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Abstract

Determining the number of chemical components in a mixture is a first important step to further analysis in spectroscopy.
The accuracy of 13 statistical indices for estimation of the number of components that contribute to spectra was critically
tested on simulated and on experimental data sets using algorithm INDICES in S-Plus. All methods are classified into two
categories, precise methods based upon a knowledge of the instrumental error of the absorbance data,sinst(A), and approximate
methods requiring no such knowledge. Most indices always predict the correct number of components even a presence of the
minor one when the signal-to-error ratio (SER) is higher than 10 but in case of RESO and IND higher than 6. On base of SER
the detection limit of every index method is estimated. Two indices, RESO and IND, correctly predict a minor component in
a mixture even if its relative concentration is 0.5–1% and solve an ill-defined problem with severe collinearity. For more than
four components in a mixture the modifications of Elbergali et al. represent a useful resolution tool of a correct number of
components in spectra for all indices. The Wernimont–Kankare procedure performs reliable determination of the instrumental
standard deviation of spectrophotometer used. In case of real experimental data the RESO, IND and indices methods based
on knowledge of instrumental error should be preferred. © 2000 Elsevier Science B.V. All rights reserved.

Keywords:Chemometrics; Principal component analysis; PCA; Rank of matrix; Number of components; Real error; Extracted error; Method
of logarithm of eigenvalues; Instrumental error of spectrophotometer; Number of components in a mixture

1. Introduction

Determining the number of chemical components
in a mixture is the first step for further qualitative and
quantitative analysis in all forms of spectral data treat-
ment. Procedures for determining the chemical rank
of a matrix using a variety of empirical and statistical
methods based on principal component analysis (PCA)
have been reported [1]. Much work has been put into
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developing methods for resolution of multi-component
spectra but less work has been carried out to reveal
the limitations of the methods and in the estimation of
the minor component of resolved spectra.

Throughout this work, it is assumed that then ×
m absorbance data matrixAAA = εεεCCC containing then
recorded spectra as rows can be written as the product
of them× r matrix of molar absorptivitiesεεε and the
r × n concentration matrixCCC. Here m denotes the
number of wavelengths for which each spectrum was
recorded being equal to the number of columns ofAAA

matrix,n is the number of solutions for which spectra
have been recorded being equal to the number of rows
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ofAAAmatrix,r is the number of components that absorb
in the chosen spectral range. The rank of the matrix
AAA is obtained from the equation

rank(AAA) = min[rank(εεε), rank(CCC) ≤ min(m, r, n) (1)

Since the rank ofAAA is equal to the rank ofεεε or CCC,
whichever is the smaller, and since rank(εεε) ≤ r and
rank(CCC) ≤ r, then providedm ≥ r and n ≥ r, it
will only be necessary to determine the rank of matrix
AAA which is equivalent to the number of significant
components [2,18].

Approaches for the determination of the rank ofAAA

are based on two different chemometric methods, ei-
ther using pure PCA or by using PCA combined with
cross-validation [3–12]. Generally, PCA will extract
some of noise, i.e. experimental and/or random error
which will usually be represented by the principal
components with smallest size or variance. When no
noise in spectra exists, the number of eigenvalues of
the covariance matrixAAATAAA larger than zero is equiv-
alent to the number of componentr, providing that
the spectra of components in mixture are linearly
independent.

In a recent tutorial, Malinowski [3] concluded
that spectra gleaned from a spectrophotometer often
contains instrumental as well as experimental uncer-
tainties that arise from several different sources: (a)
spectrophotometer switches a filter and new uncer-
tainty and also uncertainty of distribution are intro-
duced; (b) changing sample cells or stock solvents
will produce uncertainty distribution in the data; (c)
data pretreatment such as smoothing, normalizing or
standardizing the data columns or data rows can seri-
ously effect the uncertainty distribution; (d) data can
be distorted by a combination of these factors.

As all real data contain experimental noise, the
number of eigenvalues different from zero is usually
larger than the number of componentsr. Experimen-
tal and/or random error can mask the identification of
the true dimensionality of a data set. Malinowski [1,4]
split this error into two sources — imbedded error
and extracted error. Extracted error (XE) is the error
which is contained within the minor PC dimensions
((r + 1)th, (r + 2)th,. . . , mth) and therefore be re-
moved, or extracted, from the data by retaining only
the firstr dimensions. Imbedded error (IE) is the error
which mixes into the factor scheme and is contained
within the first r dimensions: this error can never be

completely removed from a data set but may be scaled
to a minimum [5].

Chen et al. [6] and Elbergali et al. [7] concluded
that although there are many multivariate statistical
methods for determination of the number of signifi-
cant components that have successfully solved certain
problems encountered in spectroscopy, if the spectra of
components are very similar, or there are minor com-
ponents, or the signal-to-noise ratio (SNR) is low, the
methods may not perform well. Some methods may
still fail to give satisfactory results due to the existence
of some components and noise eigenvalues may be in
the same magnitude. All these methods to identify the
true dimensionality of a data set are classified into two
categories: (a) precise methods based upon a knowl-
edge of the instrumental error of the absorbance data,
sinst(A) before statistical examination; (b) approximate
methods requiring no knowledge of the instrumental
error of the absorbance data,sinst(A). Many of these
methods are empirical functions.

The purpose of our study was to make a critical co-
mparison of various PCA methods on both simulated
and experimental data and first results and algorithm
were already presented [26]. In this paper, statistical
properties of the instrumental random error, i.e. its
homoscedastic magnitude but also heteroscedastic
influence as well as a resolution under a presence of
minor components in mixture with a detection limit
in case of 13 various indices methods are discussed.

