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Data transformations enable expression of original
data in a new scale, more suitable for data analysis. In
computer-aided interactive analysis of biochemical
and clinical data an exploratory data analysis often
finds that the sample distribution is systematically
skewed or does not accept a sample homogeneity. Un-
der such circumstances the original data should be
transformed. The power transformation and the
Box-Cox transformation improve sample symmetry
and also stabilize variance. Both the Hines-Hines selec-
tion graph and the plot of logarithm of a maximum
likelihood function allow selection of an optimum
transformation parameter. The proposed procedure of
data transformation in univariate data analysis is illus-
trated on a determination of 17-hydroxypregnenolone
in umbilical blood of a population of newborns. Lower
levels of free 5-ene steroids in umbilical blood and ele-
vated levels of 5-ene steroid sulfates indicate a con-
genital sex-specific placental sulfatase insufficiency.
After examination of statistical assumptions by diag-
nostic plots of an exploratory data analysis the best es-
timate of a mean value of 17-hydroxypregnenolone is
derived.
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Introduction

When an exploratory data analysis (1-3) indicates that
the sample distribution strongly differs from the nor-
mal one, we are faced with the problem of how to ana-
lyze biochemical or medical data. Raw data may re-
quire re-expression to produce an informative display,
effective summary, or a straightforward analysis
(4-11). Difficulties may arise because the raw data have
(i) marked asymmetry, (ii) batches at different levels
with a widely differing spread. By altering the shape of
the batch or batches we may alleviate these problems.

We transform the data by applying a single mathemat-
ical function to all raw data values {11). We may need to
change not only the units in which the data are stated,
but also the basic scale of the measurement. Changes
of origin and scale involve linear transformations, and
they do not affect the shape. Non-linear transforma-
tions such as the logarithm and square root are neces-
sary to change shape. The reasons for transforming a
batch of original data include the following:

Transforming to enhance interpretability: changing
the scale of measurement is natural because it gives an
alternative way to report information. The implied
transformation is to the more convenient scale, e.g. a
merit of the temperature scale is that the zero of the Cel-
sius scale corresponds to a natural and widely under-
stood phenomenon, the freezing point of water. There-
fore, we transform Fahrenheit degrees (F) to Celsius
degree (C) using a linear transformation, C = (5/94(F-32).

Transforming for symmetry: symmetry of a batch is
often a desirable property as many estimates of loca-
tion work best and are best understood when the data
come from a symmetric distribution. A simple way to
check on symmetry is to define a set of midsummaries
(each midsummary is the average of the two corre-
sponding quantiles (also known as “letter values”) Q,
and Q,;: for example, lower and upper quartiles F, and
Fu. lower and upper octiles E; and E, lower and upper
sedeciles D, and Dy, etc.). In a perfectly symmetric
batch, all midsummaries would be equal to the me-
dian. If the data were skewed to the right, the midsum-
maries would increase as they came from letter values
further into the tails. For data skewed to the left, the
midsummaries would decrease.

Transforming for stable spread: biochemical data
sometimes come to us in several batches at different
levels and we often find a systematic relationship be-
tween spread and level: increasing level usually brings
increasing spread. When this relationship is strong, we
have several reasons for transforming the data in a way
that reduces or eliminates the dependence of spread
on level. The transformed data will be better suited for
comparison and visual exploration. The transformed
data may be better suited for common confirmatory
techniques. Individual batches become more nearly
symmetric and have fewer outliers.

This paper gives a description of the power transfor-
mation and the Box-Cox transformation and re-expres-
sion of statistics for transformed data. The procedure
of the power transformation and the Box-Cox transfor-
mation is illustrated on a typical biochemical study
case concerning a determination of 17-hydroxypreg-
nenolone in umbilical blood of newborns.



