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Statistical software often offers a list of various de-
scriptive statistics of location and scale, but rarely se-
lects an efficient estimate that is statistically adequate
for an actual univariate sample. The sample interval
estimate for a specified degree of uncertainty seems to
be more meaningful if it covers an unknown value of
the population parameter. The concept of an interval
estimate in medicine is then used for medical decision-
making. The proposed methodology, which uses the
S-Plus algorithm for biochemical, biological and clini-
cal data analysis contains the following steps: (i) Ex-
ploratory data analysis identifies basic statistical fea-
tures and patterns of the data, the distributions of
which are mostly non-normal, non-homogeneous and
often corrupted by outliers. (ii) Sample assumptions
about data, independence of sample elements, nor-
mality and homogeneity are examined. (iii) Power
transformation and the Box-Cox transformation to im-
prove sample symmetry and stabilize the spread. (iv)
Classical and robust statistics for both large (n>30) and
medium-sized  samples (15<n<30), point and interval
estimates for the parameters of location, scale and
shape. For an analysis of small samples (4 < n < 20) the
Horn procedure of pivot measures is recommended.
The proposed methodology is demonstrated in two
case studies, a large sample analysis of mean preg-
nenolone concentrations in the umbilical blood of
newborns, and a small sample analysis of mean hap-
toglobin concentrations in human serum.
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Abbreviations: CDA, confirmatory data analysis; EDA,
exploratory data analysis; RSD, relative standard devi-
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1. Introduction

The aim of the analysis of biochemical, biological and
clinical data is the extraction of relevant information.

With the advent of computers and sophisticated ana-
lytical instruments, the evaluation and interpretation of
results seems to be the main problem. Due to the well-
known fact that much experimental data in biochem-
istry exhibits a non-normal asymmetric distribution,
classical analyses based on the assumption of normal-
ity cannot be employed; moreover, measurements are
often corrupted by outliers. Tukey (1) has claimed that
the techniques allowing the isolation of certain basic
statistical features and patterns of data can be collec-
tively named the exploratory data analysis (EDA). The
EDA toolbox represents a collection of classical and
computer-assisted parametric, non-parametric and
function estimation methods for graphical visualiza-
tion and data treatment (1–5). After an exploratory data
analysis, a confirmatory data analysis (CDA) delivers
measures of how adequate a model is. 

Data generally come from populations with an un-
known probability distribution. The corresponding uni-
variate population is characterized by (i) measures of
the location or central tendency,  (ii) the degree of the
dispersion (or spread, scatter, scale, variability), and
(iii) the shape parameters of distribution. As a large
population of all possible measured quantities is rarely
available, a representative random sample (or just
sample) of a few quantities (or measurements, ele-
ments) is analyzed. The sample is characterized by in-
formation about the mean value of the sample ele-
ments and their variability around this sample mean.
The main purpose of analysis is to draw inferences
about a population from the study of samples. 

The population parameters are estimated by statis-
tics computed from data termed the point estimate.
The interval estimate gives a range of possible values
of the population parameter with a pre-chosen proba-
bility. The interval estimate is more informative than
the point estimate. Interval estimates can be used for
testing of single hypotheses about population mean. If
the assumption of normality is valid, the interval esti-
mate for the mean, variance, and standard deviation
may be computed very simply. The concept of an inter-
val estimate, also called a reference interval in medi-
cine, is based on determining a set of values within
which some percentage, e.g. 95%, of the values of a
particular analysed variable in a healthy population
would fall. This interval is then used for medical deci-
sion-making. Recommendations on how to obtain
such reference intervals have focused on the types of
statistics best used to calculate such a reference inter-
val (4). However, the standard error of each of these in-
tervals depends on the sample variance, which is sen-
sitive to outliers. In the case of non-normal distribution,
simple variance is obviously inflated and classic inter-
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val estimates are not applicable. When an exploratory
data analysis (1–3) indicates that the sample distribu-
tion strongly differs from a normal one, the problem
arises as to how to analyze such biochemical or med-
ical data. Raw data may require re-expression to pro-
duce an informative display, an effective summary, or a
straightforward analysis (6–12). Difficulties may arise
because the raw data have (i) a strong asymmetry, or
(ii) no constant variance. Altering the distribution by
use of e.g. data transformation may alleviate these
problems. 

