m non-zero eigenvalues
of a matrix R, see ref. 2. The condition number provides a
measure of the sensitivity of the solution of the normal
equations to small changes in X or y. A large condition number
indicates that a near-singularity is causing the matrix to be
poorly conditioned. Belsey, Kuh, and Welsch? suggest that
condition numbers K around 10 indicate weak dependencies
that may be starting to affect the regression estimates. Condition
numbers K of 30 to 100 indicate moderate or strong depend-
encies and numbers larger than 100 indicate serious collinearity
problems. If K > 1000, very strong multicollinearity is
detected. The number of condition numbers in the critical range
indicates the number of near-dependencies contributing to the
collinearity problem.

(c¢) The variance inflation factor for the jth regression
parameter VIF, is defined as the ratio of the variance of the jth
regression coefficient to the same variance for orthogonal
variables when R is the unit matrix. It is given by VIF; = Rj;
where Rj; is the jth diagonal element of matrix R—!. If VIF; >
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10, strong multicollinearity is detected. The link between VIF;
and collinearity (of the standardized and centred variables) is
through the relationship VIF; = 1/(1 — R? ) where R? is the
coefficient of determination from the regression of X; on the
other independent variables. If there is a near-singularity
involving X; and the other independent variables, RJ? will be near
1.0 and VIF; will be large. If X; is orthogonal to the other
independent variables, R? will be 0 and VIF; will be 1.0.
Variance inflation factors are simple diagnostics for detecting
overall collinearity problems that do not involve the intercept.
They will neither detect multiple near-singularities nor identify
the source of the singularities. The maximum variance inflation
factor has been shown to be a lower bound on the condition
number.63-64 Snee and Marquardt6! suggest that there is no
practical difference between Marquardt’s VIF > 10 guideline
for serious collinearity, and Belsey, Kuh, and Welsch? condi-
tion number of 30.

(d) The Scort multicollinearity criterion: to examine the
suitability of a proposed linear model with regard to possible
multicollinearity, a test criterion is usually used,!

E

ooy
__,S
MT—iH @7
tS

wing rules for identification of multicollinearity:

(i) If Mt > 0.8 the model is not suitable because of strong
multicollinearity, so a model correction is necessary.

(ii) If 0.33 < Mt =< 0.8 the model is poor because of medium
multicollinearity, so some model correction is recommended.

(iii) If Mt < 0.33, the model has little trouble from weak
multicollinearity, so usually no model correction is necessary.

The M criterion is useful in cases where it is necessary to
discover all of the controllable variables which significantly
affect the variability of the dependent variable y. When data are
approximated by an empirical model, for example by a
polynomial, the Mt values need not be considered.

2.1.4 Biased regression. As the OLS estimators of the
regression parameters are the best, linear and unbiased
estimates (of those possible estimators that are both linear
functions of the data and unbiased for the parameters being
estimated), the LS estimators have the smallest variance. In the
presence of collinearity, however, this minimum variance may
be unacceptably large. Biased regression refers to that class of
regression methods in which unbiasedness is no longer
required. Generalized principal component regression (GPCR)
which will be described below attacks the problem by
regressing y on the important principal components and then
parcelling out the effect of the principal component variables to
the original variables.#142 Another biased regression technique,
ridge regression, proceeds by adding a small value, %, to the
diagonal elements of the correlation matrix of independent
variables (from where ridge regression derives its name, since
the diagonal of ones in the correlation matrix may be thought of
as a ridge). When viewing the ridge trace, the analyst picks a
value of & for which the regression parameters 3 have stabilized.
Choosing the smallest value of k possible introduces the
smallest bias after which the regression parameters § seem to
remain constant. Sometimes increasing & will eventually drive
the regression parameters J to zero.

2.1.4.1 Generalized principal component regression. GPCR
approaches the collinearity problem from the point of view of
eliminating from consideration those dimensions of the X-space
that are causing the collinearity problem. This is similar in
concept to dropping an independent variable from the model
when there is insufficient dispersion in that variable to
contribute meaningful information on y. However, in GPCR the



dimension dropped from consideration is defined by a linear
combination of the variables rather than by a single independent
variable. As discussed above it may not always be a single
variable that contributes to multicollinearity, but a combina-
tion.