554

Meloun et al.: Transformation in the biochemical data analysis

Methods

Data transformation

Examining data we must often find the proper transformation
which leads to symmetric data distribution, stabilizes the vari-
ance or makes the distribution closer to normal. Such trans-
formation of original data x to the new variable value y = g(x)
is based on an assumption that the original biochemical data
represent a nonlinear transformation of normally distributed
variable x = g~\(y).

i) Transformation for variance stabilization implies ascer-
taining the transformation y = g(x) in which the variance o(y)
is constant. If the variance of the original variable x is a func-
tion of the type 0%(x) = fi(x), the variance o?(y) may be ex-
pressed by

dgix)
dx

2
o =(L22) fn=c 1]
where Cis a constant. The chosen transformation g(x) is then
the solution of the differential equation

dx
Vi (x)

In some instrumental methods of analytical chemistry, bio-
chemistry and clinical chemistry the relative standard devia-
tion 8(x) = g(x)/x of the measured variable is constant. This
means that the variance 02(x) is described by a function 0?(x)
= f,(x) = 6%(x) x? = const x%. After substitution into equation [2]
and solution of differential equation, the transformation g(x) =
In x results. Optimal transformation of original data is the log-
arithmic transformation. This transformation leads to the use
of a geometric mean.

When the dependence 02(x} = fi(x) is of power (exponent)
nature, the optimal transformation will also be a power trans-
formation. Since for a normal distribution the mean is not de-
pendent on the variance, a transformation that stabilizes the
variance makes the distribution closer to normal.

i} Transformation for symmetry is carried out by a simple
power transformation

gix) zjc 2]

x*  for parameter A >0
y=g(x) =}( Inx forparameter A=0 } [3]
-x for parameter A <0

which does not retain the scale, is not always continuous and
is suitable only for positive x. Optimal estimates of parameter
A are sought by minimizing the absolute values of particular
characteristics of an asymmetric distribution. In addition to
the classical estimate of skewness g,(y), the robust estimate
g1aly) is used

{Vo.75 = Vo.s0) = {Vo.s0 — Ya.25) (4]
(Vo.75 + Yo.25)

g1,rl¥) =

The robust estimate of an asymmetry gg{y) may be also ex-
pressed with the use of a relative distance between the arith-
metic mean y and the median y, 5, by

)7 - }70.50

gely) =
[5]

as for symmetric distributions it is equal to zero, gply) = 0.

iii} Transformation leading to approximate normality may
be carried out by the use of the family of Box-Cox transforma-
tions (11), defined as

(6]

{x2 = 1)/ for parameter A =0
y=g(x)={ }
In x

for parameter L = 0

where x is a positive variable and A is a real number. The
Box-Cox transformation has the foliowing properties:
a) The curves of transformation g{x) are monotonic and
continuous with respect to parameter A because
limyo 2 in 7]
A
b) All transformation curves share one point [y =0, x = 1] for
all values of A. The curves nearly coincide at points close to [0,
1]; i.e., they share a common tangent line at that point.

¢} The power transformations of exponent -2; -3/2; -1; -1/2;
0; 1/2; 1; 3/2; 2 have equal spacing between curves in the fam-
ily of Box-Cox transformation graphs.

The Box-Cox transformation can be applied only to positive
data. To extend this transformation it is necessary to make a
substitution of x values by (x — x,) values which are always
positive. Here X, is the threshold value x; < x;3;.

An excellent diagnostic tool enabling estimation of parame-
ter A is represented by the Hines-Hines selection graph (8). Itis
based on the equation

Rpi ))“ ( Xos )"7"
TPy (=20} = 2 (8]
(70.5 R -pi
valid for distribution symmetrical around a median. For the
cumulative probability P, = 27, the letter values F, E, i=2, 3 are
usually chosen.
To compare the empirical course of experimental points

with the ideal one, ideal curves for various values of parame-
ter A are drawn in a selection graph. These curves A represent

1.0
i
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Fig. 1 Graphical estimation of A from a Hines-Hines selec-
tion plot in the range [-3; +3]. Circles denote sample points.
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Fig. 2 The plot of the logarithm of maximum likelihood esti-
mates A for the statistical probability 95%.
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a solution of the equation y* + x*=2inthe range 0<x<1and
0<y<1:

1. For A = 0 the solution is a straight line y = x.

2. For A< 0 the solution is in a form y = (2 - x*)',

3. For A > 0 the solution is in a form x = (2 — y2)""*,

The estimate & is guessed from a selection graph, according
to the location of experimental points near to the various ideal
curves. To estimate the parameter A in Box-Cox transforma-
tion, the method of maximum likelihood may be used be-
cause for A = A a distribution of transformed variable y is con-
sidered to be normal, Mu,, c%ly)). The logarithm of the
maximum likelihood function may be written as

