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The Box Cox transformation are given for construction of
asymmeltric quantiles and control limits for control charts. It is shown
on simulated and real data that the transformation may significantly
improve applicability of control charts.

1. INTRODUCTION

In statistical analysis of experimental data it is very often assumed that the
data have normal (Gaussian) distribution. For example, when using arithmetic
average, least squares regression, symmetric confidence intervals (t-tests),
estimates of quantiles of the data for assessing non-conformities, and constructing
of control limits in control charts. In textile branch however, many measurements
of mechanical parameters such as fiber strength or low concentrations of
pollutants usually do not have or physically cannot have normal distribution.
They have asymmetric non-normal distributions and the above-mentioned
methods generally fail. In case of Shewhart charts, this problem is partially
avoided by taking subgroup means instead of individual data, which improves
normality. It fails however in cases of stronger asymmetry and/or small
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subgroups generating many false alarms at the longer tail of the distribution and
ignoring excessive values at the shorter one. For unimodal asymmetrically

improves Symmetry or normality of the measured data. All computations,
simulations and graphs were made with S-Plys [6].

2. THEORY

2.1. Asymmetric distribution

Construction of classical Shewhart control charts (see [2, 4]) as well as
estimation of many other statistical values is closely tied to an assumption of
normality. A non-parametric kernel estimate of probability density (Gaussian
kemel, fixed width) was used to find important quantiles of asymmetrically

Example 1. Simulated data with positive skewness generated from Weibull
distribution are in the table 1.

Table 1
Simulated data

1.249 0.597 1.328 0.439 0.916 0.529 0.951 1.293

0.944 0.431 1.031 1.676 1.539 2.274 0.382 0.614

1.476 0.359 0.727 1.956 1.221 0.609 0.758 1.16

0.931 2.375 0.880 0.667 0.857 2.091 0.933 0.825

1.339 0.958 0.595 1.867 1.679 1.875 0.852 0.711

Basic characteristics of these data are in the table 2.

Table 2
Basic characteristics of data
Mean: 1.097 Normal | Nonpar. estimate
Skewness: 1.494 LCL (2.5%) |0.039 0.223
Median: 0.938 UCL (97.5%) | 2.155 2.356

Mode: 0.816
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Fig. 1 Simulated data modeled by normal (B) and non-parametnc kernel type (A)
density function

Data in Example 1 was analyzed in order to determine 2.5% upper and
lower control limits. Classical normal quantiles gave the following values:
LCL = 0.039, UCL = 2.155 with average value 1.097. Fig. 1 shows how normal
(Gaussian) model of probability density (curve B) differs from a non-parametric
density curve (A), which describes the data better. Theoretically, the frequency of
data x>UCL and x<LCL should be roughly the same, 2.5%. As a result of
asymmetry of the data distribution however, the data exceeding UCL will be
much more frequent than data x<LCL. And the control limits cannot be used
efficiently to control the process.

2.2. Data transformation

Homogeneous data x with asymmetric unimodal distribution can be thought
of as some original data y with normal distribution, which was skewed by some
monotonous non-linear transformation F (like logarithmic, exponential). If an
inverse of F, F""! could be found, we could obtain a normally distributed data
y=F"'(x). Since y has normal distribution, the classical methods could be used to
determine parameters of the distribution, confidence intervals of the mean, and all
necessary quantiles like control limits, etc. [3,4]. F can be then used to
retransform these quantiles back to the original scale and unit of x. Fig. 2 shows
original data x, transformed data y = F'(x), and re-transformed mean, and
asymmetric control limits F(LCL') and F(UCL').
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Fig. 2. Symmetrization of data distribution by non-linear transformation

Power transformation is used as a tool for simplifying of data distribution.
Suitable power-law transformations may result in a distribution that is nearly

symmetrical and perhaps more nearly normal.
Power transformation enables to select of suitable location estimators for

skewed distribution and construction of corresponding asymmetrical confidence
bands. In many cases the using of simple power transformation
y=g(x)=x* forA>0
y=gx)=In(x) forA=0 1)
y=gx)=x* forA<o0
leads to the improving of the data distribution. This transformation is not scale
invariant and is not continuous function of lambda. It requires the positive data

only. Optimal transformation can be selected by minimizing of some robust
measures of skewness

