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Biny software ke statistickému zpracovani dat sice nahizl palctu odhadi rozliémych
parametrdi polohy a rozpryleni aviak zfidka umoini vybrat danému rozdéleni odpovidajici
stfedni hodnoty, Jeding priziumaovou analyzou a vyletfenim piedpokladu o
vijbéru se dojde ke spravnému parametnu. Rigorézni chemometrickd meloda, pf:z.eniwnpé
1a analfze metalurgickych dai pH urten! stfedni hodnoty a vybranych dolnich fovantill
pevnosti konstrukéni oceli ilustruje navrZeny postup. Je-li vybérové rozdéleni
sefilcmené a nehomogennl s odlehlymi hodnotami, musi byt piivodni data transformovina.
Bax-Coxova transformace zlepsi symetrii rozdéleni a stabilizuje rozpiyl Graf logariimu
virohodnostnl finkce umo2ni nalézt vhodny transformatni exponent. Navriena metoda
poskytuje spolehlivé odhady parametru polohy (stfedni hodnoty) piedevSim viude tam, kde
aritmeticky priimér nelze pouit.

Abstract

Available software for the statistical data treatment offers a list of various poin
estimates of the location and spread parameters but rarely is able to help the user to choose
the parameter statistically adequate to an actual sample batch, The exploratory :!aua
analysis and an examination of sample assumplions will find an answer to this question.
Rigorous chemometrical methodology presented on the metallurgical data CONCEMming an
estimation of the mean value and requesied lower quantiles of the tensile strength of a
construction steel illustrates the proposed of a statistical data treatment with the
exploratory data analysis. The sample distribution is skewed. Under such circumstances the
original data should be transformed. The Box-Cox tramsformalion improves a sample
symmetry and also make a stabilization of a spread. The plot of logarithm of the likelihood
function enables us to find an optimal transformation parameter. Proposed procedure gives
relisble estimates of location parameter for asymmetric distribution when an arithmetic
mean can not be used.

Key words: Univariate data; Exploratory data analysis. Data transformation; Power
transformation, Box-Cox transformation, Hines-Hines selection graph;
Chemometrics; Tensile strength of construction steel,

1. Introduction

Many widely used statistical methods work best when sample distribulion is
symmetrical with no severe outliers However, when an expleratory data analysis [1 - 3]
indicates that the sample distribution strongly differs from the symmetrical and normal
one, we are faced with the problem how to analyze a dala. Raw data may require
re-expression lo produce an informative display, effective summary, or a straightforward
analysis [4 - |1]. Difficullies may arise because the raw data have (1) a strong asymmetry,
(ii) baiches ai different levels with a widely differing spread. By altering the shape of the
batch or batches we may alleviate these problems. We transform the data by applying a
single mathematical funclion to all raw data values [11]. We may need to change not only
the units in which the data are stated, but also the basic scale of the measurement, Changes
of origin and scale mean the linear transfonmations, and they leave a shape alone,
Nonlinear transformations such as the logarithm and square root are necessary to change
shape. The reasons for transforming a batch of original data include the following:

Transforming for symmetry: symmetry of a data baich is ofien desirable property as
many estimates of location work best and are best undersiood when the data come from a
symmetric distribution. In a perfectly symmetric batch, all midsummaries would be equal
to the median, If the data were skewed to the right, the midsummaries would increase as
they came Fram letter values further into the tails. For data skewed to the lefi, the
midsummaries would decrease.

Transforming for stable spread: the data sometimes come to us in several batches at
differen! levels and we oflen find a systematic relationship belween spread and level:
increasing level usually brings increasing spread. Individual batches become more nearly
symmetric and have fewer outliers.

This paper brings a description of the Box-Cox transformation and a re-expression
of siatistics for (ransformed data. The procedure of the Box-Cox transformation is
illustrated on a typical metallurgical study case concerning an chemometrical estimation of
the mean value and lower quantiles of the tensile strength of a construction steel.