GPCR builds on PCA of the matrix of centred and
standardized independent variables. As introduced above, XTX
= R where R is the correlation matrix for variables X and XTy
= r where r is the correlation vector between y and X variables.
To detect ill-conditioning of XTX, the matrices are decomposed
into eigenvalues and eigenvectors. Since the matrix XTX is
symmetrical the eigenvalues are ordered sothat 4, S A, S A3 <
... Ay and the corresponding eigenvectors J;,j = 1, ..., m, in the
form of the sum

R= Z /’L./’J./‘J_/T (2-8)
j=1
The inverse matrix R—! may be expressed in the form
R =340 J] (2.9)
i=1

and therefore the relation for the parameter estimate by may be
rewritten in the form

by =Y (4 J]Ir (2.10)
J=w

and the covariance matrix of normalized estimates by may be
rewritten in the form

D(by) =0 24 )

J=w

(2.11)

From these equations it follows that when the eigenvalues 4; are
small the estimates by and their variances are rather high.
Regression problems can be divided into three groups according
to the magnitude of the eigenvalues A;:

(i) All eigenvalues are significantly higher than zero. The use
of the least-squares method (OLS) does not cause any problems.
Because matrix R is standardised, the original scale of the
variables is not relevant.

(i) Some eigenvalues are close to zero. This a typical
example of multicollinearity when some common methods
fail.

(iii) Some eigenvalues are equal to zero: the matrix XTX or R
is singular and cannot be inverted.

The one way of avoiding difficulties with groups (ii) and (iii)
is the use of the generalized principal component regression
GPCR Here the terms with small eigenvalues A; are neglected
from the model. One main shortcoming of PCR is neglecting the
whole terms which, for the case of higher differences between
A;, is unacceptable; a better strategy would be to choose a cut-off
value that is part way between two PCs. For example the
presence of A; leads to the unacceptable high variances of
parameters (small r-test) and avoiding of X; leads to unaccept-
able high bias of parameters and small correlation coefficient,
i.e. degree of fit. A solution to the dilemma is GPCR. Here the
only parts of terms corresponding to A; are neglected and
therefore the results of regression are continuously changed
according to a parameter P which we call precision.

1. All eigenvalues @ are retained for which
[ o 1

L Isp 2.12)

j=1

where P can be selected by the user as discussed below but is
usually about 10—5. Here m equals the total number of principal

components in the datasets: note that the smallest eigenvalue is
numbered 1, and the largest m.
2. For the case

/=1 > Pand | = <P

(2.13)

then part of eigenvalue @—1 is retained. Define

w m
W:Z/lj andE=Z/1j .
jo1 1

When the condition W/E > P is valid, i.e. the value @is not an

integer, the summation is made from @—1 and the eigenvalue
Aw—1 is ‘weighted’ by the factor

ye W — EP

A

(2.14)

@

3. Eigenvalues from w—2 onwards are rejected.

The length of estimates ||by|| with their variances may be
continuously decreased as a function of increasing precision P.
However, it is followed by an increase of the estimate bias and
a decrease in the multiple correlation coefficient. The bias of
estimates here is caused by neglecting terms in eqn. (2.13) and
eqn. 2.14) at w > 1.

It has been suggested38 that the squared bias 42 (bx) = [ —
E (b) 1? achieved by the method of GPCR is equal to

H(by) = Py {Z:'J_,J,T}ﬂrq 2.15)

The optimum magnitude of P may be determined by finding a
minimum of the mean quadratic error of prediction MEP (in the
literature it is also known as the mean squared error of
prediction, MSEP).

