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The occurrence of acne in women with hyperandro-
genemia is well known; a question remains, however,
as to whether a further positive relationship can be de-
tected between the intensity of acne and the levels of
testosterone, androgen precursors and sex hormone
binding globulin (SHBG). A procedure of interactive
data analysis extracting relevant information from
original data was applied. Exploratory data analysis
(EDA) identifies basic statistical features and patterns
of data using a variety of diagnostic displays. The need
for this step is particularly acute in biochemical and
clinical data, the distribution of which is mostly non-
Gaussian and often corrupted by the outliers. The
omission of EDA can lead to incorrect results and false
conclusions. In the EDA (i) several graphical tools for
summarizing data are applied, (ii) the peculiarities of a
sample distribution are investigated, (iii) a construc-
tion of distribution is carried out, (iv) a graphical
comparison of the sample distribution with selected
theoretical distributions is employed. The proposed
procedure is illustrated by typical case study in the
evaluation of differences between mean values of
serum levels of testosterone, androgen precursors and
SHBG in a group of patients with mild and severe
forms of acne. A knowledge of the interval estimate of
the mean value in both groups enables their compari-
son at the chosen probability level. As will be apparent
from the evaluation of inter-group SHBG differences,
an incorrect approach to the determination of group
mean values could result in a complete misinterpreta-
tion of the data. The results indicate that androgens
are not significantly related to the intensity of acne,
and that SHBG is higher in patients with more severe
forms of acne.
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Abbreviations: ADION, androstenedione; CDA, confir-
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1. Introduction

Statistics, when correctly used, can be a useful and
constructive tool in the analysis of biochemical and
clinical data; in careless or unscrupulous hands, how-
ever, it can be a dangerous weapon. Used properly, sta-
tistics will allow an investigator to quantify concepts
and conclusions, and help both to take into account
sources of systematic variation and to minimize the ef-
fect of random error. It will draw attention to the accu-
racy of the data, and to the type and quality of the in-
ferences. This paper will introduce the most important
of the basic techniques used in interactive computer-
ized statistics; at the same time the limitations of these
diagnostic methods and the conditions under which
they are valid will also be discussed.

The classical approach to statistical data analysis,
based on the use of the arithmetic mean and sample
variance, is possible when some stringent assump-
tions are valid. This approach is based on assumptions
about the statistical nature of a sample, such as inde-
pendence, normality and homogeneity. However, ex-
perience and further research have forced the recogni-
tion that classical techniques can perform badly when
the biochemical and clinical data depart from the ideal
described by such assumptions. More recently devel-
oped robust exploratory methods are broadening the
effectiveness of statistical analyses. Techniques of ex-
ploratory data analysis help researchers cope with sets
of data in a fairly informal manner, guiding them to-
wards structure relatively quickly and easily. Good sta-
tistics practitioners have always looked in detail at bio-
chemical or clinical data before producing summary
statistics and testing statistical hypotheses. One de-
scription of the general steps and operations that make
up practical data analysis identifies two broad phases:
the exploratory and the confirmatory.

The first phase is an exploratory data analysis (EDA).
According to Tukey (1), EDA represents “detective
work”, in which data are treated to uncover typical re-
lationships and patterns. EDA uses various descriptive
and graphic techniques which are typically free of strict
statistical assumptions about data (2, 3); often called a
“distribution-free technique”, EDA provides the first
contact with the data, and isolates certain basic statisti-
cal features and patterns within it. An important ele-
ment of the exploratory approach is the diagnostic flex-
ibility, both in tailoring the analysis to the structure of
the data and in responding to the patterns that the suc-
cessive steps of the analysis uncover.

The second phase is confirmatory data analysis
(CDA), which assesses the reproducibility of the ob-
served patterns or effects; its role is closer to that of tra-
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ditional statistical inference in providing statements of
significance and confidence (4).

The role of androgens in the pathogenesis of acne
vulgaris is well known; elevated androgen levels in
women with acne have been confirmed in many stud-
ies (5–13). Androgens elevate sebum production and
follicular ceratosis, which plays a major role in the eti-
ology of acne (14). However, the question remains as to
whether the severity of acne is directly related to an-
drogenicity, or whether acne severity is influenced
more by other factors. Discrepant results have been in-
dicated in the literature regarding the relationship be-
tween androgenicity and acne severity. For this reason,
a prospective study was conducted to evaluate the re-
lation of acne severity to clinical and laboratory mark-
ers of androgenicity in a group of women with acne.
Evaluation of the differences between the levels of
steroids in two groups with different acne severity 
was one of the constitutive steps in the examination 
of the relationship. Differences were evaluated in
dehydroepiandrosterone sulfate (DHEAS), dehydro-
epiandrosterone (DHEA), androstenedione (ADION),
testosterone and sex hormone binding globulin
(SHBG).

This paper employs efficient diagnostic displays and
plots of an EDA, the new words frequently appearing
almost side by side, to make connections between the
EDA and an existing background of statistical knowl-
edge in the analysis of biochemical and clinical data. A
typical study case illustrates an application of the pro-
posed procedure for the evaluation of differences in
mean serum levels of testosterone, androgen precur-
sors and SHBG in a group of patients with mild and se-
vere forms of acne. The best estimates of the mean val-
ues of the steroid levels, with their confidence
intervals, were calculated in groups of patients with
mild (denoted as data set Acne 0) and severe (denoted
as data set Acne 1) forms of acne. Knowledge of the in-
terval estimate of the mean value in both groups en-
ables their mutual comparison at a chosen probability
level; such comparisons contribute to answering the
question as to whether testosterone, androgen precur-
sors and SHBG can influence the severity of acne. As
will be apparent from the evaluation of the inter-group
differences of SHBG, an incorrect approach to the de-
termination of group mean values could result in a
complete misinterpretation of the data.

