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The total uncertainty of some analytical quantity (the concentration, the content, etc.) is a result
of a law of propagation of all kinds of errors or uncertainties concerning various experimental and
instrumental operations. Calibration consists from two steps, a construction of calibration model
and an inversion of calibration model when from measured signal y (e. g. absorbance) the*

unknown concentration x including its confidence interval is estimated. The number of chemical*

components in a mixture represents the first step for further qualitative and quantitative analysis
in all forms of spectral data treatment. Reliability of various methods for estimation of the number
of components that contribute to spectra was critically tested.

1. Reliability of Calibration Model Building
Constructing calibration model g(x) a relation between the measured quantity y called a signal
(potential, electric current etc.) and the quantity x called a response of system or a property
(content, composition, concentration, temperature etc.) being more difficult monitored is created.
Calibration types can be classified in many different ways: Univariate-multivariate calibration or
Linear-Nonlinear calibration or Selection- weighting (full spectrum) calibration or Direct-
Indirect calibration or Forward (inverse)-Reverse (classical) calibration. In order to understand
the fundamental calibration problems that have to be solved, the user may benefit from studying
various other methods as well.

In calibration experiment for n samples with known (or precisely adjusted) responses x thei

corresponding signal values y are measured. The additive model of measurements is supposed yi i

= g(x , β) + � is used. Here β is a set of adjustable parameters and � are measurements errorsi i i

which are normally distributed with constant variance σ . In calibration from the measured signal2

y (e. g. absorbance) the unknown concentration x including its confidence interval is estimated,* *

and

In the first phase the suitable model g(x) is selected and parameters β are estimated from data {x ,i
y} by regression analysis. For linear models this task leads to solution of linear equation system.i

For nonlinear regression models the minimization algorithms must be used. In the second phase
a calibration model g(x, β*) is used that for measured value of signal y* the mean value of
response x* and the corresponding confidence interval is estimated. Generally, the response x* is
the formal solution of equation x* = g (y*). On the base of the Taylor series expansion the-1

approximate formula for variance D(x*) may be found in the form
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� ȳ )2

b 2
1 �

n

i�1

(xi � x̄ )2

x̂ �

�x �
� x̄ �

y �
� ȳ
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�
n

i�1

(yi � ȳ )2
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(a) Linear Calibration Models: in case of linear models both steps use the calibration
straight line. Besides the direct estimate

where y is the measured signal (or the average for M > 1 repeated measurements,*

respectively) and b is the estimate of the slope. This estimate is generally biased and a correction1

is made by Naszodi modified estimate,

.

Kruchkoff proposed the inversion estimate

and Schwartz proposed the nonlinear estimate

Difficulties of calibration task depend on calibration model used. For highly nonlinear model
functions which cannot be sufficiently approximated by Taylor expansion is the variance D( )

biased. The generally non-symmetric distribution of quantity brings difficulty. The only case

of calibration line and small residual variance enables to consider a distribution of as a normal
one. The corresponding 95%-th confidence interval has the lower L and upper L limitsL U
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Fig. 1 Determination of the confidence interval of parameter x for a calibration
straight line. The confidence interval of the signal is indicated by the hatched area.

(b) Nonlinear Calibration Models: models as polynomials which are highly nonlinear in
variable x and therefore can be suitable for construction of nonlinear calibration models.
Polynomials as linear regression models are attractive mainly from point of view of an application
of calibration models for response computation and statistical analysis. Except to experimental
data (x , y ) i = 1, ..., n, the another set of knots are determined t , j = 1, ..., k. Knots form thei i j

boundaries of intervals in which individual piecewise function are defined. In each interval Ij

bounded by knots t , t is calibration function expressed by the model g (x).j-1 j j

Fig. 2 Procedure for determination of concentration for the mean value of signal .
L and L are the lower and upper limits of the confidence interval of concentrationL U

A quality of approximation is here dependent on a number and location of individual knots t , aj

form of the function g (x) and on the class C from which the calibration model g(x) comes.j
m

Denote that function g(x) of the class C is continuous up to first m derivatives. Special type ofm

piecewise polynomial functions are splines. Spline S (x) are function of class C which arem+1
m

defined as a local polynomials of maximal degree (m + 1). For calibration purposes the quadratic
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splines S (x) which are continuous and smooth (continuous in first derivative) are suitable. Splines1

