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Abstract

The regression model for a two-segments titration curve with a break-point at the end-point is analyzed. Both linear and
nonlinear shapes of the titration curve segments are treated. An effective and simple method discriminates which of two
segments is linear or curved. The point and interval estimates of the end-point are calculated by the nonlinear least squares
of curve fitting technique. The nonlinear regression method is applied to any, linear or nonlinear, type of a two-segments
titration curvewithout excludingany titration points to reach the most probable point estimate of the end-point together with
its 100(1− α)% confidence interval. An accuracy and precision of the proposed end-point estimation is examined on several
instrumental titrations. A sample program in S-PlusTM is provided. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Titrimetric procedures based on a determination of
the end-point, i.e. the point at which volumetric titra-
tion is completed, have been successfully employed
over a wide range of concentration and have always
been popular because of their simplicity, speed, ac-
curacy, and good reproducibility. The importance of
titrimetric analysis has increased with the advance of
instrumental method of the end-point detection which
are generally sensitive. The accuracy and precision of
the results of a titrimetric determination depend on a
nature of the titration reaction, but they are also in-
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fluenced by the technique of the end-point location,
[1–2,4–17].

Among numerous methods of an instrumental
end-point detection the following techniques have
found wide application: thepotentiometrywith a
change in the potential of an indicating electrode, the
amperometrywith a change in the diffusion current
at a polarizable electrode, theconductimetrywith a
change in conductivity of the solution being titrated
and the photometrywith a change in absorbance
of the titrated solution. The relation between the
signal response of titrandy (here thedependentor
responsevariable, i.e. pH, emf, current, conductivity,
absorbance, etc.) and the volume of titrant addedx
(here theindependentor predictor variable) is called
theresponse functionof the instrumental titration sys-
tem. Under real conditions, i.e. when perturbations in
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signal are present, the response function has a random
character.

There are two types of a mathematical model for
the response function. One is linear, for example, in
most titrimetric, photometric, conductimetric or po-
larographic methods while the other is exponential,
for example, in the potentiometric method. Linear re-
sponse functions are generally preferred, and when the
response function is nonlinear, a linearization proce-
dure has been commonly used, with a suitable change
of variables. In practice, the term linear dependence
is used when the ratio of increments1y of dependent
variable to the increment1x of independent variable
assumes values which are randomly spread about the
mean. If the ratio1y/1x exhibits a certain trend, the
dependence is nonlinear.

Ortiz-Fernández and Herrero-Gutiérrez [12] applied
the robust regression by the least median squares LMS
to data from various titrations. This robust approach
tales the curvature between straight lines of a titration
curve as outliers and/or leverages on each straight line
segment. Omitting these point (e.g. Mach et al. [4])
or a robust approach lead to unwanted changes in the
estimated values of the slopes and intercept terms. All
curvature points are taken as erroneous experimental
data, and therefore, excluded from a next computation.
However, excluding some curvature points of titration
curve is a results of a false regression model fitting
(usually two straight line segments) and could lead to
a lost of some experimental information.

In this paper the mathematical method of the
end-point estimation is considered as one of the most
important factors in a titrimetric procedure, since the
volume of titrant used is directly affected by its accu-
racy and precision. The nonlinear regression method
will be applied to any, linear or nonlinear, type of a
two-segments titration curvewithout excludingany
titration points to reach the most probable point esti-
mate of the end-point together with its 100(1− α)%
confidence interval. An accuracy and precision of
nonlinear regression estimation also will be examined.

2. Theoretical

Supposing a two-segments titration curve ofn pairs
{x, y} of titration curve points being described by a
response function with the measured dependent,re-

sponsevariabley (i.e. potential, polarographic current,
conductivity or absorbance) and independent,predic-
tor variablex (i.e. the volume of titrant added). Usu-
ally, the two segments are supposed to be linear and
can be modeled by two regression lines

f (x,ppp) =
{

a1 + b1x for x ≤ xep

a2 + b2x for x > xep

}
(1)

where ppp = (xep, a1, a2, b1, b2)
T being unknown

represents thex value at the end-point (xep). We
may construct a conditioned regression model with
four unknown parametersxep, a1, a2, b1, and b2 =
b1 + (a1 − a2)/p being expressed

y =
{

a1 + b1x + ε for x ≤ xep

a2 + b2x + ε for x > xep

}
(2)