2.1.4.2 Selection of suitable parameter P. One of the main
properties of regression models is a good predictive ability. This
predictive ability can also be adopted for the selection of an, in
some sense optimum, criterion parameter P. Various criteria for
testing prediction ability may be used;! one of the most efficient
seems to be the mean quadratic error of prediction, MEP. The
statistic, MEP uses a prediction §; from an estimate constructed
without including the ith point, and is a form of cross-validation,
eqn. (1.6). The most suitable model is that which gives the
lowest value (minimum) of MEP. Beyond the MEP, the
coefficient of determination R? (maximum), the predicted
coefficient of determination R?, (maximum) and the Akaike
information criterion, AIC (minimum) can also be used; for the
definition of R2, R?, and AIC see pages 4142 in ref. 1. A
suitable P corresponds to some minimum of dependence MEP;
= f(P,). For the selection of this value of P a very simple
strategy can be used: for P = 10—34 the MEP; is calculated; for
various values P;, i = 1, 2, ..., the MEP; are calculated until
MEP; < MEP,_;; and in the interval W;_,/E < P; < W/E the
optimum P is selected by the interval halving method. A trial-
and-error procedure can be adopted for selecting a suitable P as
reported previously.3?

2.1.5 Transformation in the case of the non-normality of
variable distributions. There are two basic reasons for
transforming variables in regression. Transformation of the
dependent variable is indicated as a possible remedy for non-
normality and for heterogenecous variances of the errors.
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Transformations to improve normality have generally been
given low er priority than those to simplify relationships or
stabilize variance. Fortunately, transformations to stabilize
variance often have the effect of also improving normality.
Likewise, the power family of transformations, which have
been discussed for straightening the one-bend relationship and
stabilizing variance, are also useful for increasing symmetry
(decreasing skewness) in the distribution. The expectation is
that the distribution will also be more nearly normal. An
assumption that the residuals are normally distributed is not
necessary for estimation of the regression parameters and
partitioning of the total variation. Normality is needed only for
tests of significance and the construction of confidence interval
estimates of the parameters. The t-test, F-test, and y2-test
require the underlying random variables to be normally
distributed. Likewise, the conventional confidence interval
estimates depend on a normal distribution, either directly or
through Students’s #-distribution.

Plots of the observed residuals and skewness and kurtosis
coefficients are helpful in detecting non-normality. The skew-
ness coefficient measures the asymmetry of the distribution
whereas kurtosis measures the tendency of the distribution to be
too flat or too peaked. The skewness coefficient for a normal
distribution is 0; the kurtosis coefficient is 3.0. When the sample
size is sufficiently large, the frequency distribution of the
residuals can be used to judge symmetry and kurtosis.

Transformation of the dependent variable to a form that is
more nearly normally distributed is the usual recourse given
non-normality. Box and Cox®5 have presented a computational
method for determining a power transformation for the
dependent variable where the objective is to obtain a simple,
normal, linear model that satisfies the usual least squares
assumptions. The Box—Cox method uses the parametric family
of transformations defined, in standardized form, as

y -1
o |y forr#0
ytram'.i = 7(yrram) (2- 16)
Virans I0(Y,) fory =0

where ¥, =€xp Y [In(»))/n and y, is the geometric mean of

i=1

the original observations. The maximum likelihood solution is
obtained by performing a least squares analysis on the
transformed data for several choices of y from, say y = —1to
+1. Let RSS(p) be the residual sum of squares from fitting the
model to a transformed dependent variable y( for the given
choice of yand let 02(7) = RSS(p)/n. The likelihood for each
choice of yis then given by

Lipax = —0.5In[62(P)] (2.17)

Maximizing the likelihood is equivalent to minimizing the
residual sum of squares. The maximum likelihood solution for
¥, then, is obtained by plotting RSS(7) against yand reading off
the value where the minimum, RSS(Pmi, is reached. It is
unlikely that the exact power transformation defined by ywill be
used.

2.2 Methodology

2.2.1 Procedure for multiple regression model building.
The procedure for the construction of a multiple linear
regression model consists of the following steps:

Step 1. Proposal of the regression model and the statistical
significance of parameter estimates.: The procedure should
always start from the simplest regression model and the most
convenient one is determined with the use of MEP and AIC.

Step 2. Exploratory data analysis - examination of multi-
collinearity, examination of a variable’s normality and hetero-
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scedasticity: The scatter plots of individual variables and all
possible pair combinations of the variables are examined.
Multicollinearity is examined using the condition number K and
the variance inflation factor VIF. Using regression diagnostics a
residual’s normality and heteroscedasticity are examined. If
necessary, the corresponding y variable transformation is
applied.