S (x) can be simply defined as a truncated polynomials1

S (x) = ß + ß x + ß x + Σ ß (x - t )1 1 2 3 j+3 j +
2 2

here (x) = x for x > 0 and (x) = 0 for x � 0. For known t the S (x) is the linear regression+ + j 1
2 2 2

model. Flexibility of regression splines may be achieved by selection of knots t . In programi

(c) The precision of calibration: the limiting values of the concentration for which the
measurement signal is still significantly different from the noise are defined by the three levels of
signal:

1. The critical level y represents the upper limit of the 100(1 - α)% confidence interval ofc

the predicted signal from the calibration model for the concentration equal to zero, i. e. the blank
measurement. The signals above y are significantly different from the noise,c

The concentration x corresponding to this critical level y is determined from the calibration modelc c

from

2. The detection limit y corresponds to the concentration for which the lower 100(1 - α)%D

confidence interval of signal prediction from the calibration model is equal to y . For the linearc

calibration model we have

The detection limit gives the lowest true signal level which still permits detection. The quantity
x gives the minimum concentration which can be distinguished from zero with probability (1 - α).D

3. The determination limit is the smallest signal level for which the relative standard
deviation of prediction from the calibration model is sufficiently small and equal to the number C,
where C = 0.1, usually. If the predicted value at point x is given y(x ) = + b (x - ) and thes s 1 s

condition of determination y is then equal tos

Substitution and rearrangement leads to the expression

and, in practice, in the chemical laboratory, an approximation is used, as follows
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Fig. 3 Definition of the critical level y , the detection limit y and their correspondingc D

concentrations x and x .c D

The corresponding concentration x is calculated fromD

The corresponding concentration x is given by . Generally, it is valids

that .

(d) The Procedure for Calibration Model Building: the procedure consists of following
steps:

(1) Proposed model: starting from the simplest model, models of higher power are build.
(2) Exploratory data analysis: using various diagnostic graphs the multicollinearity,

heteroscedasticity, autocorrelation, normality of errors, influential points - outliers and extremes
are investigated.

(3) Parameter estimation: using the least squares or the rational ranks, the best estimates
of unknown regression parameters are determined. Statistical test of significance of each
parameter follows. Quality of regression performed is examined by following regression
characteristics: the mean error of prediction, the Akaike information criterion, the determination
coefficient, the predicted determination coefficient, the standard deviation of prediction.

(4) Regression diagnostics: identification of influential points and examination of assumption
of least squares method. Examination of the regression triplet (data, model, method).

(5) Construction of improved model: estimation of parameters of improved model using
various modifications of the least-squares method.

(6) Quality of calibration model: estimation of the model parameters and the detection limit,
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the determination limit and the critical level.
(7) Determination of unknown concentration: point and interval estimates of unknown

concentration x .*

2. Reliability of the Number of Componets in Spectra Analysis:
Procedures for determining the chemical rank of a matrix concerning a variety of empirical and
statistical methods based on principal component analysis PCA have been reported. Much work
has been put into developing methods for resolution of multi-component spectra but less work has
been carried out to reveal the limitations of the methods and in the estimation of the minor
component of the resolved spectra. This is an important aspect to consider when using these
methods.

The n × m absorbance data matrix A = E C contains the n recorded spectra as rows being
written as the product of the m × r matrix of molar absorptivities E and the r × n concentration
matrix C. Here m denotes the number of wavelengths for which each spectrum was recorded being
equal to the number of columns of A matrix, n is the number of solutions for which spectra have
been recorded being equal to the number of rows of A matrix, and r is the number of components
that absorb in the chosen spectral range. The rank of the matrix A is obtained from the equation

rank(A) = min [rank(E), rank(C)] � min (m, r, n)
Since the rank of A is equal to the rank of E or C, whichever is the smaller, and since rank(E) �
r and rank(C) � r, then provided m and n are equal to or greater than r, it will only be necessary
to determine the rank of matrix A which is equivalent to the number of dominant components. All
these methods to identify the true dimensionality of a data set are classified into two categories:
(a) Precise methods based upon a knowledge of the instrumental error of the absorbance data,
s (A) before a statistical examination. (b) Approximate methods requiring no knowledge of theinst

instrumental error of the absorbance data, s (A). Many of these methods are empirical functions.inst

A critical comparison of various PCA methods on both simulated and experimental data is
performed.