2. Theoretical

2.1. PCA in spectral data analysis

Principal component analysis (PCA) has been
widely used for spectral data analysis since it was
introduced into chemistry by Kankare [18]. PCA per-
forms a decomposition of an absorbance matrix into
a product of two matricesTTT andPPP T and the residual
matrixEEE according to

AAA = TPTPTPT +EEE (2)

Then×q score matrixTTT also called a matrix of latent
variables containsq column vectors or main compo-
nents. Them×q loading matrixPPP containsq column
vectors which represents a measure of contribution of
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a particular latent variable. The indexq is the least of
n andm which in spectroscopy usually isn [9,13–17].
The second moment of an absorbance matrix is
defined

ZZZ = 1

n− 1
AAATAAA (3)

whereAAA is usually the mean-centered absorbance ma-
trix. The matrixZZZ is often called the variance–covari-
ance matrix and contains information about the scatter
of points in multidimensional space. The latent root
and vector decomposition is defined by two equations

|ZZZ − gaIII | = 0 (4a)

ZpZpZpaaa = lapppaaa (4b)

whereZZZ is am×m variance–covariance matrix (some-
times data can be scaled so that each variable is stan-
dardized to equal variance down the columns: in which
case the matrix becomes the correlation matrix); the
matrixIII is the unit matrix, and0 is a matrix of zeroes.
Eq. (4a) is a constrained maximization in whichg is
called the Lagrange multiplier; thega are ther latent
roots and are obtained as the roots of the polynomial
equation of orderm defined by the determinant. The
ga denote sum of squares of scores divided by the
number of elements. Eq. (2) defines the corresponding
latent vectorspppaaa of dimensionn. Two constraints are
placed on the loadings vectors. Only the loadings have
unit length and are mutually orthogonal, the scores
do not.

The following notations are used:I is the sample
number,j is the wavelength number, anda is the eigen-
value number. Thenn is the number of samples,k
is the current number of components being testing,r
is the true number of components andq is the total
possible number of components.

2.2. Precise methods

Precise methods concern such indices which are
based upon a knowledge of the instrumental error of
the absorbance data,sinst(A). Determination of a num-
ber of significant components in mixture is based on
a comparison of an actual index of method used with
the experimental error of instrument used,sinst(A).

2.2.1. Residual standard deviation, sk(A)
Kankare in algorithm FA608 [2,18] uses the second

momentZZZ of an absorbance matrixAAA (Eq. (2)). Ap-
plying eigenvaluesga of matrixZZZ the residual stan-
dard deviation of absorbancesk(A) is estimated

sk(A) =
√

tr(ZZZ)−∑k
a=1ga

n− k
(5)

where tr(ZZZ) is a trace of the matrixZZZ and r is the
estimated number of components in a mixture.

Testing criterion: the valuessk(A) for different num-
ber of componentsk are plotted against an integerk,
sk(A) = f (k), and number of significant components
is such integerr = k for whichsk(A) is close to the in-
strumental standard deviation of absorbance,sinst(A).

2.2.2. Residual standard deviation, RSD
The RSD [1] is a measure of the lack of fit of a PC

model to a data set being calculated by

RSD(k) =
√∑q

a=k+1ga

n(q − k)
(6)

if the PCA is performed via the covariance matrix;
wherega is the eigenvalue associated with thekth PC
dimension.

Testing criterion: the true dimensionality of a data
set r is the number of dimensions required to reduce
the RSD(k) to be approximately equal to the estimated
experimental error of the absorbance data. The RSD(k)
may be plotted againstk, RSD(k) = f (k), and when
the RSD(k) reaches the value of the instrumental error
of spectrophotometer used,sinst(A), the corresponding
k represents the number of significant components in
a mixture,r = k.

2.2.3. Root mean square error, RMS
The root mean square error (RMS) [1] of an ab-

sorbance data matrix is a measure of the difference
between the raw data and the data after reconstruction
in the short cycle using the firstk principal compo-
nents. It is also known as the extracted error XE(k)
[1]. The RMS(k) is defined by

RMS(k) =
√∑n

i=1
∑m
j=1(Aij − Âij )2

nm
= XE(k) (7)
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whereÂij = Ā +∑k
a=1tiapaj and scores are denoted

by tia while loadings bypaj . The alternative way of
expressing RMS(k) is as follows

RMS(k) =
√∑m

a=k+1ga

nm
(8)

wherega are eigenvalues of a covariance matrixZZZ and
k is a guess which can vary from 1 toq and we are
testing to see whetherk = r or not.

Testing criterion: analogously as in previous
method the estimates RMS(k) may be plotted as a
function of latent variables, RMS(k) = f (k) and
on base of a comparison with the magnitude of an
instrumental error of the spectrophotometer used,
sinst(A), the number of the significant components may
be estimated. Comparing relations for RSD(k) and
RMS(k), and simplifying yields we get RMS(k) =√
m− n/m(RSD(k)). Although related, RMS(k) and

RSD(k) measure different sources of error. RMS(k)
measures the difference between raw data and repro-
duced data usingk PC dimensions. RSD(k), however,
measures the difference between the raw and the pure
data containing no experimental error.

2.2.4. Average error criterion, AE
The average error of absorbance AE (orē) [1,22]

is simply the average of the absolute values of the
differences between the raw and reproduced data,

ē(k) = AE(k) =
∑n
i=1
∑m
j=1|Aij − Âij |
nm

(9)

where Aij and Âij were described previously in
Section 2.2.3.

Testing criterion: the true dimensionality of ab-
sorbance data matrixr is the number of dimensions
required to reduce the average error to be approx-
imately equal to the estimated average error of the
data. Values of the average error AE(k) are plotted
against the number of latent variablesk and compared
with the instrumental error of spectrophotometer used,
sinst(A). When AE(k) reachessinst(A) correspondingk
is equal to the number of significant components in
mixture,r = k.

2.2.5. χ2 criterion
For absorbance data sets where the standard devia-

tion varies from one absorbance point to another and

is not constant Bartlett [19] proposed aχ2-criterion.
This method takes into account the variability of the
error from one data point to the next, but has the major
disadvantage that one must have a reasonably accurate
error estimate for each data point. Theχ2-criterion is
defined by

χ2(k) =
n∑
i=1

m∑
j=1

(
Aij − Âij

σij

)2

(10)

whereσ ij is the standard deviation associated with the
measurableAij andÂij is the reproduced data usingk
PC dimensions.