Step 3. Construction of a more accurate model using GPCR:
On the basis of MEP or AIC a more accurate regression model
is constructed (for transformed y variables, if necessary). If
some parameters are statistically insignificant the most suitable
parameter P is searched for with the use of MEP and AIC.

2.2.2 Software used. For computation of the GPCR an
algorithm in S-Plus®% was written, and the Linear Regression
module of the ADSTAT package was used.3®

2.3 Case study

Many problems in chemometrics concern an approximation of
instrumental data of convex (or concave) increasing (or
decreasing) values by a polynomial to approximate the shape of
the data. For resolution of these types of problems, GPCR with
an optimum P minimizing the criteria MEP can be applied.

2.3.1 Dataset: age-related differences in serum levels of
17-hydroxypregnenolone in healthy subjects. 17-hydrox-
ypregnenolone (3B,17«-dihydroxypregn-5-en-20-one), being
derived from cholesterol in the metabolic pathway leading to
the formation of steroid hormones, represents an important
marker in the diagnosis of some gonadal and adrenal defects.
Age-related changes in 17-hydroxypregnenolone have been
monitored and a detailed study of age- and sex-related changes
through childhood, puberty, adulthood and senescence has
recently been published.5” The data concerning serum samples
and the monitoring of age-related changes in 17-hydrox-
ypregnenolone [nmol 1—1] were obtained from 110 normal
males from 2 to 64 years old (Table 5).

2.3.2 Proposal of the regression model. The effects of age
on the levels of steroid studied were investigated, and an
empirical model describing this dependence was constructed. In
step 1 the optimal order of polynomial model m describing the
original data on the dependence of 17-hydroxypregnenolone
levels for males on age y = fo + B x + ... + Bmr™ was
established. Using OLS for the highest R? (Fig. 6a), highest
R2p (Fig. 6b), lowest MEP (Fig. 6¢) and lowest AIC (Fig. 6d)
values and their dependence on the polynomial order m, the
global extreme for m = 9 was found, while one local extreme
was at m = 6. In the exploratory data analysis of step 2, the
scatter plot of the dependence of ordinary residuals & on
prediction § shows heteroscedasticity, and the Q-Q graph of
jackknife residuals exhibits a skewed asymmetric distribution
of random errors in variable y.

2.3.3 Examination of multicollinearity, examination of
normality of variables and heteroscedasticity. An examina-
tion of multicollinearity concerns an estimation of the max-
imum condition number K = 8.41 X 1012 which is higher than
1000, and the largest value of the variance inflation factor VIF
= 7.34 X 1019 which is higher than 10; therefore a strong
multicollinearity is suggested. To examine the normality of
random error distribution in dependent variable y and to find the
most convenient variable transformation y” (the power trans-
formation) or (x¥ — 1)/y (the Box—Cox transformation), the
RSS(7) for different values of power y were calculated. Several
resolution criteria were applied to find the optimal power %. The




most important value was such an estimate of ¥ for which the
normality of a residual distribution was achieved: for estimate
= 0.13 the skewness g; is nearly zero and the kurtosis g5 is
nearly equal to 3; thus the transformation represents a good
approximation of a Gaussian distribution. A search for the
optimal polynomial degree m was then repeated for the
transformed data, and the same m was determined. From the
biochemical point of view, the better fit is for the global
minimum, m = 9, when the curve reflects all the fine nuances
of the age-dependence.

As the OLS method leads to large variances of regression
parameters given a strong multicollinearity in data, the
parameter estimates are not statistically significant, and the
GPCR method should be used instead. Fig. 7a, b, ¢, d show a
search of the PCR optimum criterion value P with the use of
statistical criteria R2, R2p, MEP and AIC and transformed data
(% = 0.13). The rankit Q-Q plot of jackknife residuals (Fig. 8)
then exhibits a Gaussian distribution and the residuals are
homoscedastic.