2. Theory

The most common biochemical data structure is a
batch of numbers. This simple data structure may have
characteristics not easily discerned by scanning or
studying the numbers. It is necessary to display the
batch as a whole and to notice such features as:
– how close to symmetrical it is;
– how spread out the numbers are;
– whether there are a few values that are far removed

from the rest;
– whether there are concentrations of data.

In exposing these features of data to the analyst,
some EDA terminology and diagnostics are offered
here at the outset. One of the most frequent acts in sta-
tistical data analysis is the one-sample problem based
on a batch of numbers statistically denoted as sample
x1, ..., xn, this representing behavior of a univariate
(random) variable x. Observations are the random
quantities. The complete collection of all possible out-
comes from the experiment in question is called the
population, and observations represent points in this
population (4). The sample values can be sorted in or-
der of ascending magnitude, x(1) ≤ x(2) ≤ ... ≤ x(n) and the
sorted values x(1), x(2), ..., x(n) are known as the order sta-
tistics. The order statistic x(i) is a rough estimate of sam-
ple quantile x~Pi. Under quantile x~Pi the 100Pi % of the
sample values lie, and the parameter Pi is the cumula-
tive or rank probability given by Pi=i/(n+1). For a normal
distribution the expression Pi=(i-3/8)/(n+1/4) is often
used, but the EDA algorithms also use the empirical
expression Pi=(i-1/3)/(n+1/3). The plot of order statistic
x(i) against cumulative probability Pi , for i = 1, ..., n is an
estimate of the quantile function Q(P). This is, in fact,
an inverse function of the sample distribution function.
For any value α from the interval [0, 1] the 100α-th
quantile x~α may be calculated by linear interpolation

(
i

)
x~α=(n+1) α – –––– (x(i+1) – x(i)) + x(i),n+1

i i+1
where –––– ≤ α ≤ ––––

n+1 n+1

Some methods of EDA are based on the selected
quantiles Q being calculated for selected cumulative
probabilities Pi = 2-i , i = 1, 2, ... . These quantiles are also
termed the letter values (16), as in Table 1, where the
symbol uPi denotes the quantile of the standard normal
distribution N(0, 1). Excepting a median (i = 1), for each
i > 1 there is a pair of extreme quantiles, the lower QL

and upper QU letter value. The lower letter value is cal-
culated for a cumulative probability Pi = 2-i while for the
upper Pi = 1 – 2-i is used (Figure 1).

2.1 Basic diagnostic EDA displays

The features and statistical properties of a data sample
are described by the symmetry, peakedness and tail
length of the sample distribution, the local concentra-
tion of data and a presence of outliers. The various ex-
ploratory plots display such information.

A quantile plot (2) enables the identification of the
peculiarities of shape in a sample distribution, which
may be symmetric, or skewed to higher or lower val-
ues. It is a plot of the quantiles of an actual distribution
against the corresponding probability Pi. The scale of
the vertical axis of the quantile is the scale of the or-
dered variable x(i). To compare an actual sample distri-
bution with a normal one, the quantile function of the
normal distribution Q(uPi) = µ + σ uPi for 0 ≤ Pi ≤ 1 is plot-
ted:
1. The classic estimates of µ and σ2, i. e. µ̂=x̄ and σ̂2=s2

are used where x̄ is the sample arithmetic mean and
s2 is the estimate of sample variance σ2.
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2. Robust estimates of µ and σ2, µ̂=x~0.5 and
σ̂2=(RF/1.349)2 are used where x~0.5 is the median and
RF is the interquartile range, RF = FU - FL.
A dot diagram (1), being a one-dimensional scatter

plot of data, represents an univariate projection of the
quantile plot onto the x-axis. The dot diagram simply
shows the local concentration of data, outliers, and ex-
tremes in the data. The data points are plotted along a
straight line parallel to, and above, the horizontal axis.
Stacking or jitter can be applied to better display over-
lapping points.

A stacking dot diagram has data points of equal
value plotted above each other on a vertical line or-
thogonal to the main line of the plot.

A jitter dot diagram (2), being similar to a dot dia-
gram, also represents an univariate projection of the
quantile plot, but sample points are randomly dis-
played on a strip above the axis. The width of the strip
is kept small compared to the range of the horizontal
axis. The vertical position of a point within the strip is
random. Although a scatter plot with jitter loses accu-
racy, its information content is enhanced.

A box-and-whisker plot (1) provides a graphical dis-
play of a five-letter values summary in the form of the
median, two quartiles and two extremes. The bulk of
data is represented as a rectangle with the lower and
upper quartiles being the bottom and the top of the rec-
tangle respectively, and the median is portrayed by a
vertical line within the rectangle. The box-and-whisker
plot has a length RF from the lower FL to upper FU quar-

tile, RF = FU - FL, and its width is proportional to the
value √n even where this has no meaning. The plot is
useful in illustrating the skewness of a sample. If the
distribution has a long heavy tail to the right (positive
skewness) then the right-hand section of the box will
be longer than the left, and the upper extreme point
will be further from the median than the lower extreme.
The converse will be true if the distribution has nega-
tive skewness with its longer tail to the left. Two lines,
called whiskers, extend from the ends of the box to the
adjacent values BU and BL. Adjacent values lie within
the inner bounds nearest to their boundary values, BU

and BL , expressed by BU = FU+1.5 RF and BL = FL-1.5 RF.
Values outside the inner bounds but within the outer
bounds VU and VL , expressed by VU = FU+3 RF and VL =
FL - 3 RF, are called the near far outliers (Figure 1). Data
points outside the inner bounds, smaller than VL or
larger than VU, are called the far outliers, and are
marked on this plot by a circle. This plot enables (i) the
determination of a robust estimate of the median, (ii)
the illustration of the spread and skewness of the sam-
ple, (iii) examination of the symmetry and length of dis-
tribution tails, and (iv) identification of the outliers. Dis-
playing several box-plots side by side gives a graphical
comparison of the corresponding distributions. To em-
phasize the relative locations, box plots can be drawn
with notches in their sides, and are then called notched
box-and-whisker plots (2). Such plots enable an exam-
ination of the variability of the median, which is ex-
pressed by notches given by the robust confidence in-