Testing criterion: the criterion is applied in an iter-
ative manner (k = 1, 2, . . . , m) and the true dimen-
sionality of the data is the first value ofk at which
χ2(k) < (n−k) (m−k) asχ2

expected= (n−k)(m−k).
The number of significant components corresponds the
first k value for whichχ2(k) is less than critical value
χ2

expected.

2.2.6. Standard deviation of eigenvalues, s(gk)
Hugus and El-Alwady [20] related for the standard

deviation of an eigenvalue of the covariance matrixZZZ

the equation,

s(gk) =
√√√√ m∑
k=1

m∑
j=1

q2
laq

2
jaσ

2
lj (11)

where qla and qja are elements of a matrix of
eigenvaluesQQQ and σ lj are the standard deviations
of elements of a matrixZZZ given with the relation
σ 2

lj = ∑n
i=1(A

2
ilσ

2
ij + A2

ijσ
2
il ) for l 6= m and σ 2

ll =
4
∑N
i=1(A

2
ilσ

2
il ) for l = m, whereσ il andσ ij are the

estimates of standard deviations corresponding ele-
mentsAil andAij of an absorbance matrixAAA.

Testing criterion: the number of significant compo-
nents in mixture is equal to the number of eigenvalues
which are greater thans(gk).

2.3. Approximate methods

If no knowledge of the experimental error associ-
ated with the data is available then one of the follow-
ing techniques has to be applied to approximate the
true dimensionality of the data, although the results
obtained from these could be used to approximate the
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size of the error contained in the data [1]. Most of the
techniques presented here are empirical functions.

2.3.1. Eigenvalues, ga
Eigenvalues EV(a) or ga are conventionally used as

a measure of the size of a principal component [21].
Eigenvalues are calculated as the sum of squares of
the score vectors

EV(a) = ga =
n∑
i=a
t2ia, a = 1,2, . . . , r, . . . , q (12)

Testing criterion: the first r eigenvalues, called a set
of primary eigenvalues, contain contribution from the
real components and should be considerably larger
than those containing only noise. The second set called
the secondary eigenvalues contains(q−r) eigenvalues
and are referred to as non-significant eigenvalues. The
secondary eigenvalues should be considerably larger,
but this is not sensitive enough.

2.3.2. Logarithms of eigenvalues, log ga

The method of logarithms of eigenvalues [9] comes
from an assumption that primary eigenvalues of the
covariance matrixZZZ significantly differ in a magni-
tude from secondary eigenvalues as their magnitude is
approximately same.

Testing criterion: the primary and secondary eigen-
values can be separated graphically in a plot log(ga) =
f (a), wherea is the order of given eigenvalue in de-
scending order. However, this test is not sufficiently
sensitive on a presence of significant components in
relatively small quantities. Therefore some informa-
tion about instrumental noise should also be supplied.
When in one graph various levels of experimental er-
ror in absorbance are plotted then the primary and
secondary eigenvalues may be easily recognized. The
number of primary eigenvalues is then equal to the
number of significant components in a mixture.

2.3.3. Exner function,ψ
The Exnerψ-function [23] is another approach for

identifying the true dimensionality of a data. This
function is defined as

ψ =
√√√√∑n

i=1
∑m
j=1(Aij − Âij )2∑n

i=1
∑m
j=1(Aij − Ā)2

× nm

(nm)− k
(14)

whereĀ represents the overall mean of the absorbance
matrixAAA andÂij is the reproduced data using the first
k latent variables.

Testing criterion: theψ(k) = (k) function can vary
from zero to infinity, with the best fit approaching
zero. Aψ(k) equal to 1.0 is the upper limit for sig-
nificance as this means the data reproduction usingk
dimensions is no better than saying each point is equal
to the overall data mean. Exner proposed that 0.5 be
considered the largest acceptableψ(k) value, because
this means the fit is twice as good as guessing the
overall mean for each data point. Using this reason-
ing ψ(k) = 0.3 can be considered a fair correlation,
ψ(k) = 0.2 can be considered a good correlation and
ψ(k) = 0.1 an excellent correlation. It means that for
ψ(k) < 0.1 the correspondingk can be taken as the
number of significant components in solution.

2.3.4. Scree test, RPV
The scree test [1,24] for identifying the true dimen-

sionality of a data set is based on the observation that
the residual variance should level off before those di-
mensions containing random error are included in the
data reproduction. The residual variance associated
with a reproduced data set, is defined as

RV(k) =
∑n
i=1
∑m
j=1(Aij − Âij )

2

nm
(15)

which is equal to the square of the RMS(k) error.
The residual percent variance can be expressed as a
percentage

RPV(k) = 100

(∑n
i=1
∑m
j=1(Aij − Âij )

2∑n
i=1
∑m
j=1A

2
ij

)
(16)

In terms of the eigenvalues of the data matrix, this
expression can be converted to

RPV(k) = 100

(∑m
a=k+1ga∑m
a=1ga

)
(17)

Testing criterion: when the residual percent variance
is plotted against the number ofk PC dimensions used
in the data reproduction, RPV(k) = f (k), the curve
should drop rapidly and level off at some point. The
point where the curve begins to level off, or where a
discontinuity appears, is taken to be the dimensional-
ity of the data space. This is explained by the fact that
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successive eigenvalues (k PC dimensions) explain less
variance in the data and hence this explains the con-
tinual drop in the residual percent variance. However,
the error eigenvalues will be equal, if the experimen-
tal error associated with the data is truly random, and
hence the residual percent variance will be equal. Dis-
continuity appears in situations where the errors are
not random, in such situations PCA exaggerates the
non-uniformity in the data as it aims to explain the
variation in the data.