2.3.4 Construction of a more accurate model using
GPCR. In step 3 the regression model was constructed: for the
identified polynomial degree m = 9 the test criterion Fg =
7.573 was greater than the corresponding quantile of the Fisher-

Snedecor F-distribution Fpos (8, 114—9) = 1975, and
therefore the proposed regression model is statistically sig-
nificant. In contrast, the quantile of the Student ¢-distribution,
10.975 (114“‘9) = 1.984is greater than ty = —0.812,1, = 1.602,
ts = —1.881, 15 = 1.762, and therefore the four parameters Bos
B, Bs, Po are statistically insignificant. Meanwhile, 5975
(114—9) = 1.984 is smaller thanz, = —2.11, 13 = 2.234, 14 =
—2285, ts = 2232, t¢ = —2.129, 1 = 2.006, and the
corresponding six parameters 3, B3, B, Bs, Po are statistically
significant. The ordinary least-squares method OLS with P =
1035 has proven the polynomial degree of the 9th order (where
brackets of the model equation contain the standard deviation of
each parameter and the letter R means that 8 is rejected while
the letter A means f3 is accepted):

y = —13.18(16.24, R) + 16.43(10.25, R)x — 4.87(2.42, A)x2 +
0.634(0.284, A} — 4.29E—02(1.88E02, A)x* +
1.67E—03(7.46E—04, A)x5 — 3.86E—05(1.81E—05, A)x® —
3.96E—09(2.10E—09, A)x” — 3.96E—09(2.10E—09, R)x® +
1.25E—11(7.09E—12, R)x®

with statistical criteria R? = 40.53%, R?, = 55.75%, MEP =
26.122, AIC = 362.67. The method of GPCR with P = 1.0 X
10-8 found another regression model in which most parameter
estimates were statistically significant but biased, in the form

Table 5 The age-related changes in 17-hydroxypregnenolone for 110 normal males from 2 to 64 years old: age x [years], concentration of

17-hydroxypregnenolone y [nmol 1—1]

2 5.1000 3 6.0998 5 1.4000 6 1.2946 6 2.5893 6 2.2671
6 2.2573 6 6.5002 6 1.5786 6 1.4000 6 4.8001 7 3.4066
7 0.9149 7 3.8001 8 0.9000 8 4.8001 10 3.8574 10 0.9166
10 3.0473 10 3.1274 10 1.2000 11 3.6561 13 3.3075 13 7.3002
13 2.8999 13 6.1050 13 2.7069 16 10.460 16 28.349 16 12.099
17 20.700 18 19.981 18 11.427 19 38.600 19 10.516 19 12.481
20 4.0029 22 9.9006 22 21.082 22 12.079 23 14.100 24 9.2455
24 4.4665 24 16.263 25 23.656 28 14.278 29 3.0690 29 8.6128
30 14.398 30 6.6234 30 2.2364 31 2.0903 31 5.0297 32 2.1000
32 5.6313 32 7.9572 32 17.651 32 9.6001 33 3.0308 35 15.700
35 4.3706 37 1.3323 37 16.068 38 2.2521 38 3.7740 39 6.3807
39 5.1226 39 59714 40 7.3380 41 9.3778 42 5.6996 42 3.7085
43 19.127 44 7.5441 44 9.3468 44 5.2086 45 14.339 46 4.0545
47 6.4874 48 10.732 48 10.327 49 49234 49 9.3674 50 5.1617
50 13.210 51 8.7046 51 3.9384 51 3.3616 53 35773 53 3.8533
54 4.5176 54 9.6914 55 10.528 55 3.6305 56 7.6003 56 6.2327
57 2.3947 57 6.0150 57 4.4930 58 5.2138 59 1.2867 59 11.529
60 2.5229 60 8.6483 61 2.2264 61 3.6349 62 4.6618 62 5.5733
63 3.8802 64 6.0525
60
a0t 2
R
R - y
40
]
1
20t 'l
. 20}
i
]
t
of R . — s ot R — R
T 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 1N
Polynom degree, m Polynom degree, m
o} © arc|@ .
MEP , 400} '
sl ' .
] 1
] 1
32 1 380 \
1 '
| }
28}
360