This paper focuses on classical and robust estimates
of parameters of location, scale and distribution shape.
When the sample distribution is systematically skewed
or exhibits a variance heterogeneity, power transfor-
mation or Box-Cox transformation can improve sam-
ple symmetry and also stabilize variance. The purpose
of this paper is to propose an efficient methodology for
the treatment of biochemical and clinical data treat-
ment, and also to show the usefulness of robust statis-
tical analysis for obtaining a good interval estimate,
even with a small number of sample elements. The
proposed methodology of univariate data treatment is
demonstrated by the two case studies, determinations
of the mean pregnenolone concentration in the umbili-
cal blood of newborns and the mean haptoglobin con-
centration in human serum.

2. Theoretical

2.1 Point estimates of location and spread parameters

Location 

Data are classically characterized by the sample arith-
metic mean x̄ and the sample variance s2. Assuming
that data come from a symmetric distribution, charac-
terized by the mean µ, the variance σ2, the skewness g1

being equal to zero, and kurtosis g2, it can be proven
that

σ2

E(x̄) = µ with D(x̄) = —, and E(s2) = σ2
n

σ4 [
n–3 

]
with D(s2) = —  g2 – ——

n n–1

where E(.) is an operator of mathematical expectation
and D(.) is an operator of dispersion. In addition to the
sample arithmetic mean and the sample variance,
other parameters of location and scale can be used: the
sample mode (or modes) x̂M are the values around
which the data are generally locally concentrated.
Sample values x1, …, xn arranged in order of ascending
magnitude, x(1) ≤ x(2) ≤ … ≤ x(n) are called the order sta-
tistics. The p-th sample quantile (or percentile) is de-
fined as the value of x below which p% of the sample
value lies. The p-th sample quantile separates the order
statistics into two parts, each containing the required
percentage of the sample elements, p% and (100–p)%.
If the sample is not normally distributed, or if some out-
liers are present, the efficiency of both x̄ and s2 de-
creases. Some statistics still remain approximately cor-
rect for reasonable departures from normality; in this
regard they are said to be robust to non-normality. Ro-
bustness can relate to the separate effects of deviations
from normality, independence, equal variance, and
randomness.

The sample median x̃0.5 separates order statistics
into two parts: 50% of the elements lie below x̃0.5 and
50% of the elements lie above x̃0,5. For odd sample sizes
it takes the form x̃0.5=x(k), where k=(n+1)/2 and for even
sample sizes x̃0.5=(x(k)+x(k+1))/2 , where k=n/2. The 25th
and 75th percentiles are called the lower quartile and
upper quartile of the sample. The median represents
the maximum likelihood estimate of location for the
Laplace distribution (double exponential). For this dis-
tribution, the variance of the median is expressed by
DL(x̃0.5)=σ2/2n. For a normal distribution, however, the
sample median is not efficient (Table 1). For a rectan-
gular (box type) distribution, an efficient estimate of lo-
cation is the midsum xP defined by x̂P=(x(1)+x(n))/2,
where x(1) is the smallest and x(n) the largest element of
an ordered sample. The variance of the midsum esti-
mate for a rectangular distribution is defined by
DR(x̂P)=6σ2/[(n–1)(n–2)], where the index R denotes the
rectangular distribution. The variance of x̂P for the nor-
mal distribution is much higher.

Often the condition of constant variance in all sam-
ple elements is not maintained. If each xi has a normal
distribution with variance σi, the statistical weight is

Tab. 1 Estimates of location and dispersion for a sample of size n from a population with 
normal distribution N(µ, σ2). 

Parameter Estimate Variance estimate Efficiency Estimate distribution

Mean µ x̄ σ2/n 1 N(µ, σ2)
x̄0.5 σ2π/2n 0.63 N(µ, σ2)
x̂P σ2π2/(24 ln n/(π2n)) 24 ln n/(π2n) N(µ, σ2)

Variance σ2 s2 2σ4/(n–1) 1 N(σ2, D(σ2))

Standard σ̂ σ2/2n ∼1*
deviation σ s σ2/(2(n– 1)) 1

R ∼1.36 σ2/n ∼0.368 N (σ, D(σ))
d σ2/((π –2)n) ∼0.876

*) Explanation of terms efficiency and bias and symbols is described on the elementary
level in the book [4]
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calculated as wi=1/σi
2. Instead of sample mean x̃, the

weighted sample mean x̃w is computed from 

The variance of the weighted mean is D(x̄w)=1/( 1/σi
2).

One of the simplest and most efficient robust estimates
of location is the trimmed mean x̄(κ) which is defined
with the use of the order statistics x(i) as

where M=int (κxn/100). The parameter κ determines
the percentage of order statistics x(i) that are to be
trimmed off at each, low and high, tail. The usual value
of κ is 10%, and this results in the 10% trimmed mean x̄
(10). When there are many outliers x̄ (25), or x̄ (40) may
be preferred. Trimmed mean is not efficient for cases
when data obey a strongly asymmetric distribution. 