This regression model is nonlinear in parameterxep.
Assuming that random errorsεi, i = 1, . . . , n, has
normal distribution, ε ∼ N(0, s2) with constant
variance, we may use the nonlinear least squares
for an estimation of four unknown parametersppp =
(xep, a1, a2, b1)

T, r = 4. The least squares regres-
sion minimizes the residual square sum function

U(ppp) =
n∑

i=1

(yi − f (xi,ppp))2 (3)

to find the optimal (least squares) estimatesppp∗. Let us
denote the number of unknown parametersr. Given
the covariance matrixCCC(r×r) of the parametersppp and
the estimated residual variances2, we may estimate
variances of the respective parameters

var(ppp) = s2 × diag(CCC) (4)

where diag(CCC) is a vector consisting of diagonal ele-
ments of matrixCCC. The residual variance is estimated
from residuals as

s2 = 1

n − r

n∑
i=1

(yi − f (xi,ppp))2 (5)

The covariance matrixCCC is computed as an inverse
of Hessian i.e. an inverse of a second order partial
derivatives of the objective functionU(ppp)

CCC = HHH−1, Hij = δ2

δpiδpj

U(p) (6)
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The Hessian matrixHHH is usually computed from the
Jacobi matrixJJJ (n × r), cf. [3]

Jij = δ

δpj

U(ppp), HHH ≈ JJJ TJJJ (7)

All the above mentioned quantities,CCC, s2, var(ppp) are
usually part of output of a regression program and do
not need to be computed manually. In our algorithm,
all derivatives are calculated numerically according
to the simple symmetric rule df (x)/dx ≈ (f (x +
d) − f (x − d))/2d, whered = 10−12 (xmax − xmin).
Sincexep will never lie at an experimental pointxi ,
there is no need to calculate derivatives off(x) at xep
(the probability thatxep = xi is of the order 10−e ,
wheree is number of decimal points of the computer
arithmetic’s, typicallye is from 15 to 18). The variance
of the end-pointxep, denoteds2

p (here it is represented
by the first element of var(ppp)), can be used to estimate
the 100(1− α)% confidence interval of parameterppp

for r = 4

x∗
ep−spt1−α/2(n − r) < xep < x∗

ep + spt1−α/2(n − r),

LL < xep < LU (8)

herex∗
ep is the best estimate ofxep, t1−α/2(n−r) is the

α-quantile of thet-distribution with (n − r) degrees
of freedom,LL is the lower limit andLU is the upper
limit of an interval estimate of the end-point.

It is often doubtful, whether the segments of the
titration curve are linear or nonlinear, curved. The
curved shape of one or both segments may result from
the theoretical model, which is in fact a more or less
complicated logarithmic or exponential expression. It
may appear to be linear only due to, for example, big
differences in dissociation constants, etc. Therefore,
the nonlinearity may result from non-ideal behavior
in the solution at higher concentrations or because of
unstable compounds. It shows up to be redundant to
use the theoretical models in order to determine the
end-point. On the other hand, the use of the linear ap-
proximation of the apparently curved segments may
lead to wrong and unreliable results, as it does when
omitting the curved part of data, and thus, losing in-
formation and precision.

(1) An application of the second-order polynomial
seems to be quite effective to fit both segments of
titration curve,r = 6

f (x,ppp) =
{

a1 + b1x + c1x
2 for x ≤ xep

a2 + b2x + c2x
2 for x > xep

}
(9)

with p = (xep, a1, a2, b1, c1, c2) and b2 = b1 +
((a1 − a2)/xep) + xep(c1 − c2). However, using the
model (9) to fit linear segments leads to excessively
high variances ofppp due to lower degrees of freedom
(n − 6 instead ofn − 4) and also due to a higher
multicollinearity. The significance of quadratic terms
was used to justify their presence in (9). The regression
parameterβi is significant if the relation (10)

|β∗
i | > s(β)p,i · t1−α/2(n − r) (10)

is valid.
(2) For titrations with curvature around end-point,

we suggest models of the type

f (x,ppp) =
{

a1 + b1x + g1(x, p1) for x < x0

a2 + b2x + g2(x, p2) for x ≥ x0

}
(11)