2.3.5. Imbedded error, IE
The imbedded error function (IE) [1,4] is an em-

pirical function developed to identify thosek latent
variables or PC dimensions containing error with-
out relying upon an estimate of the error associated
with the absorbance data matrix. The imbedded error
is a function of the error eigenvalues and takes the
following form

IE(k) =
√
k
∑m
j=k+1ga

nm(q − k)
(18)

which is equivalent to
√
k/m RSD(k) and represents

a measure of the difference between reconstructed
and pure data and describes this part of errors which
remains in reconstructed data.

Testing criterion: the behavior of the IE(k) func-
tion, as k varies from 1 toq, can be used to de-
duce the true dimensionality of the data. The IE(k)
function should decrease as the true dimensions are
used in the data reproduction. However, when the
true dimensions are exhausted, and the error dimen-
sions are included in the reproduction, IE(k) should
increase. This should occur because the error dimen-
sions are the sum of the squares of the projections
of the error points on the error axis. If the errors
are uniformly distributed, then their projections onto
the error dimensions should be approximately equal.
Imbedded error can also be related to RMS(k) and
RPV(k).

2.3.6. Factor indicator, IND
The factor indicator function IND(k) [1,4] is an em-

pirical function which appears more sensitive than the
IE(k) function to identify the true dimensionality of
an absorbance data matrix. The function is composed
of the same components as the IE(k) function, and is

defined by

IND(k)=
√∑q

j=k+1gj/(n(m− k))

(q − k)2
= RSD(k)

(q − k)2
(19)

where RSD(k) is the residual standard deviation of
absorbance.

Testing criterion: this function, like the IE(k) func-
tion, reaches a minimum when the correct number
of latent variables orr PC dimensions have been
employed in the data reproduction. However, it has
been seen that the minimum is more pronounced and
can often occur in situations where the IE(k) function
exhibits no minimum.

2.3.7. F-test
Malinowski [1,4] developed a test for determining

the true dimensionality of a data set based on the
Fisher variance ratio test,F-test. TheF is a quotient of
two variances obtained from two independent pools
of samples that have normal distributions. As the
eigenvalues obtained from a PCA are orthogonal, the
condition of independence is satisfied. It is common
to assume that the residual errors in the data have a
normal distribution; if this is true, then the variance
expressed by the error eigenvalues should also follow
a normal distribution. This will not be the case if the
errors in the data are not uniform or if systematic
errors exist [25]. The pooled variance of the error
eigenvectors is obtained by dividing the sum of error
eigenvalues by the number of pooled vectorsm − k.
For distinguishing primary and secondary eigenvalues
the null hypothesisH0: gred

a = ḡred
a versus alternative

HA: gred
a > ḡred

a is formulated. In case of validity of
null hypothesis the test criterion

F(1, q − k)=
∑m
a=k+1(n− a + 1)(m− a + 1)

(n− k + 1)(m− k + 1)

× ga∑q

a=k+1ga
(20)

with 1 andq − k degrees of freedom is applied.
Testing criterion: when testing thek is varied from

the smallest eigenvalues in rangem−1,m−2, . . . , 1.
The firstkth reduced eigenvalue for which it is valid
thatF(1, q − k) is greater than critical value for given
significance level is taken as the smallest and corre-
spondingk represents the number of significant com-
ponents in a mixture.
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2.3.8. Ratio of eigenvalues calculated by smoothed
PCA and those by ordinary PCA, RESO

A recommended procedure for determining the
number of components in mixtures using RESO
[6] contains the principal components analysis for
the measured spectra set using the SVD algorithm
to find the eigenvaluesg0

i corresponding to ordi-
nary PCA. Then the smoothed principal component
analysis (SPCA) is applied to the same data set, do-
ing the generalized eigenvalues problemsXXXTXrXrXr sssiii =
gsa,i(III +aGGG)rrrsss

iii
with differenta. Details may be found

in original paper describing RESO [6].
Testing criterion: calculate index RESOai or the

ratios betweengsa,i and g0
i for different a and plot

log(RESOai ) versus component number. Estimate the
number of components by examining the log(RESOa

i )
versus component number plots. Locate the number
of log(RESOai )s which are very close to each other
and do not change substantially with the variation ofk
in comparison with the remaining log(RESOai )s. This
is the number of components existing in the mixture
examined [6].

2.4. Signal-to-noise ratio SNR (or SER) and
detection limit

In any simulation study of this type, the level of
noise employed will be critical. Therefore, it is nec-
essary to have a consistent definition of the SNR so
that the impact of this parameter can be critically as-
sessed. Traditional approaches to SNR are based on
the ratio of the maximum signal to maximum noise
value. As an alternative, the concept of instrumen-
tal error was again employed and the SER is defined
where for an error the instrumental standard deviation
of absorbance,sinst(A) is used.

Attention should be paid to the methods’ ability to
detect a minor component in the presence of major
ones. The detection limit is equivalent to the amount
of ‘detectable impurity’ or the smallest relative con-
centration of the minor component. Approaching the
detection limit, no methods can accurately deter-
mine the minor component in mixture. The detection
limit depends on several factors, such as (i) spec-
tral similarity of the minor component with other
ones; (ii) instrumental resolution; (iii) noise level and
noise type, and (iv) SNR with respect to the minor
component.

3. Experimental

The comparison of indices methods tested has been
demonstrated by real data as well as simulated ones
which were designed to cover some typical situations
to access in experimental practice.

3.1. Procedure

All spectra evaluation and data simulation were
performed in the S-Plus programming environment
and the algorithm INDICES is available on internet,
http://meloun.upce.cz/indices [27].

Most indices methods (Fig. 1) are functions of the
number of PC(k)’s into which the spectral data usu-
ally are plotted againstk, and when the PC(k) reaches
the value of the instrumental error of spectrophotome-
ter used,sinst(A), the correspondingk represents the
number of significant components in a mixture,r = k.
The dependencef (k) decreases steeply with increas-
ing number PCs as long as the PCs are significant.
Whenk is exhausted the indices fall off, some of in-
dices even display a minimum. At this pointr = k

for all indices exceptg for which r = k + 1 is valid.
The indices values at this point can be predicted from
the properties of the noise, which may be used as a
criterion to determiner [3,8].