In L) == 5 In sz(y)+(?»—1):Z1lnx, (9]

where s2(y) is the sample variance of transformed data y. The
function In L = f()) is expressed graphically for a suitable in-
terval, for example, -3 < A < 3. The maximum on this curve re-
presents the maximum likelihood estimate . The asymptotic
100(1 - o) % confidence interval of parameter A is expressed
by 2 [In L(A) - In L(M] £ %2, where x%; (1) is the quantile of the
x2 distribution with 1 degree of freedom. This interval contains
all values A for which it is true that

In L) = In L) - 0.5x2,, (1) [10]

This Box-Cox transformation is less suitable if the confidence
interval for A is too wide. When the value A = 1 is also covered
by this confidence interval, the transformation is not efficient.

Re-expression of the statistical measures

After an appropriate transformation of the original data {x}
has been found, so that the transformed data give an approx-
imately normal symmetrical distribution with constant vari-
ance, the statistical measures of location and spread for the
transformed data {y} are calculated. These include the sample
mean y, the sample variance s?(y), and the confidence interval
of the mean y* t;_,(n—1) sl y)Nn. These estimates must then
be recalculated for the original data {x}. Two different ap-
proaches to re-expression of the statistics for transformed
data can be simply used:

(a) Rough re-expressions represent a single reverse trans-
formation x5 = g”'(y). This re-expression for a simple power
transformation leads to the general re-expressed mean

no 1
2xk|*
i=1

Xn =%, =| =

[11]

where for A = 0, In x is used instead of x* and e* instead of x"*.
The re-expressed mean xg = X_, stands for the harmonic mean,
Xgp= X, for the geometric mean, Xz = X, for the arithmetic mean
and xz = X, for the quadratic mean.

(b) The more correct re-expressions are based on the Taylor
series expansion of the function y = g(x) in a neighbourhood
of the value y. The re-expressed mean xz is then given

_ Lf. 1 d?g(x) { dgix) )*2 }
o~ 1 —
=9 {y 2 dx? ( dx s (2]
For variance it is then valid that
dg(x)\?
§(xﬁ)=(%) Sy) [13]

where individual derivatives are calculated at the point x = xp.
The 100(1 - a)% confidence interval of the re-expressed mean
for the original data may be defined as

Xp— L Sp<Xg+ 1y [14]

sly)

where =g [)7+ G-ty opln- 1)-7,_1—] [14a]

and ly= g-‘[)7+ G+ tygpin— 1)%?] [14b]
_ 1 d%glx (dg(x)) 2

G=-7 3 Lax ) W (4cl

On the basis of the (known) actual transformation y = g(x) and
the estimates y, s2(y) it is easy to calculate re-expressed esti-
mates X and s?(Xg):

1. For a logarithmic transformation (when A = 0} and g{x) =
In x the re-expressed mean and variance are calculated

[15]
[16]

Xg=exp [y + 0.5 s2(y)]
and $2xg) = x2y) 2y

2. For A # 0 and the Box-Cox transformation, the re-expressed
mean Xg will be represented by one of the two roots of the
quadratic equation

X 1.2=[0.5(1419)£0.5 V1424 y+82(y) +A2( 228y [17]

which is closest to the median %, 5= g (7). If X is known the
corresponding variance may be calculated from

sZ(X) = )?R“Z"*” SZ(y) [18]

Results

Proposed procedure

Procedures Power transformation and Box-Cox trans-
formation of the statistical systems Adstat or QC-Ex-
pert (11) search parameters of a simple power transfor-
mation and parameters of the normalized Box-Cox
transformation of data. It also enables the exploratory
data analysis of transformed data. For a transformation
the different measures of symmetry are calculated and
the sample skewness in the range of -3 <A <3 with a
step value of 0.1, and the optimal values of these mea-
sures are printed. The selection graph is drawn as well
as the points of optimal values of A. From this graph the
value of A can be estimated. Using transformed data,
the mean y, the variance s2(y), the skewness g,(y), and
the curtosis §,(y) are calculated. These computations
can be repeated for various values of A. For the trans-
formation the estimate A maximizing In L(A) is calcu-
lated. The selected A is used in calculation of estimates
y, s2(y), G1(y), and §,(y). Then from these estimates, the
re-expressed estimates of original variables X, s?(xz),
and the 95% confidence interval of the re-expressed
variable p are calculated.