Robust M estimates represent the maximum likeli-
hood estimates of parameters for a selected distribu-
tion. When the selected distribution has long tails, the
corresponding M estimate of location is robust. The M-
estimate of location parameter µ̂M is generally defined
by

µ̂M = xiwi / wi [3]

where wi=W [(xi–µM)/σ] and W(u)=dρ(u)/dt. For a robust
estimate the function W(u) must be bounded; a bi-qua-
dratic function W(u) of the following type is recom-
mended

([ {
u

}2]2)
W (u) =    1 –   ——          for |u| < 4.69 [4]

4.69
0 for |u| ≥ 4.69 

where the numerical constant 4.69 means that for nor-
mally distributed data the asymptotic efficiency of esti-
mate of location µ̂M is equal to 0.95. Since the standard
deviation σ is usually unknown, it is replaced by a suit-
able robust estimate. For the M-estimate of standard
deviation the recommended expression is:

The weight function W(u) is defined above and ∆(u) is a
deviation function for which

∆(u) = {u2–lnu2–1 for u ≠ 0}
{∞ for u = 0}.

Spread 

Dispersion parameters describe the degree of disper-
sion, (scale, spread, variability or scatter) of the popu-
lation elements. Range is a measure of spread which

n
Σ

i=1

n
Σ

i=1

n
Σ
i=1

represents the difference between the largest and the
smallest values in the sample. The interquantile range
R is the quantile estimate of population standard devi-
ation σ defined by 

R=0.7413 (x̃0.75–x̃0.25) [6]

where x̃0.75 is the upper FU and x̃0,25 the lower quartile
FL. The main resistant rule for identifying outliers sets
up Hoaglin’s inner bounds B* beyond the quartiles,
BL*=FL–1.5 R, B*U=FU+1.5 R. Any observations that fall
below the lower inner bound BL* or above the upper in-
ner bound BU* are then termed the outliers.

Table 1 surveys the sample estimates of location and
dispersion, with their variances, efficiency and distrib-
ution. Sample estimates are for sample size n, and the
sample is drawn from a population with a normal dis-
tribution N(µ, σ2). The widely-used coefficient of varia-
tion δ (or CV), also known as the relative standard devi-
ation srel (or RSD), is given by 100 σ/µ and may be
estimated by the relationship δ̂=s/x̃. The variance of δ̂
is approximately equal to D(δ)=σ2[n+δ2 (2n+1)]/[2
n(n–1)]. In descriptive statistics the error δ, expressed
as a percentage, is also called the relative error. Rela-
tive errors are frequently used in the comparison of the
precision of results with different units or of different
magnitudes, and are again important in calculations of
error propagation. 

Shape 

To characterize the shape of a distribution, the skew-
ness and kurtosis are used: the skewness g1 is a mea-
sure characterizing symmetry, which is equal to zero
for a symmetrical distribution. Positive values of g1 in-
dicate smaller scattering of the lower values of ele-
ments xi than of the larger values while the negative
values of g1 indicate the opposite case. Moment esti-
mate of skewness is defined by 

with its asymptotic variance D(ĝ1) ≈ [6n(n–1)]/[(n–2)
(n+1)(n+3)].

The kurtosis characterizes the peakedness of the dis-
tribution near a modal value, and provides a picture of
the shape of the distribution peak. For values of kurto-
sis greater than 3 the distribution has a sharper peak or
longer tails than a normal distribution, while a flat
shape is indicated for kurtosis values of less than 3. The
moment estimate of kurtosis is defined by 

with its asymptotic variance D(ĝ2) ≈ 24 n(n–1)2/[(n–2)
(n–3)(n+3)(n+5)]. When the point estimate of any para-
meter is determined, the variance of the parameter
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must also be calculated. To achieve the same “preci-
sion” of estimates when less effective estimates are
used, a greater number of measurements n should be
used. To achieve the same parameter precision for data
with normal distribution, for example, the calculation
of median x̂M needs 1.6 times more measurements
than the application of arithmetic mean x̄.

2.2 Interval estimates of location and spread
parameters

A more meaningful statement than the point estimate
is the confidence interval for population parameters.
This includes the value of the population parameter
within the interval limits, termed confidence limits, for
a specified degree of assurance, called the confidence
coefficient. Here, the confidence limits are random
variables dependent on the sample. 