Application of precise methods: Determination of a number of light-absorbing components in
mixture is based on a comparison of an actual index of method used with the experimental error
of instrument used, s (A).inst

Residual standard deviation, s (A): Kankare uses the second moment Z of an absorbance matrixk

A. Applying eigenvalues g of matrix Z the residual standard deviation of absorbance s (A) isj k

estimated

where tr(Z) is a trace of the matrix Z and r is the estimated number of components in a mixture.
The values s (A) for different number of components k are plotted against an integer k,k

, and number of light-absorbing components is such integer r = k for which s (A) isk

close to the instrumental standard deviation of absorbance, s (A).inst

Alternative methods: Residual standard deviation, Root mean square error, Average error
criterion, χ criterion, Standard deviation of eigenvalues.2

Application of approximate methods: If no knowledge of the experimental error associated with
the data is available then one of the empirical function has to be applied to approximate the true
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dimensionality of the data.
Eigenvalues (EV): Eigenvalues EV(k) or g are conventionally used as a measure of the size of ak

principal component. Eigenvalues are calculated as the sum of squares of the score vectors

The first r eigenvalues being called a set of primary eigenvalues contain contribution from the real
components and should be considerably larger than those containing only noise. The second set
called the secondary eigenvalues contains (q - r) eigenvalues and are referred to as non-significant
eigenvalues. The secondary eigenvalues should be considerably larger, but this is not sensitive
enough.
Alternative methods: Logarithms of eigenvalues (log g ), Exner function (psi), Scree test (RPV),k

Imbedded Error (IE), Factor Indicator (IND), F–test, Ratio of eigenvalues calculated by
smoothed PCA and those by ordinary PCA (RESO).

Signal-to-noise ratio SNR (or SER) and detection limit: SNR are typically based on the ratio
of the maximum signal to maximum noise value. The signal-to-error ratio SER is defined similarly
but for an error the instrumental standard deviation of absorbance, s (A) is used. The detectioninst

limit is equivalent to the amount of “detectable impurity” or the smallest relative concentration of
the minor component. The detection limit depends on several factors, such as (i) spectral similarity
of the minor component with other ones; (ii) instrumental resolution; (iii) noise level and noise
type, and (iv) signal-to-noise ratio SNR with respect to the minor component.

Analysis of simulated data sets: To investigate all statistical properties of absorbance data matrix
which were designed to be quite similar to real experimental data and cover some typical situations
of analytical practice, several data sets of absorption spectra were simulated for a three-
components system in mixture: potassium bichromate, cobalt(II) sulphate and copper(II) sulphate,
a mixture abbreviated {Cr-Co-Cu}.

Fig. 4a Spectra of relative absorbance for three
components

Fig. 4b Diagram of a relative concentration of
three components in mixture for a simulated data
set of three components



Fig. 5 The indices (full circles) and logarithm of the indices (empty circles) of 13 methods as a
function of the number of principal components k for a simulated three-components system in
mixture, potassium bichromate - cobalt(II) sulphate - copper(II) sulphate, with r = 3, n = 82, m
= 41 and SER = 1570, S-Plus



An absorbance matrix was created by multiplying absorptivity spectra of three components (Fig.
4a) by their simulated concentration profiles (Fig. 4b) to reach resulting absorbance. Each matrix
data set contains n digitized spectra consisted of m digitized wavelengths. Random noise was
added to the spectra by generating random numbers with a Gaussian distribution with mean 0 and
standard deviation equal to the pre-selected noise level, s (A), to reach an optioned SER value.inst

Most of simulated spectra sets for examination of five factors, (i. e. concentration,
homoscedasticity noise, collinearity in spectra, heteroscedasticity noise and sample size), are of
sample size n = 82 spectra and m = 41 wavelengths.