Tab. 1 A survey of some letter values.

i i-th quantile Probability for lower quantile Symbol for letter value Normal quantile uPi

1 Median 2-1 = 0.500 M 0
2 Quartiles 2-2 = 0.250 F –0.674
3 Octiles 2-3 = 0.125 E –1.15
4 Sedeciles 2-4 = 0.0625 D –1.53

Fig. 1 Construction of the dot diagram with letter values in-
dicating outliers: (a, upper part) the dot diagram with median
M, FL lower and FU upper quartiles, inner BL lower and BU up-

per limits, outer VL lower and VU upper limits; (b, lower part)
the area of outliers: A close outliers, B near far outliers, C far
outliers.
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terval IL ≤ M ≤ IU , where the lower and upper limits are

IL = M – 1.57 RF / √–n and IU = M + 1.57 RF / √–n [1a,1b].

The notches IL and IU are located symmetrically around
the median and form the beginning and the end of the
white strip in the box.

2.2 EDA Diagnostics for distribution shape
examination

The main statistical features of sample distribution are
represented by the asymmetry and tails length in com-
parison with a normal (Gaussian) distribution. Asym-
metry (skewness) and peakedness (kurtosis) can be
characterized at different distances from the median by
the following statistical diagnostics based on quan-
tiles: the halfsum (or midsum) ZQ = (QL + QU)/2, the in-
terquantile range RQ = QU – QL, the skewness SQ = (M –
ZQ)/RQ, the pseudosigma GQ = RQ /(−2uPi), the tails
length TQ = ln (RQ /RF), where Q stands for the letter
value and uPi is the quantile of standardized normal dis-
tribution for Pi = 2-i. The resulting diagnostics are sum-
marized in Table 2.
For a selected symmetric distribution the theoretical
values of the length of tails, TE and TD, were computed:
for a normal distribution TE = 0.534 and TD = 0.822, for a
rectangular distribution TE = 0.405 and TD = 0.559, and
for a Laplace (both sides exponential) distribution TE =
0.693 and TD = 1.098. The skewness SQ has negative
values for distributions skewed to higher values and
positive values for distributions skewed to lower val-
ues. For distributions with longer tails than the normal,
the values of pseudosigma GQ increase with the dis-
tance from the median. When the values of pseu-
dosigma GQ decrease with the distance from the me-
dian, the sample distribution has shorter tails than the
normal. To examine all statistical features of the sam-
ple various plots of characteristics from Table 2 are
used. For large samples letter values are examined,
while for small samples the quantile x~Pi = x(i) usually for
Pi = (i – 1/3)/(n + 1/3) is used.

The halfsum (or midsum) plot (2) indicates the sym-
metry of distribution. It has on the x-axis the order sta-
tistic x(i) and on the y-axis the halfsum (or midsum) Zi =
(x(n+1-i) + x(i))/2. For symmetric distribution the halfsum
(or midsum) plot forms a horizontal line y = x~0.5. If all
points are situated in between the two dashed lines of
the confidence bounds of the horizontal line, then the
distribution is symmetric.

A symmetry plot (2) indicates the symmetry of distri-
bution. It has on the x-axis the quantile uPi

2 for Pi = i
/(n+1) and on the y-axis the halfsum (or midsum) Zi =
(x(n+1-i) + x(i))/2. For a symmetric distribution the sym-
metry plot forms a horizontal line y = x~0.5. When this
line has a non-zero slope, the slope gives an estimate
proportional to skewness. When the data distribution is
asymmetric, the plot shows a clear trend (increasing
for a negative skewness and decreasing for a positive
skewness), going far beyond the dashed lines.

The quantile-box plot (17): examining the statistical
features of data is based on an estimate of the sample
quantile function, formed connecting points {x(i), Pi}
with straight lines. On the x-axis it has probability Pi

and on the y-axis the order statistic x(i), where Pi is cal-
culated by Pi = (i –1/3)/(n + 1/3). For symmetric distribu-
tions, the sample quantile function exhibits a sigmoid
shape, whereas for asymmetric the quantile function is
convex or concave increasing. The following quantile
boxes are on the graph:

a) The quartile box F has on the y-axis two vertices
given by quartiles FL and FU with corresponding values
on the x-axis equal to the cumulative probability values
P2 = 2-2 = 0.25 and 1 − 2-2 = 0.75.

b) The octiles box E has on the y-axis octiles EL and
EU and on the x-axis the cumulative probabilities P3 =
2-3 = 0.125 and 1 − 2-3 = 0.875.

c) The sedeciles box D has on the y-axis sedeciles DL

and DU and on the x-axis the cumulative probabilities
P4 = 2-4 = 0.0625 and 1 − 2-4 = 0.9375.

The position of the median M is marked by a horizontal
line inside the quartile box. A robust estimate of the me-
dian confidence interval, M ±1.57 RF / √–n, is drawn as a
vertical line at P1 = 0.5. On the basis of this plot, the fol-
lowing statistical features of the sample distribution may
be stated (17): i) a symmetric unimodal sample distribu-
t i o n contains individual boxes arranged symmetricly in-
side themselves, and the value of relative skewness is
close to zero, SQ ø 0. ii) An asymmetric sample distribu-
t i o n: in the case of a distribution skewed to higher values,
there are significantly shorter distances between the
lower parts of the boxes when compared with those be-
tween the upper ones. The skewness SQ then has a nega-
tive value. For a distribution skewed to lower values the
skewness SQ is positive. iii) O u t l i e r s are indicated by a
sudden increase of the quantile function outside the F
box, and the slope may approach infinity. iv) A multi-
modal sample distribution is indicated by several parts of
the quantile function inside box F reaching a zero slope.