wherex0 is the model break-point not necessarily iden-
tical with the end-point of titration,xep, g1(x) con-
verges to 0 forx → −∞ and g2(x) converges to 0
for x → +∞. Thus, f(x, ppp) will converge to a line
for |x − x0| � 0. The task of finding the end-point is
then reduced to estimation ofg1 and g2 and finding
the parameters of the two lines and their interception,
xep. This methodology takes in account nonlinear be-
havior of the curve and satisfies the assumption of ho-
moscedastic errors with zero mean. Since mostly the
theoretical titration curve models are exponential, we
used model

f (x,ppp)=
{

a1+b1x+c1 exp(d1x) for x < x0
a2+b2x+c2 exp(d2x) for x ≥ x0

}
(12)

with the condition of continuity and smoothness at the
break-pointx0

y1(x0) = y2(x0) andy′
1(x0) = y′

2(x0) (13)

Applying relation (13) into Eq. (12), we reduce the
number of parameters from nine to seven and obtain
Eqs. (14) and (15)

y = a2 + b2x + c2 exp(d2x0) − b1x0

−b2 + c2d2 exp(d2x0) − b1

d1 exp(d1x0)
exp(d1x0) + b1x

+b2 + c2d2 exp(d2x0) − b1

d1 exp(d1x0)
exp(d2x)

for x < x0 (14)
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y = a2 + b2x + c2 exp(d2x) for x ≥ x0 (15)

whereb1 is the slope of the left branch,d1 the expo-
nential term for the left branch,a2 the absolute term
for the linear part of the right branch,b2 the slope for
the linear part of the right branch,c2 the multiplica-
tor of the right exponential term,d2 the exponential
term for the left branch,x0 the break-point of the two
models. The parametersb1, d1, a2, b2, c2, d2 andx0
may be easily estimated with a nonlinear regression
software. Note that for very small values ofc1, d1 or
c2, d2 relation (12) can be simplified to (1).

With known parameters estimates ofb1, d1, a2, b2,
c2, d2 andx0 the interceptxep of the two lines can be
easily calculated as

xep= 1

b1 − b2

(
(b1 − b2)x0 − c2 exp(d2x0)

+b2 + c2d2 exp(d2x0) − b1

d1 exp(d1x0)
exp(d1x0)

)
(16)

From the regression analysis we know asymptotic vari-
ances and also standard deviations for all the parame-
ters and we can determine the standard deviation and
uncertainty ofxep using the law of error propagation
[18]. Equations of the two lines will bep0 + b1x and
a2 + b2x, respectively, where

p0 = a2 + (b2 − b1)x0 + c2 exp(d2x0)

−b2 + c2d2 exp(d2x0) − b1

d1 exp(d1x0)
exp(d1x0) (17)

3. Experimental

3.1. Procedure

The procedure proposed may be formulated for two
cases

3.1.1. Case of Eq. (9)
1. The vector of parameterppp in Eq. (9) and the vector

of variances var(ppp) is estimated with the use of the
nonlinear regression procedure.

2. With the criterion (10) a test of the parametersc1, c2
in Eq. (9) is applied to investigate their significance
at the significance levelα.

3. The insignificant quadratic terms is excluded from
Eq. (9) and the regression analysis is repeated.

4. The confidence interval ofxep is calculated using
Eq. (8).

3.1.2. Case of Eq. (12)
1. Parametersa1 throughd2 andx0 are computed us-

ing nonlinear regression.
2. The end-pointxep is computed using (16).
3. The law of error propagation is used to estimate the

confidence interval of the end-pointxep (Fig. 4b).

3.2. Software

The method of the nonlinear regression was used
with the nonlinear regression module of the QC-Expert
2.0TM [19] or ADSTAT 2.0TM [20] statistical pack-
ages and checked also with the use of S-PlusTM pack-
age [3]. The full, ready-to-run source for S-PlusTM is
included in Appendix A. Generally, a good conver-
gence of parameters estimates in nonlinear regression
procedures depends on the distance of parameter esti-
mates from optimal values and the shape of an elliptic
hyperparaboloidU(ppp) in (r + 1)-dimensional space.
Since both models (1) and (9) are nearly linear, esti-
mation ofppp is relatively easy. In S-PlusTM a modified
Gauss–Newton algorithm [3] was used to findppp and
var(ppp).