1 2 3 4 5 6 7 8 9 10 11

Polynom degree, m

1 2 3 4 5 6 7 8 ¢ 10 11

Polynom degree, m

Fig. 6 The search for an optimal polynomial degree m leads to one local (dashed line) and one global extreme (full line) when the following dependences
and the ordinary least squares OLS were used: (a) the determination coefficient R2 on m, (b) the predicted coefficient of determination R2» on m, (c) the mean
error of prediction MEP on m, (d) the Akaike information criterion AIC on m.
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y = 23.77(7.98, A) — 9.05(2.76, A)x + 1.18(0.33, A)x® —
572E—02(1.72E—02, A)x® + 1.00E—03(3.61E—04, A)x* +
2.68E—06(6.83E—07, A)x5 — 2.11E—07(8.41E—08, A)x6 —
8.85E—10(1.92E—10, A)x” + 5.70E—11(2.53E—11, A)x® —
3.70E—13(1.97E—13, R)¥®

with more pessimistic values of statistical criteria R? = 36.31%,
R2, = 51.04%, MEP = 28.028, AIC = 37021 than the
previous OLS method, but with polynomial parameters from S
to f3s statistically significant except for 5. Therefore, data were
recalculated for m = 8 and GPCR with the new optimum
criterion P = 1.0 X 10-7 determined following regression
model:

y = 12.9(6.27, A) — 4.39(1.74, A)x + 0.55(0.15, A)x? —
2.08E—02(5.18E—03, A3 + 1.69E—04(4.07E—05, A)x* +
4.20E—06(1.02E—06, A) x5 — 2.54E—08(6.58E—09, A)x6 —
1.32E—09(3.22E—10, A)x7 + 1.32E—11(3.29E—12, A) x8

with statistical criteria R? = 33.35%, R?, = 50.55%, MEP =
28.214, AIC = 373.21 and the curve fitted as presented in Fig.
9a. As the dependent variable y does not exhibit normal
distribution, the power transformation of y was used and better
goodness-of-fit was achieved with P = 1.0 X 107 in the
form

W13 = 143012, A) 012003, A) x +
1.39E—02(3.05E—03, A)x2 — 5.20E—04(1.02E—04, A)x? +
4.17E—06(8.07E—07, A)x* + 1.04E—07(2.03E—08, A)x5 —
6.31E—10(1.31E—10, A)x6 — 3.28E—11(6.40E—12, A) x7 +
3.29E—13(6.54E—14, A)x®

with statistical criteria R? = 40.01%, R?, = 57.13%, MEP =
0.011198, AIC = —489.08. Fig. 9b shows the results obtained
when the retransformed variable y0-13 was used and some
diagnostic graphs for a detection of influential points were
examined: two scatter graphs of standardized residuals (Fig. 10a
and Fig. 10b) indicating outliers and heteroscedasticity but not
leverages show that points 29 and 34 are no longer outliers when
transformed data are used. The graphs of Cook distance (Fig.
11a and b) prove points 29, 34 and 110 to be influential. After
data transformation outliers 29 and 34 may remain in the data
set, and Gaussian and homoscedastic distribution results.

It may be concluded that 17-hydroxypregnenolone increases
from childhood and reaches a statistically significant maximum
at 20 years of age, followed by a fall to a local minimum at 37
years of age. This then increased to a statistically insignificant
peak at 49 years of age in men, and was followed by a less
pronounced decline as shown in Fig. 9.

2.4 Conclusions

When multicollinearity in data occurs, OLS estimates of
regression parameters are unbiased, but their variances are often

Jackknife residuals
o
1

3 2 4 0 1 2
Normal quantiles

Fig. 8 The rankit Q—Q graph of jackknife residuals proves the normality
of the random errors in the transformed dependent variable y0-13,
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Fig. 9 Linear regression of the 8th degree polynomial of the age-
dependence of 17-hydroxypregnenolone when (a) the original variable y
was used, (b) the transformed variable y0-13 was used.
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so large that they may be far from the true value. By adding a
degree of bias to the regression estimates, GPCR reduces
variances. Biased regression methods are generally based on the
fact that estimators with smaller mean squared errors can be
found if the unbiasedness of the estimators is relaxed. The
GPCR method, in combination with the MEP criterion is very
useful for constructing biased models. It can also be used for
achieving estimates that keep the model course corresponding
to the data trend, especially in polynomial-type regression
models. In the search for the best degree of polynomial, several
statistical characteristics of regression quality should be
considered as well.
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Fig. 10 The scatter plot of standardized residuals és on age x when (a) the
original variable y was used, (b) the transformed variable y%-13 was used.
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