Tab. 2 Diagnostics describing the distribution shape.

Diagnostic Used for exploration of Valid for L

Halfsum (or midsum) ZQ symmetry (at ZQ = M where M is median) F, E, D, ...
Interquantile range RQ spread F, E, D, ...
Skewness SQ symmetry (at SQ = 0) F, E, D, ...
Pseudosigma GQ peakedness (for Gaussian distribution GQ = 0) F, E, D, ...
Tails length TQ peakedness E, D, ...
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2.3 Determination of sample distribution

Some graphical displays can show overall patterns or
trends; they can also reveal surprising, unexpected, or
amusing features of the data that might otherwise go
unnoticed. When a large number of observations is
available, the estimation of probability density function
or other function characterizing the data distribution
can help to elucidate the statistical behaviour of the
sample.

A histogram is one of the oldest classic presenta-
tions of grouped frequency distributions. The range of
the continuous variable is partitioned into several in-
tervals, usually of equal length, and the counts (fre-
quencies) of the observations in each interval are
plotted as a bar length. Histograms give a visual infor-
mation about asymmetry, kurtosis and outliers. When
the histogram is plotted on a square root vertical scale,
which is an approximate variance stabilizing transfor-
mation, it is called a rootogram.

A kernel density estimator for the sample probability
density function ƒ̂(x) for small and medium-sized
samples may be calculated by the relationship

ƒ̂(x)=[1/(nh)]
n
∑

i=1
K [(x − xi)/h], where h is bandwidth,

which controls a smoothness of ƒ̂(x), and K(x) is the
kernel density function. The kernel density estimator
K(x) is symmetric around zero, is a nonnegative density
function, and has properties of a probability density
function. To take a bi-quadratic kernel estimate

{
0.9375(1-x2)2 for -1 ≤ x ≤ 1

}
K(x)= [2]

0 for x outside[-1;1]

The quality of the kernel estimate ƒ̂(x) is controlled by
the choice of parameter h. If h is too small, the estimate
is rough; if it is too large, the shape ƒ̂(x) is flattened too
much. Selection of optimal h for EDA purposes is de-
scribed by Lejenne et al. (16). The plot brings a com-
parison of the normal probability density curve (solid
curve) with a kernel density estimate, computed from
the data (dashed curve): when the data are not homo-
geneous and show a clustering tendency, several local

maxima of the density estimate can occur. For normal
data, both curves should be close to each other. On the
other hand, it must be realized that with a small enough
smoothing parameter h, local maxima can occur for
any data.

A quantile-quantile Q-Q plot (3, 16) allows a compar-
ison of sample distribution described by the empirical
QE(Pi) quantile function and the given theoretical quan-
tile function QT(Pi). The values of the empirical QE(Pi)
function are approximated by the sample order statis-
tic x(i). If data points lie along a straight line, then there
is close agreement between the sample and theoretical
distributions x(i)øQT(Pi) where Pi is the cumulative
probability Pi = (i – 1/3)/(n + 1/3). Use of this equation re-
quires a knowledge of all of the parameters for theoret-
ical quantile functions QT(Pi). Theoretical distributions
can be standardized to the form QT(Pi) = µ+σQTS(Pi).
Here µ is usually the location parameter, s is the spread
parameter, and QTS(Pi) is the standardized quantile
function. For most bi-parametric distributions QTS(Pi) is
free of adjustable parameters. For some tri-parametric
distributions the shape factor is usually a parameter of
the plot. The standardized quantile function QT(Pi) is
therefore used for practical construction of the quan-
tile-quantile plot. The x and y co-ordinates of the Q−Q
plot for selected theoretical distributions are given in
Table 3.
Due to a strong dependence among order statistics xi

and their non-constant variance, the quantile-quantile
plot for small samples has a very patterned appear-
ance. When the normal distribution is used, this plot is
called the rankit plot (or normal-probability plot). This
plot is very effective for testing an assumption of nor-
mality on a variable, and enables classification of the
sample distribution according to its skewness, kurtosis
and tails’ length. A convex or concave shape indicates a
skewed sample distribution. It is the best graphical tool
for checking normality and outliers presence; for nor-
mal data without outliers the points should fit closely to
a line; for normal data with outliers, points in the central
parts should fit closely to a line and the endpoints fur-

Tab. 3 Standardized probability density fT(s) and distribution FT(s) functions, and
corresponding coordinates (x, y) of the Q–Q plot.

Distribution FT(s) fT(s) y x

Rectangular s 1 x(i) Pi

Exponential 1 – exp (–s) exp (–s) x(i) – ln (1 – Pi)
Normal Φ(s) (2π)–1/2 exp (–0.5 s2) x(i) Φ–1(Pi)
Laplace, x ≤ 0 0.5 exp (s) 0.5 exp (s) x(i) ln (2Pi) for Pi ≤ 0.5
Laplace, x > 0 0.5 (2 – exp (–s)) 0.5 exp (–s) x(i) –ln (2(1 – Pi)) for Pi > 0.5
Log-normal Φ[ln (s)] (2π)–1/2 exp (–0.5 ln s2) x(i) exp [Φ–1(Pi)]

In Table 3 the normal distribution function Φ(s) is defined as Φ(s) = ––––1√___
2π

s
∫

-∞
exp(–0.5 u2)du.