4. Results

4.1. Study case 1: reliability of the end-point
determination in case of two straight line segments

Two straight lines of a titration curve were calcu-
lated with an intersection 5.90 ml and resulting points
were loaded with a noise generated normal random
error N(0, 0.01) with the standard deviations = 0.1.
Reliability i.e. accuracy and precision of the estimated
end-point are examined when two strategies, algorith-
mic and heuristic, of nonlinear regression model build-
ing are applied to both straight line segments of titra-
tion curve.
1. An algorithmic search of the regression model

made automatically (Fig. 1a) found that both seg-
ments of titration curve are linear and the estimated
end-point being 5.90 ml with the 95% confidence
interval [LL = 5.82 ml andLU = 5.99 ml]. As a
true value 5.90 ml lays in the calculated confidence
interval, the estimated end-point isaccurateand
unbiased. Narrow confidence intervalLL and LU
meanspreciseestimation.
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Fig. 1. (a) Algorithmic operation: the regression model with both
linear segments is found; data: generated linear data with a true
value of the end-point 5.90 ml; estimated end-point: 5.90 ml with
the 95% confidence intervalLL = 5.82 ml and LU = 5.98 ml;
conclusion: accurate and precise estimation. (b) Heuristic opera-
tion: the regression model with both quadratic segments is forced;
data: generated linear data with a true value of the end-point
5.90 ml; estimated end-point: 5.90 ml with the 95% confidence in-
terval LL = 5.76 ml andLU = 6.03 ml; conclusion: accurate and
imprecise estimation.

2. When heuristically operated the regression model
with both quadratic segments made manually
(Fig. 1b) is forced, the estimated end-point was
5.90 ml with the 95% confidence interval (LL =
5.76 ml and LU = 6.03 ml). As a true value
5.90 ml lays in the calculated confidence interval,
the estimated end-point isaccurateand unbiased.
Wider confidence intervalLL andLU means rather
impreciseestimation.

x (ml) 2 4 6 8 10 12 14 16 17 18 20 22 24
y (mm) 1.265 1.141 1.028 0.906 0.777 0.641 0.510 0.372 0.388 0.441 0.544 0.644 0.752

It may be concluded that both models tested led
to unbiased value of the end-point but in case of
quadratic segments the 95% confidence interval is
rather wider and more uncertain than in case of
model with linear segments.

4.2. Study case 2: reliability of the end-point
determination in case of two curved segments

Two quadratic segments of a titration curve were
generated with an intersection 3.60 ml and resulting
points were loaded with a noise generated normal ran-
dom errorN(0, 0.04) with the standard deviations =
0.2. Reliability, i.e. an accuracy and precision, of the
estimated end-point are examined when two strate-
gies, algorithmic and heuristic, of nonlinear regression
model building are applied to both curved segments
of titration curve.
1. An algorithmic search of the regression model

made manually (Fig. 2a) found that both segments
of titration curve are quadratic and the estimated
end-point being 3.63 ml with the 95% confidence
interval (LL = 3.41 ml andLU = 3.85 ml). As a
true value 3.60 ml lays in the calculated confidence
interval, the estimated end-point isaccurateand
unbiased. Narrow confidence intervalLL and LU
meanspreciseestimation.

2. When heuristically operated the regression model
made manually (Fig. 3b) with both linear seg-
ments is forced and the estimated end-point being
2.90 ml with the 95% confidence interval (2.60
and 3.19 ml). As a true value 3.60 does not lay
in the calculated confidence interval, the esti-
mated end-point isinaccurateand biased. Wide
confidence intervalLL and LU meansimprecise
estimation.

4.3. Study case 3: analysis of experimental data in
conductimetry

Data from a conductometric titration of 0.1 M HCl
with 0.1 NaOH, wherex is the volume of 0.1 M NaOH
in ml, y = (1000− a)/a, in which a is the bridge
reading in mm [5].
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Fig. 2. (a) Algorithmic operation: the regression model with both
quadratic segments is found; data: generated nonlinear data with
a true value of the end-point 3.60 ml; estimated end-point: 3.63 ml
with the 95% confidence intervalLL = 3.41 ml andLU = 3.85 ml;
conclusion: accurate and precise estimation. (b) Heuristic opera-
tion: the regression model with both linear segments is forced;
data: generated data with a true value of the end-point 3.60 ml;
estimated end-point: 2.90 ml with the 95% confidence interval
LL = 2.60 ml andLU = 3.19 ml; conclusion: inaccurate and im-
precise estimation.