3.2. Simulated data sets

To investigate all statistical properties of absorbance
data matrix which were designed to be quite similar to
real experimental data and cover some typical situa-
tions of analytical practice, several data sets of absorp-
tion spectra were simulated for a three-components
system in mixture: potassium bichromate, cobalt(II)
sulphate and copper(II) sulphate, a mixture abbrevi-
ated{Cr–Co–Cu}. An absorbance matrix was created
by multiplying absorptivity spectra of three com-
ponents (Fig. 2a) by their simulated concentration
profiles (Fig. 2b) to reach resulting absorbance. Each
matrix data set containsn digitized spectra consisted
of m digitized wavelengths. Random noise was added
to the spectra by generating random numbers with a
Gaussian distribution with mean 0 and standard devi-
ation equal to the pre-selected noise level,sinst(A), to
reach an optioned SER value. Most of simulated spec-
tra sets for examination of five factors (i.e. concentra-
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Fig. 1. The indices (full circles) and logarithm of the indices (empty circles) of 13 methods as a function of the number of principal
componentsk for a simulated three-components system in mixture, potassium bichromate–cobalt(II) sulphate–copper(II) sulphate, with
r = 3, n = 82,m = 41 and SER= 1570, S-Plus.
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Fig. 2. (a) Spectra of relative absorbance for three components
described as in Fig. 1. (b) Diagram of a relative concentration
of three components in mixture for a simulated data set of three
components described as in Fig. 1. (c) 3D-relative absorption
spectra for a simulated data set of three components described as
in Fig. 1.

tion, homoscedasticity noise, collinearity in spectra,
heteroscedasticity noise and sample size), are of sam-
ple sizen = 82 spectra andm = 41 wavelengths
(Fig. 2c).

3.2.1. Concentration variation
One of the three components in system was arranged

at different minor concentration levels, actually 0.25,
0.50, 1.0, 1.5 and 2.5% with respect to a sum of other
two components which each had the same highest ab-
sorbance (Tables 1 and 2). For noise levelsinst(A) =
0.7 mAU the minor concentration levels cause SER
values 4.0, 8.0, 15.9, 23.9 and 39.9.

3.2.2. Homoscedastic noise
To all previous absorbance matrices described in

Section 3.2.1 the normally distributed homoscedastic
random errors generated with zero expectation and dif-
ferent absorbance standard deviationsinst(A) = 0.3,
0.7, 1.4 and 2.8 mAU were added which represent
about 0.03, 0.07, 0.14 and 0.28% of the maximum
absorbance, respectively. These correspond to various
levels of SER (Table 1), enabling to examine a detec-
tion limit of every indices method.

3.2.3. Heteroscedastic noise
The heteroscedastic noise with zero expectation was

proportionally increased with increasing wavelength
(a) from sinst(A) = 0.01 to 0.3 mAU which is about
from 0.001 to 0.03% of the maximum absorbance,
(b) from sinst(A) 0.01 to 0.7 mAU which is about
from 0.001 to 0.07% of the maximum absorbance,
(c) from sinst(A) = 0.01 to 1.4 mAU which is about
from 0.001 to 0.14% of the maximum absorbance, (d)
from sinst(A) = 0.01 to 2.8 mAU which is about from
0.001 to 0.28% of the maximum absorbance added to
precise values of a noiseless absorbance matrix. For
comparison the concentrations of three components
were used as described previously in Sections 3.2.1
and 3.2.2. These correspond to various levels of SER
(Table 2), enabling to examine a detection limit of
every indices method.

3.2.4. Collinearity in spectra
To examine collinearity in spectra, the spectrumsr

of system of three components produced according
to the following equation withp2 = 1.1, 2.0, 3.0,
5.0 and 8.0 andp3 = 1.1, 3.0, 5.0, 8.0, i.e.srsrsr =
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Table 1
Search of a detection limit for 13 indices procedures proposing a number of components for simulated three-component system with
various levels of homoscedastic noise level from 0.3 to 2.8 mAU and various concentrations of third minor componenta

Noise (mAU) SNR SER Precise methods Approximate methods

All Minor All Minor sk(A) RSD RMS AE χ2 s(g) ψ RPV ga IE IND F-test RESO

Concentration of minor component 0.25%
0.3 932 2.3 3670 9.2 2 2 2 2 2 2 2 2 2 23 2 3
0.7 485 1.2 1594 4.0 2 2 2 2 2 2 2 2 2 2 2 2 2
1.4 226 0.6 802 2.0 2 2 2 2 2 2 2 2 2 2 2 2 2
2.8 107 0.3 402 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2

Concentration of minor component 0.5%
0.3 932 4.7 3670 18.3 3 3 3 3 4 2 3 3 2 3 3 3 3
0.7 485 2.4 1594 8.0 2 2 2 2 3 2 2 2 2 2 3 2 3
1.4 226 1.1 802 4.0 2 2 2 2 2 2 2 2 2 2 2 2 2
2.8 107 0.5 402 2.0 2 2 2 2 2 2 2 2 2 2 2 2 2

Concentration of minor component 1%
0.3 932 9.3 3670 36.7 3 3 3 3 3 3 3 3 3 3 3 3 3
0.7 485 4.9 1594 15.1 3 3 3 3 2 2 3 3 3 3 3 3 3
1.4 226 2.3 802 8.0 2 2 2 2 2 2 2 2 3 2 3 2 3
2.8 107 1.1 402 4.0 2 2 2 2 2 2 2 2 2 23 2 2