For calculation of an inverse function Φ-1(Pi) the simple approximate relation may be used
1

–9.4 In (–– –1)
PiΦ-1(Pi)= –––––––––––––––––– .

1
abs(ln(–– –1))+14

Pi
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ther away from the line; for data coming from a posi-
tively skewed distribution (e. g. log-normal, exponen-
tial) the shape should be nonlinear, convex; for data
coming from a negatively skewed distribution the
shape should be nonlinear, concave; for data coming
from a distribution with kurtosis higher than normal, i.
e. those showing a high concentration around the mean
(e. g.Laplace), the shape should be concave-convex; for
data coming from a distribution with kurtosis smaller
than normal, i. e. those with low concentration around
the mean (e. g. uniform), the shape should be convex-
concave. One advantage of the rankit plot, as compared
to statistics describing skewness, kurtosis, etc., is that
one can visually check whether the lack of normal ap-
pearance (non-linearity) is caused by just a few points,
or whether it is a general tendency shared by all data.

2.4 Comparison of two sample means

To consider a random sample of size n1, with mean 
x̄ and variance sx

2, and sample of size n2 with mean 
ȳ and variance sy

2: the hypothesis H0: x̄ = ȳ is tested
against the alternative HA: x̄ ≠ ȳ. When both samples
are not from a normal distribution, the modified test
criterion T3 is used

The test criterion T3 for H0 has a Student t-distribution
with v = n1 + n2 - 2 degrees of freedom. This statistic is
robust for skewed sample distributions, also for het-
eroscedasticity in data and different sample variances
σ2

x≠σ2
y.

3. Procedure

3.1 Procedure of univariate data analysis

The main task of statistical analysis is to collect infor-
mation about a population, so sample estimates are
used to find confidence intervals of parameter of loca-
tion. With a given probability, the confidence interval of
a population parameter will include the true value of
this „unknown“ parameter. Statistical hypotheses test-
ing “unknown“ parameters of the population may also
be carried out.

Step 1: Exploratory data analysis

When no preliminary information about data is avail-
able, a full exploratory data analysis is applied: for a
graphical visualization of data, diagrams and simple
plots, i. e. (1) the quantile plot, (2) the dot diagram and

the jitter dot diagram, (3) the box-and-whisker plot and
the notched box-and-whisker plot are used. Sample
distribution represented by the symmetry and tail
lengths, skewness and kurtosis is investigated by plots,
(4) the halfsum (or midsum) plot and (5) the symmetry
plot (6) the quantile-box plot. Construction of an actual
sample distribution, i. e. the estimate of probability
density function, is carried out by (7) the histogram or
rootogram and (8) the kernel density estimate of the
probability density function while (9) the quantile-
quantile plot and (10) the circle plot are used for com-
parison of the sample and theoretical distributions.

Step 2: Confirmatory data analysis

When analyzing any data, the sample assumptions are
always examined using a check for sample homogene-
ity, a check for sample normality and a check for inde-
pendence of sample elements.

Step 3: Data transformations

Power transformation and Box-Cox transformation are
used to calculate the re-expressed mean value x̄R, the
variance s2(x̄R) and the 95% confidence interval of the
re-expressed mean value.

Step 4: Determination of point and interval estimates
of parameters

The classic and robust point and interval estimates of
the parameters of location, scale and shape are calcu-
lated. The choice of the type of statistics depends on
the asymmetry of the distribution and the results of a
check of sample assumptions. If outliers are present in
data, robust characteristics are preferred.

Step 5: Statistical hypothesis testing

A simple test of the parameters of population on the ba-
sis of one sample uses the 100(1-α)% confidence inter-
val of parameter µ. For testing hypotheses about two
populations on the basis of two samples, the first step is
the test of normality, followed by a test of the homo-
geneity of variance in the two samples by the Fisher-
Snedecor F-test. However, this test is rather sensitive to
any deviation of the sample distribution from normality.
The classic Student t-test T1 (equal variance in both sam-
ples) and T2 (unequal variances in both samples) are
known from most statistical software and textbooks.
When both samples deviate in skewness from the nor-
mal distribution, the test criterion T3 (see eq. [3]) is the
only convenient method and can be applied only with
some advanced statistical software, as the T3 criterion is
rarely available in more general statistical software.

3.2 Software used

For EDA, the creation of diagnostic graphs and the
computation of quantile-based characteristics of a
sample distribution, the algorithm in S-Plus was con-
structed. In addition, English version of ADSTAT and
NCSS2000 were used (18, 19).
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4. Results

4.1 Illustrative example

To describe the correct application of statistical tech-
niques, the value of SHBG was chosen as the optimum
example. For the best understanding of a procedure re-
sulting in the correct evaluation of differences between
the mean values of SHBG in groups with mild and se-
vere acne, each step is described in detail. The original
data are shown in Table 4.

Solution

Step 1: Basic diagnostic plots of EDA are used for
graphical visualization of both data sets.