B Vo= Yo ) = (Vo = Yoas)
(O — Yozs)

gr
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As a diagnostic tool the selection graph can be simply constructed. This
graph is based on the requirement of symmetry of sample quantiles (for definition
and estimation see [1]) about the median. This requirement can be mathematically

described by relationship [21]
A -A
X
(—PJ + 88| =g @
Xos Xpp

Letter values, where P; = 27 for j = 2, 3, 4,...are usually chosen. Selection graph
has on y-axis the quantities Xpi/Xos and on x-axis the quantities Xps/X;p;. For
comparison of computed points with ideal courses for constant lambda the

solution of equation

y*+x* =2

is superimposed to graph.

Another exploratory technique for graphical estimation of optimal power is
described by Emerson and Stoto [10]. After selection of optimal power the
location parameter can be estimated from relation :
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Corresponding confidence interval is described in [1]. The Box-Cox power
transformation family, which is continuous function of power lambda, can be
defined by equation

) y=g(x)=2"

y=gx)=In(x) forA=0

This transformation is limited for positive data only. After slight modification the
range of applicability can be arbitrarily extended.

Properties of this transformation family are studied in the [7]. Based on the
assumption that for some power lambda the y variable is normally distributed

forA#0

@
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N(py, sy)) the likelihood function can be constructed. Logarithm of likelihood
function has the form

InL(A) = (N/2) In(s2) + (A 1)i ln(x.i)

The s,” is sample variance of transformed data. The likelihood function can be
plotted against lambda in suitable range (standard range is from-3 to 3).To this
plot the 100(1-a)%th confidence interval of power

2fIn(L(A") - In(L)] < %2 (1) ®)

The maximum likelihood estimator of power is here indicated by star. If this interval
does not contain 1, then the transformation is statistically significant, see Fig. 3
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Fig. 3. Confidence interval for A’ according to (5); 1'=0.525,
confidence interval = (0.363, 0.686)

3. EXPERIMENTAL PART

The aim is to construct the control charts for strength [GPa] distribution of
high modulus carbon fiber. The 50 data points were experimentally determined.
For construction of control charts the subgroup size = 3 was selected. Because the
data are highly skewed the simple power transformation with skewness criterion
and Box-Cox transformation has been used. Results are summarized in the tab.3.
Table 3 Results of power transformation
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No transform Simple power Box-Cox transform
Opt. power A 1 -0.35 -0.45
Mean 2.278 2.249 2.247
LCL 1.859 2.066 2.070
UCL 2.697 3.065 3.174
Control. chart A, simple transform Control chart B, Box-Cox transform
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Fig. 4. Fiber strength, with warning and control limits, simple power and Box-Cox
transformation. Dotted lines-target and control limits without transform,
solid-retransformed target and control limits

Fig, 4 shows two points exceeding dotted classical UCL at i=30 and 31,
while LCL falls under 2 GPa, which is to low for the data. After both simple
power transform and Box-Cox transform, UCL and LCL increase, points 30 and
31 are inside re-transformed control levels, but above upper warning limits +2c
(see Chart A, dashed line). The transformation revealed one point at i=41 that
exceeds re-transformed LCL and i=32 that exceeds lower warning limit, which is
in contrast with the non-transformed chart.

4. CONCLUSION

The above examples show that even for grouped data, x-bar control charts
may lead to false conclusions if the measured data have asymmetric distribution.
A diagnosis of normality is always necessary before constructing quantiles, t-tests
or confidence intervals based on normal distribution. Generally, both simple and
Box-Cox transformation give similar results. Using maximal likelihood and Box-
Cox transform give usually more stable values of A and allow for statistical
testing of suitability of the transformation.
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