The confidence interval is bounded by numerical val-
ues, the lower limit LL and the upper limit LU. It is ex-
pected that the confidence interval (LL, LU) will include
the unknown population parameter θ with preselected
probability (1–α). The degree of trust associated with
the confidence statement is called the confidence coef-
ficient; it expresses the degree of  statistical certainty
(1–α) regarding the unknown population parameter θ,
P(LL < θ < LU)=1–α, where α is termed the significance
level; the value chosen for α is usually 0.05 or 0.01. It is
useful to know that (i) the confidence interval is small if
the variance of estimate D(θ) is small; (ii) a large sample
size n gives a small confidence interval [LL, LU]; and (iii)
higher degrees of certainty (1–α) give broader confi-
dence intervals  [LL, LU].

Confidence interval  [LL, LU] is referred to as a
two-tailed interval, but one-tailed intervals may also be
used in the biochemical laboratory. One-tailed confi-
dence intervals can be  left-side (lower-tail) interval [LL,
∞), or the right-side (upper-tail) intervals (–∞ , LU]. 

Large samples, n>30

To find the confidence interval of the population mean
of the normal distribution N(µ, σ), let x̄ be the mean of a
sample of n observations on a normally distributed
random variable x with unknown mean µ and known
variance σ2. The 100(1–α)% confidence interval LL, U for
µ may then be found from 

σ σ
x̄–u1–α/2 —– ≤ µ ≤ x̄+u1–α/2 —– [9]

√n √n

where u1–α/2 is the 100(1–α/2)% quantile of the stan-
dardized normal distribution, (e.g., for α=0.05
u0.975=1.96 and LL, U=x̄ ± 1.96 σ/√n).

Medium and small samples, n<30

In cases where the sample size n is not large enough,
n<30 and the variance σ2 is not known, the confidence
limit for µ may be found, but using quantiles for a Stu-
dent t-distribution instead of a normal one. The
100(1–α)% confidence limits LL, U are then given by 

s s
x̄–t1–α/2 (ν) —– ≤ µ ≤ x̄+t1–α/2 (ν) —– [10]

√n √n

where ν=n–1 is the number of degrees of freedom, and
t1-α/2(ν) is the 100(1–α/2)% quantile of the Student distri-
bution. 

The 100(1–α)% two-tailed confidence interval of the
variance σ2 is given by 

vs2 vs2

———— ≤ σ2 ≤ ———— [11]χ2
1–α/2(ν) χ2

α/2(ν)

where χ2
1–α/2 (ν) is the upper and χ2

α/2 (ν) the lower quan-
tile of the χ2-distribution, and ν=n–1 is the number of
degrees of freedom. 

2.3 Analysis of small samples 

The analysis of small samples is not reliable and results
are usually rather uncertain. Small samples are used in
cases when experiment repetition is expensive or
scarcely possible. 

For n=2, the statistical analysis is very difficult. If ob-
servations are close enough, then the arithmetic mean
is calculated. If observations do not agree, it is not pos-
sible to say which is the outlier. The 100(1–α)% confi-
dence interval of the mean µ may be calculated by the
approximation 

x1+x2 |x1–x2| x1+x2 |x1–x2|—–—– – Tα —–—– ≤ µ ≤ —–—– + Tα —–—– [12]
2 2 2 2

The critical value of Tα depends on the distribution of
the data population from which the two values are
drawn. For a normal distribution it is Tα=cotg(πα/2) and
for α=0.05, Tα is 12.71. For the rectangular distribution
Tα=1/α–1, i.e. for α=0.05 is Tα=19 (14). 

For n=3 it is also difficult to use statistical analysis.
The calculation of the arithmetic mean x̄ from two near
observations is better than the use of the median from
all three values. The 100 (1–α) % confidence interval of
the mean µ is then calculated by the approximation 

s                         s
x̄–Tα* ––– ≤ µ ≤ x̄+Tα* ––– [13]

√3 √3

For a normal distribution, Tα* ≈ 1/√α–3√α/4+…, and
when α=0.05, Tα* is 4.30. For a rectangular distribution
Tα*=5.74 (14). 

For 4 ≤ n ≤ 20 a procedure based on order statistics
was introduced by Horn (13, 15). This is based on a
depth which corresponds to the sample quartiles. The
pivot depth is expressed by HL=int((n+1)/2)/2 or HL=int 
((n+1)/2+1)/2 according to which HL is an integer. The
lower pivot is xL=x(H) and the upper is xU=x(n+1–H). The
estimate of the parameter of location is then expressed
by the pivot halfsum 

PL=(xL+xU)/2 [14]

and the estimate of the parameter of spread is ex-
pressed by the pivot range

RL=xU –xL [15].