The algorithm found that the data have the left
branch of nonlinear nature.
1. An algorithmic search of the regression model

made automatically (Fig. 3a) found that the left
branch of a titration curve is quadratic and the
estimated end-point being 16.28 ml with the quite
narrow 95% confidence interval (LL = 16.22 ml
andLU = 16.35 ml).

2. When heuristically operated the regression model
with both linear segments (Fig. 3b) is forced and
the estimated end-point being 16.41 ml with the
broader 95% confidence interval (LL = 16.24 ml
andLU = 16.58 ml).

Fig. 3. (a) Algorithmic operation: the regression model with
quadratic-linear segments is found; data: experimental data [5];
estimated end-point: 16.28 ml with the 95% confidence interval
LL = 16.22 ml andLU = 16.35 ml; conclusion: accurate and pre-
cise estimation, the residual sum of squares for the left segment
U(ppp) = 0.0001047. (b) Heuristic operation: the regression model
with both linear segments is forced; data: experimental data [5];
estimated end-point: 16.41 ml with the 95% confidence interval
LL = 16.24 ml andLU = 16.58 ml; conclusion: inaccurate and
imprecise estimation; the residual squares-sum for the left segment
U(ppp) = 0.001057.

It may be concluded that when fitting both seg-
ments by two straight lines a biased end-point es-
timate is obtained with three times broader confi-
dence interval (impreciseestimation) and 10 times
higher value of the residual sum of squares compar-
ing to a model with the quadratic left branch. The
systematic error of a forced linear–linear model is
+0.13 ml (i.e. 0.8%) and the estimation is, therefore,
inaccurate.

Used titration curve was analyzed previously by
other authors: Liteanu and Hopirtean [5] supposed
both segments linear and found the point estimate for
the end-point 16.41 ml with the 95% interval esti-
mate (LL = 16.27 ml andLU = 16.57 ml). Jandera
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and co-workers [2] approximate by two straight lines
the hyperbolae which delimit the confidence interval
of the intersection point being formed by two equal
segments and found the end-point 16.41 ml with the
95% interval estimate (LL = 16.23 ml andLU =
16.59 ml).

4.4. Study case 4: analysis of experimental data in
amperometry

Data from an amperometric titration of Pb2+
with 0.1 M CrO4

2−, where x is the volume of
CrO4

2− (ml) and y is the corrected current (mA)
[12]

x (ml) 0 100 200 300 400 500 600 700 800 900
y (mA) 311.75 290.37 255 223.51 188.96 157.92 126.29 98.73 78.48 57.11

x (ml) 1000 1100 1200 1300 1400 1500 1600 1700 1800
y (mA) 49.25 71.37 113.59 158.9 207.48 261.91 310.59 355.97 417.72

Using the model (14) and (15), we received the best
least squares estimates of the parameters with their
standard deviations, from whichxep was calculated as
the interception of the asymptotic lines according to
Eq. (16)xep = 977.3ml. Using simple error propaga-
tion law with covariances the standard deviation ofxep
was calculated,sep = 5.7ml and the 95% confidence
interval of xep (LL = 966.0ml and LU = 988.6ml),
which is four times more precise than estimated in
[12] (Fig. 4a and b).

5. Discussion

In practice, one aspect of titration methodology
in analytical chemistry has troubled a chemist: the
difficulty of assigning an uncertainty estimate to an
end-point determined from a titration curve. Nonlinear
regression methods are a well-known means of esti-
mating parameter uncertainties and may be applied to
an end-point determination. Quite useful seems to be
the 100(1−α)% confidence interval, which may be in-
terpreted as an interval in which (in case ofα = 0.05)
in average 19 out of 20 results would fall if the analy-
sis is repeated many times under the same conditions.

So, it is necessary to expect that the real value (e.g.
a concentration) to beanywherewithin this interval.
Described technique was used to evaluate the confi-
dence interval of the end-point in photometric titra-
tion. Thanks to possible quadratic shape of a branch,
also nonlinear shapes may be analyzed with some
restrictions.