2. Methodology of data transformation

Examining data we must often find the proper transformation which leads to
symmetric data distribution, stabilizes the variance or makes the distribution closer to
normal, Such transformation of original data x to the new variable value v = g(x) is based
on an assumption that the original metallurgical data represent a nonlinear transformation
of normally distributed variable x = g"(¥).

i) Trangformation for variance stabilization implies ascertaining the transformation
y = g(x) in which the variance o’(y) is constant. If the variance of the original variable x is
a function of the type o'(x) = fi(x). the variance o’()) may be expressed by

2 -
a*(ﬂ{?‘ﬁ_f:ﬂ] £(x)=C, where C is 3 constant, When the dependence 6°(x) = fi(x) is of
A
power (cxponent) nature, the optimal transformation will also be a power transformation.
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Sinos for a normal distribution the mean is not dependent on a variance, a transformation
gt stabilizes the variance makes the distribution closer to normal.
il) Transformation for symmeiry is carried out by a simple power transformation

¥ forparameter A >0
ymgle)={ Inx for parameter A =0 (1)
-y for parameter 4 <0

which does not retain the scale, is not always continuous and is suitable only for positive x.
‘Optimal estimates of parameter 1 are sought by minimizing the absolute valucs of
particular characteristics of an asymmetry. In addition 1o the classical cstimaic of a
gkewness £, ¥ ), the robust estimate ¢, ( y ) is used

_I’Em'?w.}'fﬁu'?’n) {2}
luﬂ" ! f?u?s * Vo J

The robust estimate of asymmetry ¢ ,(y ) may be also expressed with the use of a relative
distance between the arithmetic mean y and the median ¥,,, by

(3)

as for symmetric distributions it is equal 1o zero, 2,( y )=0.
iil) Transformation leading to the approximate normality may be carried out by a
family of Box-Cox transforration defined as

{*-1¥h  for parameter h# 0
y=gfx)= (4)
In % for paramater A =0

where x is a positive variable and A is real number, The curves of Box-Cox transformation
g(x) are monotonic and continuous with respect to parameter A because

A
n,,.*,[‘;h'”-m, and all transformation curves share one point [v = 0, x = 1] for all

values of A, The Box-Cox transformation can be applied only on the positive data. To
extend this transformation means to make a substitution of x values by (x - x,) values which
are always positive. Here x, is the threshold value x, < x,,,. To estimate the parameter A in
Box-Cox transformation, the method of maximum likelihood may be used because for & =

1 a distribution of transformed variable v is considered to be normal, My, o°(¥). The
logarithm of the maximum likelihood finctinn ven he writlen as
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In L A J=-§|n Sy ket }iln ” (5)
iaf

where (v} is the sample variance of transformed data y. The function In L = f{A) is
expressed graphically for a suilable interval, for example, -3 £ X < 3. The maximum on this
curve represents the maximum likelihood estimate % Fig.1. The asymptotic 100(1 - @) %
confidence interval of parameter A is expressed by 2[ln £({)-In L(d)e .. (1), where
¥’ (1) is the quantile of the ¥* distribution with | degree of freedom. This Box-Cox
iransformation is less suitable if the confidence interval for A is too wide.

Critical eriterion; when the value & = | is also covered by this confidence interval,
the data (ransformation is not efficient.
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Fig1 The plot of the logarthm of maximm |ikelihood estimate of & For the statistical probability 5%

Re-expression of the staiisiical measures: after an appropriate transformation of the
original daa [r} has been found, so that the transformed data give approximately normal
symmetrical distribution with constant variance, the statistical measures of location and
spread for the transformed data {v) are calculated. These include the sample mean y | the
sample variance s°( y J, and the confidence interval of the mean Yy, oo(n- )5y Jln .
These estimates must then be recalculated for original data {x}. Two different approaches
o re-expression of the statistics for transformed data can be simply used: () Rough
Te-expressions represent a single reverse transformation xv= 2 '(¥ ). This re-expression for
@ simple power transformation leads to the general re-expressed mean

i
Yol
=[d=l

L=5 F (6)

where for A = 0, In x is used instead of ¥* and ¢’ instead of x'*. The re-expressed mean
= x; stands for the harmonic mean, xx=x for the geometric mean, xx=x for the
arithmetic mean and = x: for the quadratic mean.
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fimction y = g(x) in a neighbourhood of the value y. The re-expressed mean xy is then

{ 14l de —@T *{y)} M

S.'.r;lJ:It

For veriamce it then holds a’{x‘]u[ﬂ.gix)].!l’{y}, where individual derivatives are
=

calculated at the point x = Zx. The 100(1 - o)% confidence interval of the re-expressed
mean for the ariginal data is

ILERS]y | ®)
Wit flzf{y"'ﬂ" :-.rz{"'l)-s}:-]}» I, =3"[F+U+!,_,,,{n-—l J{:W

w =18 [—{"‘lrﬂm.
2 ds?