Data set SHBG 0: the quantile plot (Figure 2a) ex-
hibits 2 or 3 outliers and an asymmetric distribution as
the two curves, classic and empirical robust, are not
identical. indicate that the distribution is asymmetric in
tails. The halfsum plot (Figure 5a) and the symmetry
plots (Figure 6a) exhibit an asymmetric distribution as
many points are outside the confidence limits. The
quantile-box plot (Figure 7a) shows an asymmetry in
the sample distribution, as all three boxes are located
asymmetrically inside themselves along the median.
The position of the median M is marked by a horizontal
line inside the quartile box; a robust estimate of the
median confidence interval, M ± 1.57 RF / √–n, is drawn as
a short vertical line at P1 = 0.5. The kernel density esti-
mate of the probability density function (Figure 8a)
proves a non-normal distribution, as both curves, the
theoretical for a normal distribution and the sample,
differ. In the rankit plot (Figure 9a) some points do not
fit the line, and therefore a normal distribution is re-

jected. Analysis of the quantile-quantile plot compares
various distributions with the sample and shows that
the highest value of the correlation coefficient r =
0.9843 detects an exponential distribution. A circle plot
(Figure 10a) also proves asymmetric distribution as
both, theoretical for normal distribution and empirical,
differ.
Because the halfsums ZQ are not constant and skew-
nesses SQ are positive, the right skew distribution is
identified. The point estimate of skewness is 1.08 and
of kurtosis 4.38, indicating that the sample distribution
is asymmetric and not Gaussian.
Data set SHBG 1: the quantile plot (Figure 2b) contains
some sample points which are far from fitting the
curve, and this proves a strong deviation from the nor-
mal distribution. The two curves, the classic one for
normal distribution and the empirical one, are not quite
identical. Both the dot diagrams (Figure 3b) and the
box-and-whisker plot (Figure 4b) indicate an asymmet-
ric distribution with about seven outliers. The halfsum
plot (Figure 5b) and the symmetry plot (Figure 6b)
show many points outside the lower and upper confi-
dence limits, also indicating an asymmetric distribu-
tion. The quantile-box plot (Figure 7b) indicates an
asymmetry of distribution and about seven outliers.
The circle plot (Figure 10b) shows an asymmetric dis-
tribution. The kernel density estimate of the probability
density function (Figure 8b) does not prove a normal
distribution, as the two curves, the theoretical for a nor-
mal distribution and the sample, are not close to each
other. In the rankit (quantile-quantile) plot for a normal
distribution (Figure 9b), the normal distribution is not
proven, as many points do not lie on the straight line.
Analysis of the quantile-quantile plot compares vari-

Tab. 4 Pairs of SHBG 0 (mild acne), n = 42 and SHBG 1 (severe acne), n = 45. The first 
value in each pair is SHBG 0 and the second is SHBG 1.

55.1 46.4 32.8 131.1 95.6 91.8 69.4 95.2 39.5 11.5
25.4 219.0 0.5 128.5 42.7 165.2 68.5 71.0 42.9 59.0
55.6 103.9 14.6 55.6 53.1 173.5 35.0 83.1 96.3 110.7
46.7 105.7 58.6 200.0 107.3 71.4 146.1 65.6 57.3 40.0
37.7 25.5 62.2 42.1 25.3 179.2 167.0 62.6 43.4 67.4
90.2 70.4 36.2 97.5 47.6 48.7 84.5 47.9 56.8 78.2
65.9 24.0 22.2 189.0 30.5 90.3 39.1 70.3 56.6 194.1
77.1 49.1 37.4 28.0 114.0 83.7 96.7 29.6 14.4 49.6
64.2 52.6 81.8 59.6 31.1 0.0 80.7 0.0 14.1 0.0

Tab. 5 The quantile measures of location, spread and shape for SHBG 0 data.

Quantile P Lower Upper Range Halfsum Skewness Tails Pseudo-
quantile quantile RQ ZQ SQ Length TQ Sigma GQ

QL QU

Median 0.5 55.35 55.35 – – – – –
Quartile 0.25 37.48 75.18 37.7 56.33 0.73 0 27.97
Octile 0.125 26.04 96.21 70.18 61.13 0.35 0.62 30.51
Sedecile 0.0625 18.88 110.23 91.36 64.55 0.28 0.89 29.86
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Fig. 2 The quantile plot (x axis: the order statistic x(i), y axis: the rank probability
Pi) for (a) SHBG 0 data, (b) SHBG 1 data.

Fig. 3 The dot and jitter dot diagrams (x axis: the order statistic x(i), y axis: random variable)
for (a) SHBG 0 data, (b) SHBG 1 data.

Fig. 4 The box-and-whisker plot (x axis: the order statistic x(i), y axis: no variable, diagram)
for (a) SHBG 0 data, (b) SHBG 1 data.

Fig. 5 The halfsum plot (x axis: the order statistic x(i), y axis: the halfsum Zi = (x(n+1-i) + x(i))/2)
for (a) SHBG 0 data, (b) SHBG 1 data.
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Fig. 6 The symmetry plot (x axis: the quantile of normalized Gaussian distribution uPi
2 for

Pi = i /(n+1), y axis: the halfsum Zi = (x(n+1-i) + x(i))/2) for (a) SHBG 0 data, (b) SHBG 1 data.

Fig. 7 The quantile-box plot (x axis: Pi = (i – 1/3)/(n + 1/3), y axis: x(i)) for (a)
SHBG 0 data, (b) SHBG 1 data.

Fig. 8 The kernel estimate of the probability density plot (x axis: xi, y axis: the kernel
estimate ƒ̂(x)) for (a) SHBG 0 data, (b) SHBG 1 data.

Fig. 9 The quantile-quantile plot (x axis: the theoretical quantile function QT(Pi), y axis:
the order statistic x(i),) for (a) SHBG 0 data, (b) SHBG 1 data.
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ous distributions with the sample one and shows the
highest value of the correlation coefficient r = 0.9744,
detecting the exponential distribution. The point esti-
mate of skewness is 1.00 and of kurtosis 3.12, and this
indicates that the sample distribution is asymmetric.

Tail lengths TE = 0.62 (SHBG 0) and 0.92 (SHBG 1) are
not close to the tabular value for a normal distribution
TE = 0.534, while TD = 0.89 (SHBG 0) and 1.09 (SHBG 1)
are not close to the tabular value for a normal distribu-
tion TD = 0.822 (Tables 5 and 6). The non-constant half-
sums ZQ and the positive skewness SQ clearly indicate
a skew distribution. The point estimate of skewness
and kurtosis indicate that both sample distributions are
strongly asymmetric with a slim, sharp peak, and are
definitely not normal.