Examples bring a fact that the quadratic fit on linear
data when a model is over-determined, causes wider
confidence interval of the end-point. On the other
hand, linear fit on the nonlinear data when a model
is under-determined causes biased end-point estimate
and a wider confidence interval. For most of the data

tested, this method with an automatic discrimination
of parameters gave good results.

It is not advisable to use this method for expo-
nential data ranging across more than one order. In
such cases the errors are usually heteroscedastic (i.e.
non-constant variance) and the least squares may not
give correct results and the weighted regression or
multiplicative-error models should be used instead. It
is recommended that the graph be viewed every time
to ensure absence of big errors iny or x. For automated
analysis, a robust modification of the regression anal-
ysis such as theL1 method, the method of trimmed
squares, the method ofM-estimates, LMS (cf. [3]) be-
ing enabled in the software ADSTAT, QC-Expert or
S-PlusTM may be employed to reduce the problem
with outliers.

The described method of fitting V-shape titration
curves with conditional models may also be applied to
the titration lines with curvature around the end-point.
Curvature is usually caused by deviations from ideal
behavior of analyte in solution or interference of other
ions at very low concentrations of the measured ion
near the end-point. Efforts have been made to describe
titration curves analytically, but much simpler lin-
earization techniques are still being widely used with
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Fig. 4. (a) Fitted titration curve (14) and (15) with analytical
asymptotic lines; data: experimental data [12]; estimated end-point:
977.3ml with the 95% confidence intervalLL = 966.0ml and
LU = 988.6ml. (b) Monte Carlo — generated probability density
of the estimate (dashed) with the normal curve was used for esti-
mation of end-point confidence interval using an error propagation
law [18]; data: experimental data [12].

good results [5,6,9]. This shape is usual, for exam-
ple, for the widely used Gran’s linearization method
[6–8,10]. End-point is at the intersection of the linear
or linearized branches of the titration curve. Methods
used to find the two lines are usually based on treating
the nonlinear part of the measured dependence signal
— volume as outliers and deleting them using robust
or other methods [12]. With these methods, however,
we suppose that part of the data were measured with
a great one-sided error with non-constant variance
(heteroscedatic errors with non-zero mean), which is
not true and may lead to a loss of correctly measured
data and to biased estimates of the lines, especially
when using weighted least squares linear regression.
For the end-point volume computed in this way it is
also difficult to calculate its confidence interval or
uncertainty, when only a small portion of data obey
linearity.

6. Conclusion

The described method has been proven on various
examples of titration curves in photometric, conduc-
tometric and amperometric titrimetry. The automatic
model selection based ont-test of the quadratic
term ensures narrowest confidence intervals of the
end-point and avoids misleading interpretations of
near-linear curves as linear as it often happens using
manual or visual line-based methods. Success of the
end-point calculation depends heavily on the quality
of an optimization algorithm and on the starting esti-
mates of parameters. In the proposed algorithm in the
S-PlusTM the estimates are generated automatically.

Appendix A. Algorithm in S-PlusTM

This algorithm is written in a simple way to allow
even a reader not familiar with S-PlusTM to under-
stand it. Nevertheless, it runs quite fast on PC-586 or
Unix-based computer. The “#” starts comment. The
procedure requires only the measured data in an (N ×
2) matrix. Typical sample (Example 3 cited above)
with the data input and the results output is enclosed.
The S-PlusTM function nls solved most of the prob-
lems. For some data sets, however, alternative esti-
mates had to be entered manually to reach conver-
gence.

A.1. Main part of program

fit.two.branchesfunction(data, alpha = 0.05, linr
= NULL, graf = T)

A.2. Symbols

data means an (n × 2) matrix containing
vectorx andy

alpha means confidence level for interval
of p (0, 1)

linr means which branches are linear?
(both, left, right, none)

NULL means that program finds the best
model automatically

graph means Draw graph? (T, F)
two.branches is the model function used by

fit.two.branches
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A.3. Execution

fit.two.branches(titr ), data are denotedtitr .
Example: data and execution of the Example 3.

Analysis of an experimental data of the conductomet-
ric titration curve
xx c(2,4,6,8,10,12,14,16,17,18,20,22,24)
yy c(1.265,1.141,1.028,0.906,0.777,0.641,0.510,0.
372,0.388,0.441,0.544, 0.644,0.752)

a cbind(xx,yy)

A.4. Program listing
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