On the basis of the (known) actual transformation ¥ = g(x) and the estimates y, £(y) it is
easy to calculate re-expressed estimates xp and s°( X ):

1. For a logarithmic transformation (when & = 0) and g(x) = In x the re-expressed
mean and variance are calculated o =exp [7+0.5 #O)land o (a)=32" ) ().

2, For A # 0 and the Box-Cox transformation the re-expressed mean x« will be
represented by one of the two roots of the quadratic equation

%00 = D50+ )2 0515 s 2O 2L - 20 )} (9)

which is closest to the median x,,=g '( 7, ). If %, is known the corresponding vanance
may be calculated from *(x )= 7" "5 (v )

3. Experimental procedure

Procedures Power transformation and Box-cox transformation of the statistical
systems ADSTAT [11] search parameters of a simple power transformation and parameters
of the normalizing Box-Cox transformation of data. It also enables the exploratory data
analysis of transformed data, For a transformation the different measures of symmetry are
calculated and the sample skewness in range -3 < A = 3 with a step 0.1 and the optimal
values of these measures are printed. For the transformation the estimate A maximizing
InL(}) is calculated. Selected A is used in calculation of estimates v, #(v), #,(y /). and
#.(y ). Then from these estimates, the re-expressed estimates of original variables &, #(
%), and the 95% confidence interval of the re-expressed variable of location p are
oalculated, [11-12].
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4. Results and discussion

Many statistical programs, for example NCS52000 [13], offer a list of various point
parameters of a location and spread but rarely help the user to choose the statistically
adequate parameter 10 an aclual sample baich. The exploratory data analysis and an
examination of sample assumptions will find an answer 1o this question. The following
study case with methodplogy runs on typical metallurgical sample data will illustrate a
rigorous procedure of the statistical treatment of univariate data with the exploratory data
analysis.

Study Case: Estimation of the mean value and lower quantiles of the tensile strength of a
consiruciion steel .

The goal i& to estimate the parameters of location and spread of the lensile strength B of a
constriuclion sleel when two data sets were analysed, The original large data set (Set A) was
of size n = 279 while the second smaller ane (Set B) was created by a random selection of
sample elements from the first one to the resulting size n = 41 (Table 1). The smaller
subsample was analyzed to illustrate the importance of the sample size for reliability of the
estimates and their confidence interval. On the other hand, it is to show the stability of the
results even for relatively smaller samples. Generally, the sample should be as large as
possible. namely for delermination of very low {or high) quantiles. The siezl company
requires such a steel quality that a pumber of samples elemenis having the tensile strength
R, equal or less than 500 MPa should be less than 1% what expressed statistically means
ihat 195 quantile of the tensile strength R, should be greater than 500 MPa. Find a rigorous
mean value of both data sets and estimate 1% quantile

Tahle | Set B maeasured vilues of the tensile dreagth [MPa] of a constnoction siesl
668 a2l 20 551 592 5S8R 1 613 2R 576 568 608

556 544 557 605 542 555 5a7 339 Fid 552 531 345
577 557 557 539 534 533 3l 13 jl4 57 713 510

