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The main aim of data analysis in textile metrology is the
extraction of relevant information from measurements and creation of
probability models. This contribution is Jocused to most frequent
task, i.e wunivariate data treatment based on the analysis of
experimentally determined values x;, i = 1,...N. The main part of this
contribution is devoted to the description of several graphical tools
Jor construction of data based distribution and comparison of data
distribution with theoretical ones. Selected techniques are used for
analysis of the strength of basalt fibers at small gauge length.

1. INTRODUCTION

Metrology is one of the very important disciplines enabling evaluation of
products and processes quality. Traditionally, the core of metrology is realization
of measurements. With the advent of computers and modern sophisticated
measuring instruments the evaluation and interpretation of results is the main
problem. In the textile branch is metrology connected with textiles production and
mvestigation of product properties.
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The main problem of data analysis is selection of data distribution. Classical
methods are valid under strict assumption. For example the results uncertainty
expressed by the confidence interval is correct only if data are independent
realizations of random variable from normal distribution [2]. Assumption of
normality cannot be generally accepted and in some situations the non normal
distribution arises from pure theoretical ideas. It is therefore necessary to check
this assumption and select suitable procedure for creation of data based
probability models.

The main part of this contribution is devoted to creation of probabilistic
models from data x;, i = 1,...N. The system of exploratory data analysis based on
the concept of quantile estimation is proposed

2. EXPLORATORY DATA ANALYSIS

From statistical point of view leads the analysis of measurements results to the
identification of probability model and estimation of corresponding parameters. Due to
well-known fact that a lot of experimental data have non normal distribution, the
classical analysis based on the normality assumption cannot be used. Frequently., the
textiles are strongly non-homogeneous and technological process is influenced by
many random events. The results of measurements are therefore often corrupted by the
outliers (dirty data). Techniques that allow isolating certain basic statistical features
and patterns of data are collected under the name exploratory data analysis (EDA)
According to Tukey [3] the EDA is a "detective work". It uses as tools various
descriptive and graphically oriented techniques that are free of strict statistical
assumptions. These techniques are based on the assumptions of the continuity and
differentiability of underlying density only.

In this contribution the set of selected computationally assisted EDA methods
for creation of probability models are discussed. The computationally assisted
exploratory data analysis system is described in the book [1]. The EDA
techniques are one of main parts of statistical methods mining” which is
collection of classical and modern parametric, non-parametric and function
estimation methods for data treatment [5].

The construction of sample distribution i.e. the estimation of probability
density function will be carried out by the kernel estimation of probability density
function and by the quantile-quantile plot [4].

-2.1. Some Basic Concepts

The EDA techniques for small and moderate samples are based on so called
order statistics
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which are the sample values (assumed to be distinct) arranged the in increasing order.
Let F(x) is the distribution function from which values xi have been
sampled. It is well known that the transformed random variable

Zy = Fe(x(i)) 1)

has independently on distribution function F. the Beta distribution Be [i, N-i+1].
Corresponding mean value is

E(Z(i)) = _—Nl-i- 1 )

where E(.) is operator of mathematical expectations. The elements V; of
covariance matrix V for all pairs z , zji, j=1,...N are simple functions of i,j and
N only. Using back transformations of E[z;) the relation

E(x(i)) . Fe_l (Z(i)) =Q.(P) 3)
is obtained. In eqn. (3) the Q.(P;) denotes quantile function and

p=_!

N+1
is cumulative probability.

Description of quantile function properties and its advantages for
constructing of empirical sample distribution contains paper of Parzen [5,6].
From eqn. (3) is obvious that the order statistic XG) 1s raw estimate of the quantile
function Q.(P;) in position of P;. For estimation of quantile xp=Q.(P) at value
Y(n+1) <P <(i+1)/(n+1) the piecewise linear interpolation

PN+P-i
N+1

can be used. The interpolation (4) is useful for estimation of sample quantiles xp;
or x,p for P=2" i=1,..n. These quantiles are called letter values [7]. All letter
values except for i=1 (median) are in pairs. For example we can estimate lower
quartile X5 (P = 0.25) and upper quartile x, 7 (Pi = 0.75) etc. Some proposals
for definitions of P; are presented in paper [8).