The random variable TL=PL/RL=(xL+xU)/[2(xU–xL)] has an
approximately symmetrical distribution and its quan-
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tiles are given in Table 2. The 95% confidence interval
of the mean is expressed by pivot statistics as 

PL–RL tL,0.975 (n) ≤ µ ≤ PL–PL tL,0.975 (n) [16]

and analogously hypothesis testing may also be car-
ried out. For small samples (4 ≤ n ≤ 20), the pivot statis-
tics lead to more reliable results than do the application
of Student’s t-test or robust t-tests. 

3. Experimental

3.1 Proposed procedure 

Many statistical software packages offer a list of vari-
ous point parameters of location and spread, but rarely
help the user to choose the only parameter i.e. the best
and efficient estimate, which is statistically adequate
for an actual sample batch. Exploratory data analysis
and an examination of sample assumptions will pro-
vide an answer to this question. 

1st step: Exploratory data analysis 

When no preliminary information about data is avail-
able, a full exploratory data analysis is applied (1–4): for
a graphical visualization of data, the quantile plot, dot
diagram and jitter – dot diagram, the box-and-whisker
plot and the notched box-and-whisker plot are sup-
ported. Sample distribution (represented by the sym-
metry and tail lengths, skewness and kurtosis) is inves-
tigated by the midsum plot and the symmetry plot.
Construction of an actual sample distribution, i.e. the
estimation of the probability density function, is carried
out by a kernel density estimator of the probability den-
sity function, and the quantile-quantile plot is used to
compare the sample distribution with the theoretical
ones.  

2nd step: Sample assumptions

In the analysis of any new data batch, the basic as-
sumptions about the sample are always examined us-
ing a check for sample homogeneity, a check for sam-
ple normality, a check for the independence of sample
elements and a check for minimal sample size (16).

3rd step: Data transformations 

In the analysis of the routine data, the sample distribu-
tion is taken to be known. Moreover, distribution is
assumed to be normal and data elements to be homo-
geneous and independent – otherwise data transfor-
mation should be applied (4, 17). Two procedures,
power transformation and Box-Cox transformation, of
the ADSTAT statistical systems (18), search parameters
of a simple power transformation and parameters of
the normalized Box-Cox transformation of data. Using
transformed data, the mean ȳ, the variance s2(y), the
skewness ĝ(y), and the kurtosis ĝ2(y) are calculated.
From these estimates, the re-expressed estimates of
original variables x̄R, s2(x̄R), and the 95% confidence in-
terval of the re-expressed variable µ are then calculated
(17, 18). 

4th step: Classical and robust statistics

The estimates of the parameters of location, scale and
shape are calculated: 

(a) Large samples: parameters of location: When in-
vestigating the center of a variable, the main descrip-
tors are the mean, median, mode, and trimmed mean.
Other averages, such as the geometric mean and har-
monic mean, have specialized uses. If the data come
from a symmetrical, normal distribution, the mean,
median, mode and trimmed mean are all equal. If the
mean and median are very different, then most likely
there are outliers in the data or the distribution is
skewed. If this is the case, the median is probably a bet-
ter measure of location. The mean is very sensitive to
extreme values and can be seriously contaminated by
just one outlying observation. The trimmed mean is
more robust than the mean, but is more sensitive than
the median. The re-expressed estimate x̄R of the power
or Box-Cox transformation is one the most reliable es-
timates of the center.

(a) Large samples: parameters of spread: The next
question is how closely the data fall about the center.
There are numerous measures of variability: range,
variance, standard deviation, interquantile range, pivot
range, etc. All of these measures of spread or disper-
sion are affected by outliers to some degree, but some
do much better than others. The standard deviation is
one of the most popular measures of spread; unfortu-
nately, it is greatly influenced by outliers and by the
overall shape of the distribution. Robust alternatives
are deviations based on the interquantile range.

(a) Large samples: parameters of shape: Skewness
measures the direction and lack of symmetry. The
more skewed a distribution is, the greater the need to
employ a data transformation technique. Positive

Tab. 2 Quantile tL, 1-α(n) of the TL-distribution (15).

n 1–α=0.90 0.95 0.975 0.99 0.995

4 0.477 0.555 0.738 1.040 1.331
5 0.869 1.370 2.094 3.715 5.805
6 0.531 0.759 1.035 1.505 1.968
7 0.451 0.550 0.720 0.978 1.211
8 0.393 0.469 0.564 0.741 0.890
9 0.484 0.688 0.915 1.265 1.575