Procedure Transformation in software Adstat or QC-
Expert (12) searches parameters of the simple power
transformation and parameters of the normalized
Box-Cox transformation of data.

Discussion

Many statistical programs offer a list of various point
parameters of location and spread but rarely help the
user to choose the statistically adequate parameter for
an actual sample batch. Exploratory data analysis and
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Tab. 1 17-Hydroxypregnenolone (17-hydroxypregnenolone) (nmol/l) for sample size n = 99.

19.00 1541 2020 19.70 41.00 39.60 8.77 4460 3350 28.60 30.30 21.20
431.0 45.00 2150 3290 53.00 53.60 19.00 7390 17.60 27.60 22.20 32.30
41.00 2840 1480 37.00 1040 16.60 6790 57.30 41.00 239.0 16,50 13.00
68.50 7.32 3500 2290 4580 37.70 742 7820 30.70 34.00 63.00 48.90
16.30 75.70 1040 16.80 20.10 11.00 18.30 28.30 8.86 9.13 53.10 9.67
5250 3410 16.80 39.80 97.00 591 2540 1580 34.00 2220 51.30 17.40
33.10 52.10 37.50 28.90 29.80 7.77 10.80 16.30 26.70 26.90 27.30 13.60
26.00 12,50 1410 38.00 2850 82.70 24.10 4540 2370 4290 15.80 26.10
30.00 29.90 3140

an examination of sample assumptions will provide an
answer to this question. First study case with method-
ology runs on typical biochemical sample data will il-
lustrate a rigorous procedure of the statistical treat-
ment of univariate data with exploratory data analysis.

Study case: Determination of 17-hydroxypreg-
nenolone in the umbilical blood of newborns. Lower
levels of free 5-ene steroids in umbilical blood and ele-
vated levels of 5-ene steroid sulfates indicate a con-
genital sex-specific placental sulfatase insufficiency
(13). Delayed onset of labor, frequently linked with the
necessity of intervention (14), together with relatively
low birth weight is the common symptom of the dis-
ease. The recessive X-linked type of defect also called
the disease of “dry skin”, may have phenotypic conse-
quences in later postnatal life (15). The incidence of this
disorder appears to be approximately one per 2000
male births (16). The exact assessment of the mean
value and the variance of steroid levels in controls are
necessary for the correct judgment of the samples
from patients. Low levels of 5-ene steroid sulfates are
common in pregnancies complicated by intrauterine
fetal growth retardation (17). The levels of preg-
nenolone, 17-hydroxypregnenolone (13), (DHEA) and
the levels of respective 33-OH sulfates were evaluated.
The evaluation of levels of 17-hydroxypregnenolone
was chosen as an example of the correct data analysis.
Statistical assumptions should be tested on the group
of umbilical blood from newborns using some plots of
an extended exploratory data analysis and the statisti-
cal tests of basic assumptions. The best estimate of a
mean value in 17-hydroxypregnenolone is to be evalu-
ated.

Solution

(1) Survey of descriptive statistics: the statistical soft-
ware NCSS2000 (18) for an actual sample batch calcu-
lates a survey of parameters of location and spread for
n = 99 (for an explanation of statistics cf. ref. (11)). On
the basis of the exploratory data analysis (EDA) the
user should select the most convenient parameter of
location from the following available estimates: the
arithmetic mean x = 37.2 nmol/l, the median x;5 = 28.4
nmol/l, the geometric mean x, = 27.4 nmol/l, the har-
monic mean X, = 21.9 nmol/l, the mode xy, =41 nmol/I,
and following trimmed means x{5%) = 30.6 nmol/l with
s$(6%)=15.7 nmol/l and n(6%) =89, x{10%) = 29.4 nmol/l
with s(70%) = 12.2 nmol/l and n(10%) = 79, x(25%) =

28.1 nmol/l with s(25%) = 10.1 nmol/l and n(25%) = 50,
x(45%) = 28.3 nmol/l with s(45%) = 0.98 nmol/l and
n(45%) = 10. A survey of parameters of spread is avail-
able: the variance s? = 15662.7, the standard deviation s
= 48.8 nmol/l, the unbiased standard deviation s = 48.9
nmol/l, the interquantile range Rr = 24.2 nmol/l, and fi-
nally a survey of parameters of shape: the skewness g,
= 6.14, the kurtosis g, = 46.96.