Xy = (N +1)( )(x(m) - x(i)) + X )

2.2. Building of Sample Distribution

As an estimator of the empirical probability density function histogram with
variable bins is often constructed. Smooth kernel type density estimator is natural
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generalization of histogram. Histogram is piecewise constant estimator of sample
probability density. Histogram height in j-th class bounded by values (i, t) is
calculated from the relationship

Cu(tist))

N )

fu.(x)=

where the function Cx(a, b) denotes the number of sample elements within
interval <a, b> and '
h; =t j —t; 1s the length of the j-th interval. Now, the problem encountered is

the choice of boundary values {t;} j=1,...M, the number of class intervals M and
their lengths h; with respect to the histogram quality. In our ADSTAT programs
the simple data based two-stage technique is used. In the first stage the number of
class intervals

M =int[2.46 (N -1)**] ©6)

is computed Here int[x] is integer part of number x. In the second stage the
individual lengths h; are determined. The estimation of h; is based on the
requirement of equal probability in all classes. For this purpose the empirical
quantile function Q(P) based on the order statistics x;; is used. In practice the P-
axis is divided into identical intervals having the size of 1/M. For these intervals
the corresponding quantile estimates tj = xn are constructed by using of eqn. (4)
where P = j/M. Practical experiences have hitherto proven that this construction
be suitable even for strongly skewed sample distributions.

The kemel type nonparametric estimator of sample probability density f(x)
can be constructed on the basis of Lejenne-Dodge-Kaelin procedure [11]. The
final estimator has the form

Nm=%gxﬁgﬁ] )

Selection of kernel function K[x] and computation of bandwidths h; is described
in [12].

2.3. Selection of Sample Distribution

The main goal is to approximate the empirical sample distribution by suitable
theoretical one. The comparison of these distributions can be made by the variants
of Q-Qor P -P plot.
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Classical Q - Q plot is based on comparison of empirical quantile function
Q(P)) ~ xg with chosen theoretical quantile function Qr (Pi). For theoretical
distribution functions of type Fr((x-T)/S) is attractive to use standardized quantile
function Qrs(P;) (see[4]) or shape identification quantile function QI(P;). When
empirical and theoretical distributions are in coincidence, the relationship

Xg =T +8SQu(P.) )

is valid. Here usually T is the location parameter and S is the parameter of scale.
For some three-parameter distribution the shape factor is usually a parameter of
the plot. Our programs (ADSTAT) select such shape factor value that straightens
the individual points best. Due to strong dependence among order statistics and
their non-constant variance the Q - Q plot gives a very patterned appearance and
the degree of linearity is often hard to quantify.

In the work of Michael [13] the stabilized probability plot is introduced.
Kafander and Spiegelman [14] propose the conditional Q - Q plot. For EDA
purposes we use the empirical probability plot (EPP) (see also 4.

The P-P (or Probability-Probability) plot is useful for determining how well a
specific theoretical distribution fits the observed data. In the P-P plot, the
observed cumulative distribution function (estimated by probability P; ) is plotted
against a theoretical cumulative distribution function Fr(x) in order to assess the
fit of the theoretical distribution to the observed data. If all points in this plot fall
onto a diagonal line (with intercept 0 and slope 1), then can be concluded that the
theoretical cumulative distribution approximates the observed distribution well. If
the data points do not all fall on the diagonal line, then can be used this plot to
visually assess where the data do and do not follow the distribution (e.g., if the
points form an S shape along the diagonal line, then the data may need to be
transformed in order to bring them to the desired distribution pattern).

In order to create this plot, the theoretical distribution function must be
completely specified. Therefore, the parameters for the distribution must either be
defined by the user or computed from the data (see the specified distribution for
more information on the respective parameters). Parzen [5] proposed for this

purpose so called comparison distribution function
CDD = F1.(Q,(R)) ©®

The CDD is roughly equal to the theoretical distribution function in point xg. plot
of CDD against P; is therefore for sample data equal to the P -P plot. For
comparative purposes is better to use comparative P - P plot where CDD is
replaced by the difference CDD-P;. Combining of Q - Q and P - P plots leads to
the best diagnostics.
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3. EXPERIMENTAL PART

The above-mentioned methods were used for identification of strength type
distribution of basalt fibers. Strength of fibers was measured on the tensile testing
machine at gauge length 1 cm. These values were converted to the stress at break
values by dividing of strength by fiber cross-section area. The 49 values S; of
stress at break [GPa] were used for further analysis.

4. RESULTS AND DISCUSSION

The main aim of data analysis of sample values S;, i = 1,...49) is
identification of suitable probability model for further detailed statistical analysis

4.1. Non-parametric density estimation

It is well known, that for full description of random variables the
corresponding probability density function is required. From values S;, i=1,..N
sample density estimator was constructed. For creation of density trace the
kernel type non parametric estimator has been used.. Typical kernel type
estimator (dotted line) is compared with density of normal distribution (solid
line) on the fig 1.