10 0.400 0.523 0.668 0.878 1.051
11 0.363 0.452 0.545 0.714 0.859
12 0.344 0.423 0.483 0.593 0.697
13 0.389 0.497 0.608 0.792 0.945
14 0.348 0.437 0.525 0.661 0.775
15 0.318 0.399 0.466 0.586 0.685
16 0.299 0.374 0.435 0.507 0.591
17 0.331 0.421 0.502 0.637 0.774
18 0.300 0.380 0.451 0.555 0.650
19 0.288 0.361 0.423 0.502 0.575
20 0.266 0.337 0.397 0.464 0.519
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skewness indicates a longtailedness to the right, while
negative skewness indicates longtailedness to the left.
Kurtosis measures the heaviness of the tails: a kurtosis
value less than 3 indicates lighter tails than in a normal
distribution, while kurtosis values greater than 3 indi-
cate heavier tails than in a normal distribution. For
heavy tailed distribution the median or generally ro-
bust methods are suitable.

(b) Small samples: For the analysis of small samples
the measures of location and spread are calculated by
the Horn procedure (15), this being based on the pivot
halfsum and the pivot range.

3.2 Software used

The algorithm in S-Plus (19) was written for the cre-
ation of EDA diagnostic graphs and the computation of
the quantile based characteristics of a sample distribu-
tion, and English version of ADSTAT software (18) with
procedures for the estimation of sample location, scale
and distribution shape was also used. The algorithm in
S-Plus is available on request (18).

4. Illustrative Examples

The first case study using the proposed methodology
runs on typical biochemical sample data, and illus-
trates the procedure of the statistical treatment of uni-
variate data.

Case study 1. Determination of the pregnenolone
concentrations in the umbilical blood of newborns

Low levels of free 5-ene steroids in umbilical blood and
elevated levels of 5-ene steroid sulfates indicate a con-
genital sex-specific placental sulfatase insufficiency
(20). A delayed onset of labor, frequently linked to the
necessity of intervention (21) together with relatively
low birth weights, is the common symptom of the dis-
ease. A defect of recessive X-linked type, also called the
“dry skin” disease, may have phenotypic conse-
quences in later postnatal life (22). The incidence of this
disorder appears to be approximately one per 2000
male births (23). An exact assessment of the mean
value and of the variance of steroid levels in controls is
necessary for the correct judgment of samples from
patients. The levels of pregenolone were evaluated and
this evaluation was chosen as an example of correct

data analysis. Statistical assumptions should be tested
on the group of umbilical blood samples from new-
borns using plots of an extended exploratory data
analysis, and statistical tests of the basic assumptions.
A reliable estimate of the mean pregnenolone value is
to be enumerated. 

Solution 

1. Descriptive statistics: NCSS2000 (24) statistical soft-
ware for an actual sample batch calculates a survey of
the parameters of location and spread for n=100 (for an
explanation of the statistics see ref. 4): the arithmetic
mean x̄= 80.6 nmol/l, the median x̂0.5=66.0 nmol/l, the
geometric mean x̄g=61.8 nmol/l, the harmonic mean
x̄h=46.4 nmol/l, the mode x̄M=107 nmol/l, and following
trimmed means x̄(5%)=74.7 nmol/l with s(5%)=44.4
nmol/l and n(5%)=90, x̄(10%)=71.6 nmol/l with
s(10%)=36.0 nmol/l and n(10%)=80, x̄(25%)=67.9 nmol/l
with s(25%)=22.4 nmol/l and n(25%)=50, x̄(45%)=66.2
nmol/l with s(45%)=5.6 nmol/l and n(45%)=10. Survey
of parameters of spread: the variance s2=3658.7, the
standard deviation s=60.5 nmol/l, the unbiased stan-
dard deviation s=60.6 nmol/l, the interquantile range
RF=70.0 nmol/l. Finally a survey of parameters of
shape: the skewness ĝ1=1.57, the kurtosis ĝ2=6.06. As
the numerical values of the arithmetic mean, median,
mode and trimmed mean are very different, there are
definitely outliers in the data or the distribution is
strongly skewed. The median will probably be a better
measure of location. On the basis of EDA, the investi-
gator should select the most convenient parameter of
location for the actual sample batch. 

Tab. 3 Input data: Univariate sample of concentration of pregnenolone (nmol/l), n=100.