Step 2: Assumptions about the sample
Applying an analysis of basic assumptions about

data, the following conclusions were drawn:
(a) Examination for independence of sample ele-

ments: a test of sample elements independence leads
to the test statistic t17 = 0.075, this being lower than the
quantile t0.975(43) = 2.017 (SHBG 0) and t17 = 0.212 also
than the quantile t0.975(46) = 2.013 (SHBG 1) and there-
fore indicating that the independence of both sample
elements can be accepted.

(b) Examination for normality of sample distribution:
a combined sample skewness and kurtosis test leads to
the test statistic C1 = 15.15 (SHBG 0) and C1 = 8.69
(SHBG 1), this being higher than the quantile χ2(0.95,2)
= 5.992, and therefore indicating that normality in both
sample distributions can be rejected.

Step 3: Data transformation
From the plot of the logarithm of the likelihood func-

tion for the power transformation the maximum λ on
the curve can be read from a graph. For both transfor-
mations the corresponding 95% confidence interval
does not contain the exponent λ = 1, so all transforma-
tions are statistically significant (Figures 11a, b). The
re-transformed mean x̄R after power (λ = 0.53 for SHBG
0 and λ = 0.27 for SHBG 1) and Box-Cox (λ = 0.53 for
SHBG 0 and λ = 0.27 for SHBG 1) transformations, is x̄R

= 54.69 with LL = 44.73, LU = 65.57 for SHBG 0 and x̄R =
72.85 with LL = 59.47, LU = 88.33 for SHBG 1.

Step 4: Determination of point and interval estimates of
parameters

A survey of descriptive statistics for parameters of
location and the spread of SHBG in both groups of
women with acne - computed on the base of EDA with
use of ADSTAT and NCSS2000 software - is given be-
low; on the basis of EDA the user should select the
most convenient parameter for an actual sample batch:

Data set SHBG 0: n = 42, arithmetic mean x̄ = 59.38 ,
median x~0.5 = 55.35, mode x̂M = 56.70, and thus the
trimmed means x̄(5%) = 56.96 with s(5%) = 31.46,
x̄(10%) = 56.05 with s(10%) = 30.72, x̄(40%) = 53.47 with
s(40%) = 29.32. Parameters of spread: variance s2 =
1168.9, standard deviation s = 34.19. Parameters of
shape: skewness ĝ1 = 1.08, and kurtosis ĝ2 = 4.38.

Data set SHBG 1: n = 45, arithmetic mean x̄ = 84.30,
median x~0.5 = 70.40 , mode x̂M = 70.35, and thus the
trimmed means x̄(5%) = 81.34 with s(5%) = 56.70,
x̄(10%) = 78.13 with s(10%) = 59.54, x̄(40%) = 70.84 with
s(40%) = 44.81. Parameters of spread: variance s2 =
2855.0, standard deviation s = 53.43. Parameters of
shape: skewness ĝ1 = 1.00, and kurtosis ĝ2 = 3.12.

For the best point estimate of the parameter of loca-

Fig. 10 The circle plot (x axis: the function of xi, y axis: the relation ofxi) for
(a) SHBG 0 data, (b) SHBG 1 data.

Tab. 6 The quantile measures of location, spread and shape for SHBG 1 data.

Quantile P Lower Upper Range Halfsum Skewness Tails Pseudo-
quantile quantile RQ ZQ SQ Length TQ Sigma GQ

QL QU

Median 0.5 70.4 70.4 – – – – –
Quartile 0.25 48.7 103.9 55.2 76.3 0.53 0 40.95
Octile 0.125 30.35 169.35 139 99.85 0.72 0.92 60.43
Sedecile 0.0625 25.13 19.03 165.2 107.7 0.1 1.09 53.97
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tion, robust estimate median M = 55.35±11.27 (SHBG 0)
and median M = 70.40±14.62 (SHBG 1); for parameter
of spread also the robust estimate of standard devia-
tion of the median s = 34.47 (SHBG 0), and the standard
deviation of the median s = 46.08 (SHBG 1) may be
used. The two parameters describing shape i. e. the es-
timates of skewness ĝ1 = 1.08 (SHBG 0), 1.00 (SHBG 1)
and kurtosis ĝ2 = 4.38 (SHBG 0), 3.12 (SHBG 1), indicate
that the distributions of both the SHBG 0 and the SHBG
1 samples are asymmetric.

The interval estimate of the parameter of location
may be described by the confidence interval for medi-
ans M = 55.35 as being LL = 44.08 and LU = 66.62 (SHBG
0) and M = 70.40 as being LL = 55.78 and LU = 85.02

(SHBG 1), in which an unknown concentration exists
with a 95% statistical probability.

Step 5: Statistical hypothesis testing: comparisons of
the means of two samples

All of the EDA display techniques prove that the distri-
bution of sample SHBG 0 does not come from a popula-
tion with a symmetric and normal distribution, and two
outliers, while the distribution of sample SHBG 1 is also
asymmetric with seven outliers. For biochemical and
clinical data no outliers can be excluded from data batch
because of a danger of losing valuable information.
Therefore, all the trimmed means are unusable (17).

Despite the overlap of the confidence intervals for a

Fig. 11 The plot of the logarithms of the likelihood function
ln L(λ) in dependence on the power λ and estimation of the op-
timal power λmax with its lower λL and upper λU limits of the

confidence interval for the statistical probability 95% (x axis:
ln L(λ), y axis: λ) for (a) SHBG 0 data, (b) SHBG 1 data.

Tab. 7 A comparison of two sample means for selected steroids with the use of Student
t-test of eq. [4].