Exploratory Analysis
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Fig. 1. Non-parametric density trace (dotted) and normal one (solid)
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From these kemel type non-parametric estimator is evident, that the sample
distribution is skewed to the right. On the fig. 2 is shown histogram and best
lognormal distribution and on the fig. 3 is the same for best Weibull type
distribution. If is evident that the better results gives lognormal distribution

Histogram (1CMF.STA 1v*49c)
y=49" 1" lognorm (x, 0.9031115, 0.4472351)
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Fig. 2. Histogram and best density trace of lognormal distribution
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Fig. 3. Histogram and best density trace of Weibull distribution
4.2. Selection of theoretical distribution

The graphical tools for selection of theoretical distribution well
approximating the sample one are the Q-Q graphs (see chap. 2). Empirical
quantiles Q.(P;) are approximated by the sample order statistics Xg). For
experimental data the Q-Q graphs for normal, log-normal,, rectangular
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exponential, Weibull, gamma, Pareto and Gumbell distribution were created. The
Q-Q graph for lognormal distribution presented on the fig 4 was the best one.

Quantile-Quantile Plot of VAR1 (1CMF.STA 1v*49c)
Distribution: Lognormal (0.9)
y=1.171+1.089*+eps
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Fig. 4. Q - Q graph for lognormal distribution (threshold 0.9)

For comparison is on the fig. 5 the Q - Q graph for Weibull distribution with o
threshold equal to 1.

Quantile-Quantile Plot of VAR1 (1CMF.STA 1v*49c)
Distribution: Weibull (1.281)
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Fig. 5. Q - Q graph for Weibull distribution (optimal threshold = 1)
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The P - P plot for optimal lognormal distribution is shown on the fig. 6

Probability-Probability Plot of VAR1 (1CMF.STA 1v*49c)
Distribution: Lognormal (0.9, 0.233)
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Fig. 6. P - P graph for optimal lognormal distribution (threshold 1)

The P - P plot is here more decisive from point of view of selection of suitable
theoretical model approximating of data distribution. Under the validity of
lognormal distribution no outliers are detected.

7. CONCLUSION

The methodologies for data based probability models creation are shown. By
using of this methodology the statistical model of stress at break is identified as
lognormal distribution

Acknowledgment: This work was supported by the Czech Grant Agency; grant
GACR No. 106/99/1184 and Czech Ministry of Education Grant VS 97084.

REFERENCES

[1] Meloun M., Militky J., .,Forina M., Chemometrics for Analytical Chemistry,
voll PC Aided Statistical Data Analysis, Ellis Horwood, Chichester 1992.

[2] Burry K.V., Statistical Models in Applied Science, J. Wiley, New York 1975.

[3] Tukey J.W., Exploratory Data Analysis, Addison Wesley, Reading, Mass. 1977.

[4] Militky J., System EXDAB, Proc. Int. Conf. COMPSTAT' 84, Prague, 1984,
Poster section.



164 Jiri Militky, Milan Meloun

[5] Parzen E., Statistical methods mining and non parametric quantile domain data
analysis, Proc Ninth int. conf. on quantitative methods for environmental science,
July 1988, Melbourne.

[6] Parzen E.,J. Amer. Statist. Assoc. 74, 105 (1985).

[71 Hoaglin D. C., Mosteler F. Tukey J.W., Eds. Understanding Robust and
Exploratory Data Analysis, J. Wiley, New York, 1983.

[8] Looney S. W., Gulledge T.R., The Statistician, 34, 297, (1985).

[9] Hunter S., Amer. Statist., 42, 54 (1988).

[10] Hoaglin D. C., Mosteler F., Tukey J.W., Eds.: Exploring Data, Tables, Trends
and Shapes, J. Wiley, New York 1985.

[11] Lejenne M., Dodge Y., Kaelin E., Proc. Conf. COMPSTAT' 82, Toulouse, 1982.

[12] Militky J., Package for Fitting Theoretical Distributions to Data, Proc. Conf.
COMPSTAT '88, Copenhagen 1988, Poster section.

[13] Michael J.R., Biometrika, 70, 11 (1983).

[14] Kafander K., Spiegelman C.H., Comput. Statist. and Data Anal., 4, 167 (1986).



	107b0000.jpg
	107b0001.jpg
	107b0002.jpg
	107b0003.jpg
	107b0004.jpg
	107b0005.jpg
	107b0006.jpg
	107b0007.jpg
	107b0008.jpg
	107b0009.jpg