33.6 35.4 32.8 150.0 149.0 98.8 107.0 91.9 37.7 67.1 107.0 183.0
332.0 77.5 104.0 50.0 93.1 206.0 93.4 215.0 107.0 292.0 36.4 152.0

71.4 222.0 47.6 66.1 75.3 48.8 89.2 78.1 87.1 170.0 89.2 54.6
97.0 20.6 26.6 31.4 90.6 18.0 12.2 25.2 39.8 61.6 21.5 17.6

106.0 39.4 23.8 191.0 33.5 41.0 62.7 56.5 59.8 58.7 29.8 53.3
13.8 192.0 42.8 38.4 32.2 104.0 17.7 102.0 109.0 84.5 41.2 145.0

152.0 167.0 18.4 50.9 143.0 14.8 99.4 10.8 92.1 34.4 65.8 34.5
131.0 34.1 74.2 103.0 20.3 40.5 83.9 74.2 51.1 27.8 116.0 105.0
23.0 37.0 55.8 112.0

Fig. 1 Quantile plot of pregnenolone data showing the em-
pirical curve (dot curve) and the normal distribution approxi-
mation (full curve).
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2. Exploratory data analysis is used for a graphical vi-
sualization of data: the quantile plot (Figure 1) shows a
strong deviation from a normal distribution, as the
sample points do not fit a classic curve, and two out-
liers at high values are indicated. Both dot diagrams
(Figure 2) and the box-and-whisker plot (Figure 3) indi-
cate five outliers at high values and an asymmetric,
skewed distribution. In the midsum plot (Figure 4) and
in the symmetry plot (Figure 5) most sample points are
outside the confidence limits, and both diagnostic plots
indicate that the sample distribution is strongly
skewed. 

3. Sample distribution represented by symmetry,
skewness and kurtosis is examined by two plots: the
kernel density estimator of the probability density func-
tion (Figure 6) indicates a skewed sample distribution
with several outliers, while the Q-Q rankit plot (Figure
7) checking a normal distribution does not exhibit close
agreement of the sample points with a straight line.

The highest value of the correlation coefficient of the Q-
Q rankit plot r=0.9951 is reached for exponential distri-
bution. 

The midsum ZQ and positive skewness SQ indicate a
skewed distribution and the presence of outliers. The
point estimate of skewness of 1.57 and kurtosis at 6.06
indicate that the sample distribution is strongly asym-
metric with a slim and sharp peak and is definitely not
normal.

4. Sample assumptions, (cf. pp. 78–82 in ref. 4 or 16):
applying an analysis of basic assumptions about data
the following conclusions were arrived at: 

(a) Examination for normality of sample distribution:
a combined sample skewness and kurtosis test leads to

Fig. 2 Dot and jitter dot diagram of pregnenolone data.

Fig. 3 Box-and-whisker plot of pregnenolone data.

Fig. 4 Midsum plot of pregnenolone data.

Fig. 5 Symmetry plot of pregnenolone data.

Fig. 6 The kernel estimator of the probability density plot of
pregnenolone data, showing the empirical curve (dot curve)
and the normal distribution approximation (full curve).

Fig. 7 Quantile-quantile plot (for normal distribution called a
rankit plot) of pregnenolone data.
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the test statistic C1=90.73 > χ2(0.95, 2)=5.992 and there-
fore normality in the data distribution is rejected.

(b) Examination of sample homogeneity: there are
two observations outside the interval of both of
Hoaglin’s inner bounds [B*L=–119.0 nmol/l; B*U=258.4
nmol/l] and therefore two points x(13)=332.0 nmol/l and
x(22)=292.0 nmol/l may be classed as outliers and sam-
ple homogeneity rejected. The classic measures of lo-
cation, scale and distribution shape for data without
two outliers are x̄= 75.9 nmol/l, s(x̄)=51.0 nmol/l,
ĝ1(x)=0.99 and ĝ2(x)=3.41.

5. Data transformations: Figure 6 shows the asym-
metric distribution of the original sample data, and
therefore the need for data transformation. In the case
of the Box-Cox transformation the true mean value of

the sample distribution and both asymmetric confi-
dence limits LL and LU were calculated. From the plot of
the logarithm of the likelihood function for the power
transformation, the maximum on the curve was read
from a graph at λ̂ = 0.13, for the Box-Cox transforma-
tion the maximum of the curve is at λ̂ = –2.32. For both
transformations, the corresponding 95% confidence in-
terval does not contain the exponent value λ=1, so both
transformations are statistically significant. 

The measures of location, spread and shape for the
original data, i.e. mean  x̄=80.6 nmol/l, standard devia-
tion s(x)=60.5 nmol/l, skewness ĝ1(x)=1.57 and kurtosis
ĝ2(x)=6.06 are outside statistical significance and may
be taken as false estimates. Power transformation esti-
mated the corrected mean value x̄R=64.2 nmol/l and the
Box-Cox transformation the corrected mean value
x̄R=65.8 nmol/l.