Concentration of minor component 1.5%
0.3 932 13.8 3670 55.0 3 3 3 3 3 3 3 3 3 3 3 3 3
0.7 485 7.3 1594 23.9 3 3 3 3 3 3 3 3 3 3 3 3 3
1.4 226 3.4 802 12.0 3 3 3 3 2 3 3 3 3 2 3 3 3
2.8 107 1.6 402 6.0 2 2 2 2 2 2 2 2 2 23 2 3

Concentration of minor component 2.5%
0.3 932 23.3 3670 91.7 3 3 3 3 3 3 3 3 3 3 3 3 3
0.7 485 12.1 1594 39.9 3 3 3 3 3 3 3 3 3 3 3 3 3
1.4 226 5.7 802 20.0 3 3 3 3 2 3 3 3 3 3 3 3 3
2.8 107 2.7 402 10.0 3 3 3 3 2 3 3 3 3 2 3 2 3

Estimation of detection limit for SER 10 10 10 10 24 10 10 10 8 16 4 12 6

a Bold digit means correct value found.

(p2sss2+p3sss3)/(p2+p3), was added andsss2 andsss3 are
the vectors of spectra of component 2 and 3, respec-
tively. For comparison, the relative concentrations of
the three components in system were held constant 1,
1, 1, respectively, and the resulting spectrum was either
(a) loaded with a homoscedastic noise level 0.7 mAU
which is about 0.07% of the maximum absorbance,
or (b) loaded with a heteroscedastic noise level varied
in range from 0.01 to 0.7 mAU which is about from
0.001 to 0.07% of the maximum absorbance.

3.2.5. Sample size
Influence of a sample size or size of absorbance

matrix on resulting number of estimated components
r was investigated. The size of the absorbance matrix

was decreased in several steps fromn×m = 82× 41
to a final size 10× 10 (Table 3).

3.3. Real data sets

After determination of instrumental error of spec-
trophotometer usedsinst(A) the real spectra of three
components in mixture and protonation equilibria of
a mixture of three sulphonephtaleins were investi-
gated.

3.3.1. Instrumental error sinst (A)
For determination of the instrumental error of spec-

trophotometer used,sinst(A), Wernimont–Kankare
method [18] was applied. If there is one component
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Table 2
Search of a detection limit for 13 indices procedures proposing a number of components for simulated three-component system with
various levels of heteroscedastic noise level (a) from 0.01 to 0.3 mAU; (b) from 0.01 to 0.7 mAU; (c) from 0.01 to 1.4 mAU; (d) from
0.01 to 2.8 mAU and various concentrations of third minor componenta

Noise [mAU] SNR SER Precise methods Approximate methods

All Minor All Minor sk(A) RSD RMS AE x2 s(g) ψ RPV ga IE IND F-test RESO

Concentration of minor component 0.25%
(a) 1256 3.1 6215 15.5 3 3 3 3 2 2 3 3 2 2 3 3 3
(b) 433 1.1 2676 6.7 2 2 2 2 2 2 2 2 2 2 3 2 3
(c) 220 0.6 1380 3.5 2 2 2 2 2 2 2 2 2 2 2 2 2
(d) 159 0.4 684 1.7 2 2 2 2 2 2 2 2 2 2 2 2 2

Concentration of minor component 0.5%
(a) 1256 6.3 6215 31.1 3 3 3 3 3 2 3 3 3 3 3 3 3
(b) 433 2.2 2676 13.4 3 2 2 3 2 2 3 3 2 2 3 3 3
(c) 220 1.1 1380 6.9 2 2 2 2 2 2 2 2 2 2 3 2 3
(d) 159 0.8 684 3.4 2 2 2 2 2 2 2 2 2 2 3 2 3

Concentration of minor component 1%
(a) 1256 12.6 6215 62.2 3 3 3 3 3 3 3 3 3 3 3 3 3
(b) 433 4.3 2676 26.8 3 3 3 3 2 2 3 3 3 3 3 3 3
(c) 220 2.2 1380 13.8 3 3 3 3 2 2 3 3 3 2 3 3 3
(d) 159 1.6 684 6.9 2 2 2 2 2 2 2 2 2 2 3 2 3

Concentration of minor component 1.5%
(a) 1256 18.8 6215 93.2 3 3 3 3 3 3 3 3 3 3 3 3 3
(b) 433 6.5 2676 40.2 3 3 3 3 3 3 3 3 3 3 3 3 3
(c) 220 3.3 1380 20.7 3 3 3 3 2 2 3 3 3 3 3 3 3
(d) 159 2.4 684 10.3 2 2 2 2 2 2 2 2 3 2 3 3 3

Concentration of minor component 2.5%
(a) 1256 31.4 6215 155.4 3 3 3 3 3 3 3 3 3 3 3 3 3
(b) 433 10.9 2676 67.1 3 3 3 3 3 3 3 3 3 3 3 3 3
(c) 220 5.5 1380 34.5 3 3 3 3 3 3 3 3 3 3 3 3 3
(d) 159 4.0 684 17.1 3 3 3 3 2 3 3 3 3 3 3 3 3

Estimation of detection limit for SER 13.4 13.8 13.8 13.4 34.5 17.1 13.4 13.4 13.8 17.1 6.7 10.3 3.4

a Bold digit means correct value found.