(2) Basic diagnostic plots in the EDA are used for a
graphical visualization of data: the quantile plot (Figure
3) shows a strong deviation from a normal distribution
as all sample points do not fit a line and two outliers at
high values are indicated. Both dot diagrams (Figure 4)
and the box-and-whisker plot (Figure 5) indicate five
outliers at high values and an asymmetric, skewed dis-
tribution. In the halfsum plot (Figure 6) and in the sym-
metry plot (Figure 7) most sample points are outside
the confidence limits and both diagnostic plots indicate
that the sample distribution is strongly skewed. The
kurtosis plot (Figure 8) indicates two outliers, being
outside the confidence limits. The quantile-box plot
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0.0 02 0.4 0.6 0.8
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Fig. 3 The quantile plot of 17-hydroxypregnenolone data.

0 100 200 300 400 500y

Fig. 4 The dot and jitter dot diagram of 17-hydroxypreg-
nenolone data.
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0 100 200 300 400 500 X

Fig.5 The box-and-whisker plot of 17-hydroxypregnenolone
data.
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Fig. 6 The halfsum plot of 17-hydroxypregnenolone data.
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Fig. 8 The kurtosis plot of 17-hydroxypregnenolone data.

(Figure 9) shows an asymmetric distribution with 5 out-
liers.

(3) Determination of sample distribution in the EDA:
the sample distribution, represented by symmetry,
skewness, and kurtosis is examined by four plots: the
histogram (Figure 10) shows that most sample points
are located in one class. The kernel density estimator of

500+
Yy
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0+

02 04 06 08 1.0 X

Fig. 9 Thequantile-box plot of 17-hydroxypregnenolone data.
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Fig. 10 The histogram of 17-hydroxypregnenolone data.
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Fig. 11 The Kernel estimator of the probability density plot
of 17-hydroxypregnenolone data: the empirical curve {(dot
curve) and the normal distribution approximation (full curve).

-3 -2 -1 0 1 2 3 X
Fig. 12 The quantile-quantile plot (for normal distribution
called the rankit plot) of 17-hydroxypregnenolone data.

the probability density function (Figure 11) indicates a
skewed sample distribution with two or three outliers.
The rankit plot (Figure 12) checking a normal distribu-
tion does not exhibit close agreement of sample points
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Tab.2 The quantile measures of location, spread and shape for 17-hydroxypregnenolone data (nmol/l).

Quantile P Lower Upper Range Halfsum Skewness  Tails Pseudo-
guantile quantile Rq Za Sa length Sigma
QL OU TG GO

Median 0.5 28.40 28.40 -

Quartile 0.25 16.80 41.00 24.20 28.90 0.43 0.000 17.95

Octile 0.125 12.62 53.08 40.45 32.85 0.27 0.514 17.59

Sedecile 0.0625 9.20 73.23 64.03 41.21 0.12 0.973 20.92

with a straight line. The highest value of the correlation 10’

coefficient r=0.90795 of the Q-Q plot is reached for the y -

lognormal distribution. The probability-probability P-P 0.8-

plot {(Figure 13) does not prove a normal distribution. -

Not constant halfsums Z, and positive skewness S, 0.6 -

clearly indicate a skewed distribution. Tail length T, for .

this distribution cannot be used for deeper analysis. 0.4 4

The point estimate of skewness of 6.14 and that of kur- 02 ]

tosis at 46.96 indicate that the sample distribution is -

strongly asymmetric with a slim and sharp peak and 0.0 e . .

definitely not normal.

(4) Basic assumptions about the sample (cf. pp. 78-82
in ref. (11)): applying an analysis of basic assumptions
about data, the following conclusions were met:

(a) Examination for independence of sample ele-
ments: a test of independence of sample elements
leads to the test statistic t,; = 0.358 < 1, ¢,5(100) = 1.984
and therefore independence is accepted.