552 545 533 554 im

(1) Survey of deseriptive statistics for Set A and for Set B (in brackets): the statistical
software NCS52000 [13] for an actual sample batch calculates a survey of parameters of
location and spread (an elucidation of statistics ¢f ref [11-12]). Then, on base of the
exploratory data analysis the user should select the most convenient parameter of location
from following available estimates (in {.} brackets {for Set B}): the arithmetic mean %=
567.5 {567.6} MPa with the confidence limits L, = 563.1 {5544} MPa and L, = 571.8
{580.8} MPa, the median t,s= 561.0 {556.5} MPa, the geometric mean x,= 566.3
{366.2} MPa, the harmonic mean x, = 565.2 (564.8) MPa and following trimmed means
Il 3% )= 564.9 {563.6) MPa, »/ j0% ) = 563.8 [562.5) MPa. %/ 25% }= 561.6 {550 1}
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x = 560.6 {556.5} MPa, the standard deviation ¢ = 36.6 {41.9} MPa, the
.m - ‘ﬁr:ng::!n, ={1!I'9' {Jll;lui} MPa, and ai last a survey of paramelers n_f sl?apc_: the
shewness 2,=0.99 {1.47} and kurtosis 2,=3.99 {S.ﬁilwlmo:mvr skewed distnhunnr::i
fn oratory data analysis: some selected diagnostic plots prove asymmetric
ﬁnlﬂ:i]m?;ﬁ pp-35-67in n_,r'.JTl 11). Both quantile plots for Sel A (Fig.2a) and ahfs-:: for
SetB (Fig.2b) show an asymmetric distribution with al least 2 ouu_mr:s. me_kem:l estimate
of the probability density function (Fig.3a, Fig.3b) and the quanulrf-tmanu]e plot (Fig 4a,
Fig.4b) prove also an asymmetric distribution. The quantile-quantile plot also l:_aﬂm:l the
rankit plot checking a normal distribution does not exhibit close agreement of smfupje
points with a straight line of the normal distribution. Not constant hatt‘mum .’r{‘,_? a:ln:l positive
skewness 5, clearly indicate a skew distribution. Tails length T, for this distribution cannot
be used for deeper analysis.

o0s0 | 0m  LEp
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Fig.2 The quargile plol of the sisel dato: {a) the daia se! A, (b) the dats set B
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Fifg. 4 The cuaniile~quantile plot (for normal distribution ealled the rankst plot)
of the sieel datn: (5) the data sat A (b) the datn st B

Talle 3 The quantile messures-of locatien, spraad and shape for dats set B from Table |

Coantile P Lower Upper Range  Halfsum  Skewness  Tails Pseado-
quaniile  guantile g Zy L Length Ty Sigma Gg
2 411

Mudian 0.5 557 557 - = - -

Quarile 025 539 388 49 5615 10.63 0 3635

Oictile 0125 529 613 B4 5 6.2 0,539 3652

Sadecile 0.0625 521.5 6245 03 573 5.08 €743 1366

(3) Basic assumptions about the sample (cf pp. 78 - 82 in refl [11)): applying an
analysis of basic assumptions about data the following conclusions were met: a test of
sample elements independence leads to the test statistic £, = 1,132 < {y,,,(42) = 2.018 and
therefore an independence is not rejected. A combined sample skewness and curtosis test of
normality leads to the test statistic C, = 16.98 {9.16} > ¥%(0.95, 2) = 5.992 {5.992} and
therefore a normality of data distribution was rejected. Because data are skewed, an
analysis of the sample homogeneity based on a normality assumption cannot be used.

(4) Data transformation: most diagnostic plots of EDA exhibit an asymmetric
distribution of an original sample data and therefore necessity of data transformation is
proved. In case of Box-Cox transformation the true mean value of a sample distribution
with both confidence limits Z, and L, are calculated. From the plot of the logarithm of the
likelihood function for the Box-Cox transformation the maximum of the curve is at A =
-1.20 {-1.82}, Fig.5. For both samples the corresponding 95% confidence interval of a
found exponent A -(1.8; -0.6) and {(-3.5; -0.3)} does not contain the exponent value A= 1,
50 the transformation is statistically significant.
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Fig. & () The nermal curve and (b) the transformed normal denmty for the sizel dota B m Table 1
The vertical deshed Fpes mdicats the mtervel *2s

(5) Conclusion: original data should be transformed to improve 2 symmetry of data |
distribution. While the classical measures of location, spread and shape for the original |
data can nol be used as they lead to false values, i e mean 3= 567.6 {567.6} MPa, the
corrected mean value x.= 560.4 {558.5} MPa found with the Box-Cox transformation.
The classical approach based on the assumption of normality gave the 1% and 0.25%
quantiles 470.2 MPa and 450.1 MPa what means thal a required quality was not reached
However, using a data transformation, much more realistic values of 1% and 0.25%
quantiles are 509.4 MPa and 502.9 MPa which state that a steel quality is fully acceptable.
The difference between the transformed and untransformed estimates is also obvious on
Fig6a and 6b. It may be concluded that the arithmetic mean can be used only for a
symmetrical distribution, For an asymmetrical distribution the daia transformation should

be applied. |