Table 3
Number of components predicted by 13 indices for simulated three-component system for various size of absorbance matrix, homoscedastic
noise level 0.7 mAU, SER= 15.7 and relative absorbance of all three components 1:1:0.02a

Matrix size (n×m) Precise methods Approximate methods

sk(A) RSD RMS AE χ2 s(g) ψ RPV ga IE IND F-test RESO

10× 10 2 2 2 2 3 2 2 2 2 7 5 2 3
12× 10 3 3 3 3 3 2 2 2 3 7 3 3 3
20× 10 3 3 3 3 4 2 2 2 3 7 3 2 3
20× 20 3 3 3 3 4 2 3 2 3 3 3 – 3
40× 20 3 3 3 3 3 2 3 3 3 3 3 3 3
41× 41 3 3 3 3 4 3 3 3 3 3 3 3 3
82× 41 3 3 3 3 3 3 3 3 3 3 3 3 3

a Bold digit means correct value found.
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Table 4
Number of components predicted by 13 indices for simulated (first digit in each cell being valid for corresponding SER value) and
experimental (second digit in each cell) spectral data of three-component system and various concentrations of third minor componentc3

(%) when for simulated data a homoscedastic noise level 0.7 mAU was used while for experimental data a valuesinst(A) = 0.7 mAU was
founda

c3 SER Precise methods Approximate methodsa

sk(A) RSD RMS AE χ2 s(g) ψ RPV ga IE IND F-test RESO

0.5 7.9 2, 2 2, 2 2, 2 3, 2 2, 3 2, 2 –, 2 –, 2 3, 2 2, 2 2,3 5, 2 3, 3
1.0 15.7 2, 3 3, 3 2–3, 3 3, 3 3, 2 3, 2 3, 3 3, 3 3, 3 3, 3 3, 3 5, 3 3, 3
1.5 23.6 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 5, 3 3, 3
2.5 39.3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 5, 3 3, 3

a Bold digit means correct value found; –: means that a value cannot be estimated.

in the solution, this means that the true rank of the
absorbance matrix is equal to one,r = 1, and the cor-
responding residual standard deviation of absorbance
sk(A) being estimated from a graphsk(A) = f (k)

for k = 1, and analogously, the real error RE(1), the
extracted error XE(1) and the average errorē for k =
1 were estimated: for potassium bichromates1(A) =
0.7 mAU, RE(1) = 0.5 mAU, XE(1) = 0.5 mAU and
ē(1) = 0.5 mAU.

3.3.2. Mixture of three components
For a three-components system{Cr–Co–Cu}, the

absorbance matrix ofn = 30 spectra for various
concentration combinations of three components
{Cr–Co–Cu} according to Beer law atm = 27 wave-
lengths was examined (Table 4).

3.3.3. Protonation equilibria of a mixture of three
sulphonephtaleins

A mixture of 2.45 × 10−4 M Bromocresol Green,
3.29× 10−4 M Phenol Red and 1.48× 10−4 M Thy-
mol Blue in 0.01 M HCl was titrated with 1 M KOH
using a microburette at 298 K and ionic strength 0.001
(KCl) to adjust pH value in range 2–11 with the use
of OP271 pH meter (Radelkisz, Budapest) with reso-
lution of 0.001 pH unit. The spectra were recorded on
GBC UV–VIS 916 spectrophotometer (GBC Scien-
tific Equipment Pty Ltd., Dandenong, Australia) with
sinst(A) = 0.7 mAU in a 0.2 cm cuvette. The cell
for measuring pH contained a G202B glass electrode
and saturated calomel electrode (both from Radiome-
ter, Copenhagen) and was standardized against buffers
from Radiometer: pH= 4.005, 6.865 and 9.180. The
Bromocresol Green, Phenol Red and Thymol Blue and

other chemicals used (Lachema, Brno) were of ana-
lytical grade.

4. Results and discussion

The number of significant componentsr can be
estimated from indices by comparing them with the
experimental error, using the noise levelsinst(A) as a
threshold. This is the common criterion to determine
r for precise methods. However, there are experimen-
tal situations when information about noisesinst(A)
is not available and such comparison cannot be made
and then the approximate methods are used. The
point wherek = r was estimated from the indices of
the number of principal componentsa. Fig. 1 shows
the indices as functions of the number of principal
componentsk for one of the simulated data sets with
r = 3, n = 82,m = 41 and SER= 1570. Due to the
large variation of some index values, a logarithmic
scale is often employed. Thes(g) and IE are functions
of the kth PC, and should change substantially when
k + 1 = r, while the other indices reflect the cumu-
lated effect of the firstk PCs and should change when
k = r. In these plots for simulated datar = 3 and a
change in slope can be seen aroundk = r for sk(A),
RSD, RMS, AE, χ2, ψ , logg, IND, F-test, RESO
and atk = r + 1 for g and IE. On base of exten-
sive simulations a comparison of 13 indices method
was made among (i) six precise indices methods —
sk(A), RSD, RMS, AE,χ2 and s(g), and (ii) seven
approximate indices methods —ψ , RPV, g, IE, IND,
F-test, and RESO. The effect of five factors, i.e. a
concentration of the minor component, homoscedas-
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tic noise, collinearity in spectra, heteroscedastic noise
and sample size was investigated and the detection of
the limit of the true value of number of components
of each method was estimated. The indices were used
to analyze real experimental data and the derivation
modifications SD and ROD were also used.

4.1. Homoscedastic noise, heteroscedastic noise and
concentration of the minor component

All three factors may be examined commonly us-
ing an effective resolution criterion, the SNR or the
SER. Both criteria cover all three factors and there-
fore can be used as the common resolution factor. For
simulated data sets withr = 3, n = 82,m = 41 there
were adjusted various SER values of homoscedastic
noise (Table 1). It is obvious that when SER is equal
or higher than a detection limit, every index method
fails. Table 1 demonstrates an estimate of detection
limit for individual methods in case of homoscedastic
noise: SER= 24 forχ2, SER= 16 for IE, SER= 12
for F-test, SER= 10 for sk(A), RSD, RMS, AE,s(g)
andψ , SER= 8 for ga , SER= 6 for RESO, SER=
4 for IND. It means that for determination of the mi-
nor component two methods, RESO and IND work
best and appear to be the most reliable. It is worth
mentioning that most of the methods do not behave
in the same way if the SER criterion decreases nearly
to their detection limit. Indicess(g), χ2 andF-test are
definite, they are fully based on statistic criterion and
it is not complicated to predictr. The situation is sim-
ple in case of precise methods. Here we take thek for
which the value of criterion is closest to the value of
experimental error,sinst(A). However, we lose a help
function of the curve shape being used here as an ef-
ficient criterion. Thus the indicesψ , and RPV which
are based on detecting a break-point on the curve, are
not very reliable in prediction ofr in case of decreas-
ing a SER. Thega and RESO are reliable enough.