6. Classical and robust statistics (n=100): a survey of
various point and interval estimates of location is given
in Table 5. It may be concluded that the assumption of
normality is not fulfilled because of a skewed sample
distribution shape, and that therefore the mean x̄ and
midsum x̂P cannot be used. The use of the robust esti-
mate median is equivalent to excluding outliers from
the sample. Both transformations lead to the statisti-
cally same value x̄R=65 nmol/l. This value is quite close
to the median x̄0.5=66 nmol/l and the trimmed mean
x̄(45%)=66.2 nmol/l. The M-estimate µM=71 nmol/l is
not far from the re-transformed means and median.
The confidence interval of the power transformation
estimate [LL=55 nmol/l, LU=74 nmol/l] is narrower than
that of the Box-Cox transformation [LL=31 nmol/l,
LU=125 nmol/l], and the power transformation estimate
can thus be taken as more efficient.

Tab. 4 The quantile measures of location, spread and shape for pregnenolone 
concentration (nmol/l).

Quantile P Lower Upper Range Midsum Skewness Tails length Pseudo-Sigma
quantile QU quantile QL RQ ZQ SQ TQ GQ

Median 0.5 66.0 66.0 –
Quartile 0.25 35.2 104.3 69.1 69.7 0.21 0.000 51.2
Octile 0.125 24.3 149.6 125.3 87.0 0.09 0.595 54.5
Sedecile 0.0625 18.1 189.5 171.4 103.8 0.06 0.909 56.0

Tab. 5 Point and interval estimates of location pregnenolone concentration (nmol/l).

Parameter Estimate Estimate 95% Confidence interval

µ̂ σ̂ LD LH

Mean x̄ 80.6 60.5 68.6 92.6
Median x̃0.5 66.0 61.3 48.8 83.1
Midsum x̂P 171.4 * * *
Mode x̂M 33.9 * * *
M-estimate of mean value µ̂M 71.1 49.4 60.7 81.4
Re-transformed mean (Power Transf.) x̄R 64.2 48.2 55.2 74.4
Re-transformed mean (Box-Cox Transf.) x̄R 65.8 * 30.6 125.4

* indicates values that software does not estimate

Fig. 8 Plot of the logarithm of maximum likelihood L in de-
pendence on the power λ for pregnenolone data, and estima-
tion of the optimal power λmax with its lower λL and upper λU

limits of the confidence interval, for the confidence level (1–α),
CL1–α.
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Case study 2. The mean value of a haptoglobin
concentration in the human serum

Concentration of haptoglobin [g l–1] were measured in
human serum taken from eight adults yielding values
of 1.82, 3.32, 1.07, 1.27, 0.49, 6.79, 0.15, 1.98. Applying
the Horn procedure the measure of location and spread
for this small sample is calculated.

Calculations: the Horn procedure consists of six steps:

1. Order statistics for n=8, [g l–1]: x(i)=0.15, 0.49, 1.07,
1.27, 1.82, 1.98, 3.32, 6.79.

2. The pivot depth reachs the value int(2.75) ≈ 2.
3. The lower pivot is xD=x(H)=x(2)=0.49 and the upper

pivot xH=x(n+1-H)=x(7)=3.32.
4. The pivot halfsum [15] is PL=(xD+xH)/2=1.905 g l–1.
5. The pivot range [16] is RL=xH–xD=3.32–0.49=2.83 g l–1.
6. The 95% confidence interval of the measure of loca-

tion µ is calculated for the Horn quantile tL, 1–α/2=0.564
with the use of relation [16] and leads to the range
0.31 g l–1 ≤ µ ≤ 3.50 g l–1. Thus, for the small sample
the pivot technique is more suitable. 

5. Conclusion

Biochemical data are often less than ideal, and do not
fulfill all basic assumptions. Interactive data treatment
by modules of the proposed algorithm in S-Plus en-
ables the following steps: 

(i) Exploratory data analysis identifies the basic sta-
tistical features and patterns of the data.

(ii) Sample distribution is examined by the symme-
try and tail lengths, skewness and kurtosis.

(iii) Sample assumptions about the data concern the
independence of sample elements, normality and sam-
ple homogeneity.

(iv) Data transformations enable power transforma-
tion and Box-Cox transformation, improving sample
symmetry and also stabilizing the spread.

(v) Classical and robust statistics are calculated for
large (n>30) and medium samples (15<n<30), while for
small samples (4 ≤ n ≤ 20) the Horn procedure of pivot
measures is recommended.
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