(b} Examination for normality of sample distribution:
a combined sample skewness and kurtosis test leads to
the test statistic C, = 9949.0 > ¥?(0.95, 2) = 5.992 and
therefore normality of data distribution was rejected.

(c) Examination of sample homogeneity: because
data are skewed, an examination of sample homogene-
ity based on normality assumption cannot be used.

(5) Data transformation: most diagnostic plots of
EDA exhibit an asymmetric distribution of the original
sample data and therefore show the necessity for data
transformation. In case of Box-Cox transformation the
true mean value of a sample distribution with both con-
fidence limits L, and L, was calculated. From the plot of
the logarithm of the likelihood function for the power
transformation, the maximum on the curve was read
from a graph at A =-0.1 (Adstat), for the Box-Cox trans-
formation the maximum of the curve is at A =-5.6 (Fig-
ure 14) (QC-Expert). For both transformations the cor-
responding 95% confidence interval does not contain
the exponent value A = 1, so all transformations are sta-
tistically significant. The rankit plot on Figure 15 shows
that the Box-Cox transformation brings more accurate
results.

The classical measures of location, spread and
shape for the original data, i.e. mean x = 37.2 nmol/l,
standard deviation s(x) = 48.8 nmol/l, skewness §,(x) =
6.14 and kurtosis §,{x) = 46.96 are out of statistical sig-
nificance and may be taken as false estimates. The
power transformation (A= -0.13, Adstat) estimated the
corrected mean value xz = 26.5 nmol/l, the Box-Cox
transformation (A = -5.638, Adstat) the corrected mean
value x5 = 26.5 nmol/l and the exponential transforma-

0.0 0.2 0.4 0.6 0.8 1.0 X
Fig. 13 Probability-probability plot of 17-hydroxypregneno-
lone data approximated by curve of (1) the normal distribu-
tion, (2) the Laplace distribution, and (3) the rectangular distri-
bution.

260
] 7\‘|_ }\'MAX )\'U CL

250+ 1-a

240 -
2301
220 1
210

T T T T T T

T 17—

4 2 0 )
Fig. 14 The plot of the logarithm of maximum likelihood (L}
in dependence on the power A for 17-hydroxypregnenolone
data and estimation of the optimal power A, With its lower &
and upper Ay limits of the confidence interval for the confi-
dence level (1-a), CL, .

10 -8 -6

T T T >

3 2 4 0 1 2 34

Fig. 15 The quantile-quantile plot for 17-hydroxypreg-
nenolone data after the Box-Cox transformation. {Compare
this plot before transformation on Figure 12).
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tion (A = 2.285, QC-Expert) found the corrected mean
value Xz = 26.2 nmol/l with the confidence interval L, =
23.3 nmol/l and Ly = 29.6 nmol/l.

(6) Conclusion: all EDA display techniques prove that
the sample distribution is skewed with 3 outliers and
does not come from a population with a normal distrib-
ution. For the best estimate of a location parameter the
arithmetic mean gives a false value 37.2 nmol/l and can
not be used. Instead of this arithmetic mean the median
X,5 = 28.4 nmol/l is more suitable and can be recom-
mended. For parameter of a spread the standard devia-
tion of the median s =2.1 nmol/l may be used, but the
parameters describing a shape, i.e. the skewness g =
6.14 and the kurtosis g, = 46.96 indicate strongly asym-
metric and skewed distribution. The interval estimate
for parameter of location is described by the confidence
interval of the median, L, = 24.8 nmol/l, L, = 32.0 nmol/I,
in which the unknown concentration exists with 95%
confidence. On base of the quantile-quantile plot the
Box-Cox transformation is considered as the most rig-
orous one with the corrected mean value xz = 26.5
nmol/l and two confidence limits L, =23.1 nmol/land L
= 30.5 nmol/l. The robust estimate of median is closed
to the estimated corrected mean value (Box-Cox) than
the arithmetic mean of the original data batch.

Conclusions

Often, biochemical data are less ideal and do not fulfill
all basic assumptions. Original data need to be trans-
formed to improve symmetry of data distribution and
achieve a variance stabilization. Statistical measures of
transformed data are re-transformed to obtain unbi-
ased and rigorous measures for original data.
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