For heteroscedastic noise (Table 2) an esti-
mate of detection limit for individual methods are:
SER = 34.5 for χ2, SER = 17.1 for s(g) and IE,
SER = 13.4–13.8 for sk(A), RSD, RMS, AE, RPV,
ga andψ , SER = 10.3 for F-test, SER= 6.7 for
IND and SER = 3.4 for RESO. Once again RESO
and IND work best, which demonstrates their ability
in the presence of heteroscedastic noise. A possible
explanation [6] might be that heteroscedastic noise

does affect the eigenvalues of both SPCA and PCA
but has no influence on their ratios.

4.2. Collinearity in spectra

Even severe collinearity in spectra that arranged all
the indices predicted a correct number of components
in mixture.

4.3. Sample size

Decreasing size from(n × m) = (82 × 41) to
(40× 20) all indices found correct value of the num-
ber r. Decreasing size from (40× 20) to (20× 20)

Fig. 3. Spectra of relative absorbance for six components, i.e. the
protonated form HL and anion L− of Bromocresol Green+
Phenol Red+Thymol Blue in mixture withr = 6, n = 33,m = 31
and SER about 2780, S-Plus.

Fig. 4. 3D-relative absorption spectra for six components described
as in Fig. 3.
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Fig. 5. The indices (full circles) and logarithm of the indices (empty circles) of 13 methods as a function of the number of principal
componentsk for a experimental data set of 6 components described as in Fig. 3.
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Fig. 6. The second derivative detection criterium applied on 11 indices methods described as in Fig. 3.
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Fig. 7. The ratio of derivatives detection criterium applied on 11 indices methods described as in Fig. 3.
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RPV,χ2, F-test ands(g) methods fail to find the cor-
rect value of the numberr (Table 3). Whenn = 12
most approximate indices fail, the correct value of
numberr is estimated by precise methods only. Some
methods are more sensible to the changes of size of
the absorbance matrix. This is especially the case of
RESO. On the other hand, precise methods are sensi-
tive neither to the decreasing size nor to the incorrect
dimension of data, i.e. highest number of wavelength
in columns than spectra in rows. In our study it was
found that sufficient size of absorbance matrix seems
to be about 30 spectra and a little bit smaller number
of wavelengths. In an agreement with Elbergali et al.
[8] we can conclude that a higher number of data
points collected in a given wavelength range improve
ability of the indices to predict the number of light
absorbing components. Recorded spectra should be
digitized into the maximum number of data points,
especially for data set with low SER value and many
components.

4.4. Real experimental data

The Wernimont–Kankare procedure estimates the
instrumental standard deviation of spectrophotometer
used,sinst(A) = 0.7 mAU in range 380–650 nm. This
value can be used for a prediction of SER value for
experimental data. Only two indices, IND and RESO,
predict correct number of components for a concen-
tration of minor component 0.5% (corresponding to
SER = 7.9). Exceptχ2 and s(g) all other indices
predict correct number for a concentration 1% (cor-
responding to SER= 15.7) and χ2 and s(g) for
1.5% (corresponding to SER= 23.6) (Table 4). The
extensive simulations and experimental data treatment
showed that most of the indices accurately predict
the number of components that contribute to a set
of absorption spectra. For the simulated spectra all
indices performed well, all being absolutely correct
for data sets with SER of at least 10. For data with
higher noise thega , RESO and IND performed best.

To examine severe collinearity in spectra and
ill-conditioned model of similar spectra for individual
components, an experimental system of protonation
equilibria of three sulphonephthaleins in mixture,
Bromocresol Green+ Phenol Red+ Thymol Blue
(BCG+PR+TB) was tested. Protonated forms HL of
all three sulphonephtaleins are nearly of same colour

and their λmax of their absorption bands are very
close. This is valid also for their anions L− (Fig. 3).
No sulphonephtalein was in minor concentration and
a concentration ratio BCG:PR:TB= 1:1:1 was used.
For various values of pH 2–11, the spectra of a pro-
tonation equilibria of a mixture BCG+ PR+ TB was
monitored and digitized into absorbance matrix of
n = 33 atm = 31 wavelengths with SER about 2780
(Fig. 4). Most indices on Fig. 5 indicated correct
number of six component present even an ill-defined
problem of very similar spectra of individual compo-
nents was solved.

Elbergali et al. [8] proposed a modification of index
methods using derivatives to improve identification
of the number of components. The derivative criteria
are based on the point where the slope changes and
reaches a maximum (Fig. 5). Even the second deriva-
tive criterion SD(k) function for some indices had
about the same magnitude for two successive points
aroundk = r we can say that except two indicess(g)
and ga , all indices predicted the correct number of
components,r = 6 (Fig. 6). In the case of the ratio
of derivatives criterion ROD(k) the same phenomenon
for only indicesχ2 and RPV is valid. Fors(g) andga
the correct valuer is r = k− 1 for SD(k) and also for
ROD(k) plot (Fig. 7).

5. Conclusion

Two indices, RESO and IND, are stable in many
situations and correctly predict a minor component in
a mixture even if its relative concentration is about
0.5–1% relatively to remaining components. Both can
detect minor components and solve the ill-defined
problem with severe collinearity in spectra. Most in-
dices predict the correct number of components for
data sets with the SER of at least 10 but RESO and
IND of at least 6. For more than four components in
the mixture, the modification of Elbergali et al. seem
to be useful resolution tool enabling the correct pre-
diction of the number of components in spectra for all
indices excepts(g) andga . The Wernimont–Kankare
procedure is a reliable method for determination of
the instrumental standard deviation of spectropho-
tometer used. In case of real experimental data the
RESO, IND and methods based on knowledge of
instrumental error should be preferred.
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