S t e r o i d n M e a n S D M e d i a n R e - t r a n s f . R e - t r a n s f . S k e w - K u r t o - N o r m a l i t y Test of H0: Test of H0:
( l o w e r ; m e a n stan. dev. n e s s s i s e q u a l e q u a l
u p p e r ( l o w e r ; v a r i a n c e s m e a n s
l i m i t s ) u p p e r

l i m i t s )

T E S T O - 0 4 3 2 . 1 0 1 . 0 5 2 . 0 0 1 . 9 8 1 . 0 4 0 . 5 7 2 . 8 5 A c c e p t e d H0 i s H0 i s
(1.78; 2.42) (1.66; 2.34) (1.67; 2.31) a c c e p t e d a c c e p t e d

T E S T O - 1 4 6 1 . 9 1 1 . 0 1 1 . 6 5 1 . 7 1 0 . 8 9 1 . 1 2 4 . 0 2 R e j e c t e d
(1.61; 2.21) (1.37; 1.93) (1.46; 1.99)

S H B G - 0 4 2 5 9 . 4 3 4 . 1 9 5 5 . 4 5 4 . 7 3 3 . 4 1 . 0 8 4 . 3 8 R e j e c t e d H0 i s H0 i s
(48.7; 70.0) (44.1; 66.6) (44.7; 65.6) r e j e c t e d r e j e c t e d

S H B G - 1 4 5 8 4 . 3 5 3 . 4 7 0 . 4 7 2 . 9 4 7 . 9 1 . 0 0 3 . 1 2 A c c e p t e d
(68.2; 100.4) (55.8; 85.0) (59.5; 88.3)

A D I O N - 0 4 2 9 . 2 2 5 . 0 3 8 . 2 3 8 . 0 4 1 . 7 1 1 . 7 1 6 . 5 2 R e j e c t e d H0 i s H0 i s
(7.66; 10.79) (6.98; 9.47) (6.91; 9.38) a c c e p t e d a c c e p t e d

A D I O N - 1 4 6 9 . 6 6 4 . 0 6 9 . 7 1 9 . 2 5 4 . 0 6 0 . 3 7 2 . 4 8 A c c e p t e d
(8.45; 10.86) (8.25; 11.16) (8.08; 10.49)

D H E A S - 0 4 3 6 . 3 0 2 . 7 6 5 . 7 0 5 . 8 8 2 . 6 2 0 . 6 7 2 . 6 9 A c c e p t e d H0 i s H0 i s
(5.45; 7.15) (4.35; 7.05) (5.11; 6.73) a c c e p t e d a c c e p t e d

D H E A S - 1 4 7 6 . 5 5 3 . 0 9 5 . 7 5 5 . 8 3 1 . 6 7 0 . 9 3 3 . 0 4 R e j e c t e d
(5.64; 7.46) (4.97; 6.53) (5.10; 6.68)

D H E A - 0 4 3 7 . 9 9 6 . 8 3 6 . 7 0 6 . 4 5 0 . 7 1 4 . 5 9 2 6 . 8 7 R e j e c t e d H0 i s H0 i s
(5.89; 10.10) (5.84; 7.56) (5.58; 7.51) a c c e p t e d a c c e p t e d

D H E A - 1 4 6 7 . 3 4 4 . 0 9 6 . 6 3 6 . 4 3 3 . 6 6 0 . 9 3 3 . 0 1 R e j e c t e d
(6.12; 8.56) (5.67; 7.58) (5.42; 7.60)

Bold: Gaussian distribution is rejected
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best estimate of the mean values indicating that no dif-
ference is found at a 95% probalility level between the
mean values for SHBG 0 and SHBG 1, a more reliable
statistical test of the two sample means T3 can be ap-
plied: comparing two sample means, x̄A = 59.38, s2

A =
1168.9 (for SHBG 0), x̄B = 84.30, s2

B = 28550.0 (for SHBG
1); both samples have a non-normal distribution, and a
modified Fisher-Snedecor test proves the heterogene-
ity of the variances of both samples, F = 2.442 > F(0.95,
28, 30) = 2.092. Therefore, for the comparison testing of
two means a modified Student t-test for the non-nor-
mal distribution T3 should be used, and here it was
found that T3 = 2.467 > t(0.95, 77) = 1.991, which indi-
cates that the sample SHBG 0 means x̄A and the sample
SHBG 1 means x̄B are not equal.

4.2 Comparisons of the means of two samples for
selected steroids

The procedure demonstrated using an example of
SHBG was applied to five selected steroids. As it is ap-
parent from Table 7, no significant differences in the
serum levels of the steroids were found between the
groups of women with different acne severity, which
means that no association was found between acne
severity and the serum levels of steroids. On the other
hand, higher levels of SHBG were found in women with
more severe acne.

5. Conclusions

To obtain undistorted and accurate results in an effec-
tive statistical analysis of univariate biochemical data,
EDA should be employed to uncover typical features
and patterns. The second step is CDA, where probabil-
ity models are created and tested. EDA is very effective
in the investigation of the statistical behavior of exper-
imental data coming from new or non-standard analyt-
ical techniques. From a list of various parameters of lo-
cation and spread it enables the selection of an
estimation of the best one. Regarding the evaluation of
differences in the value of SHBG between two groups
of women with different acne severity, it is evident that
improper use of standard statistical technique could re-
sult in a misinterpretation of the data, and it is neces-
sary to analyze data distribution prior to the selection
of the appropriate statistical method.

As concerns the biological consequences of the re-
sults, no relationship were found between acne sever-
ity and the levels of serum testosterone and androgen
precursors, while higher levels of SHBG were detected
in patients with more severe form of acne. The later
finding is in accordance with the study of Palatsi et al.
(20).
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