Analysis of real data sets: After determination of instrumental error of spectrophotometer used
s (A) the real spectra of three components in mixture and protonation equilibria of a mixture ofinst

three sulphonephtaleins were investigated.
1. Instrumental error, s (A): for determination of the instrumental error ofinst

spectrophotometer used, s (A), Wernimont-Kankare method was applied. One light-absorbinginst

component in solution means that a rank of absorbance matrix is equal to one, r = 1, and the
corresponding residual standard deviation of absorbance s (A) being estimated from a graph s (A)k k

= f(k) for k = 1: for potassium bichromate s (A) = 0.0007.1

2. Mixture of three components: for a three-components system {Cr-Co-Cu}, the
absorbance matrix of n = 30 spectra for various concentration combinations of three compo-nents
{Cr-Co-Cu} according to Beer law at m = 27 wavelengths was examined (Table 4).

Fig. 5 shows the indices as functions of the number of principal components k for one of the
simulated data sets with r = 3, n = 82, m = 41 and SER = 1570. Due to the large variation in the
index value besides normal scale in each graph the logarithmic scale is often used. The s(g) and
IE are functions of the kth PC, and should change substantially when k + 1 = r, while the other
indices reflect the cumulated effect of the first k PCs and should change when k = r. In these plots
for simulated data r = 3 and a change in slope can be seen around k = r for s (A), RSD, RMS, AE,k

χ , ψ, REV, log g, IND, F-test, RESO and at k = r + 1 for g and IE. On base of extensive2

simulations a comparison of thirteen indices method was made among (i) six precise indices
methods - s (A), RSD, RMS, AE, χ and s(g), and (ii) seven approximate indices methods - ψ,k

2

RPV, EV, IE, IND, F-test, and RESO.
(a) Homoscedastic noise, heteroscedastic noise and concentration of the minor component:

all three factors may be examined commonly using an effective resolution criterion, the signal-to-
noise ratio SNR or the signal-to-error ratio SER. Both criteria cover all three mentioned factors
and therefore can be used as the common resolution factor. For simulated data sets with r = 3, n
= 82, m = 41 there were adjusted various SER values of homoscedastic noise (Table 1). It is
obvious that when SER is equal or higher than a detection limit, every index method fails. Table
1 demonstrates an estimate of detection limit for individual methods in case of homoscedastic
noise: SER = 24 for χ , SER = 16 for IE, SER = 12 for F-test, SER = 10 for s (A), RSD, RMS,2

k

AE, s(g) and ψ, SER = 8 for EV, SER = 6 for RESO, SER = 4 for IND. It means that for
determination of the minor component two methods, RESO nad IND work best and most reliable.
It is worth mentioning that most of the methods do not behave in the same way if the SER
criterion decreases nearly to their detection limit. Indices s(g), χ and F-test are definite, they are2

fully based on statistic criterion and it is not complicated to predict r. The situation is simple in
case of precise methods. Here we take the k for which the value of criterion is closest to the value
of experimental error, s (A). However, we lose a help function of the curve shape being used hereinst

as an efficient criterion. Thus the indices ψ and RPV which are based on detecting a break-point
on the curve, are not very reliable in prediction of r in case of decreasing a signal-to-error ratio



SER. The EV and RESO are reliable enough.
For heteroscedastic noise (Table 2) an estimate of detection limit for individual methods are:

SER = 34.5 for χ , SER = 17.1 for s(g) and IE, SER = 13.4 - 13.8 for s (A), RSD, RMS, AE,2
k

RPV, EV and ψ, SER = 10.3 for F-test, SER = 6.7 for IND and SER = 3.4 for RESO. Once
again RESO and IND work best, which sufficiently demonstrates their ability to resist
heteroscedastic noise.

(b) Collinearity in spectra: even severe collinearity in spectra was arranged the all indices
predicted a correct number of components in mixture.

(c) Sample size: decreasing size from (n × m) = (82 × 41) up to (40 × 20) all indices found
correct value of number r. Decreasing size from (40 × 20) up to (20 × 20) RPV, CHI, F-test and
s(g) methods fail to find a correct value of number r, (Table 3). When n = 12 most approximate
indices fail. Correct value of number r may be found by precise methods only. Some methods are
more sensible to the changes of size of the absorbance matrix. This is especially the case of RESO.
On the other hand, precise methods are sensible neither to the decreasing size nor to the incorrect
dimension of data i. e. highest number of wavelength in columns than spectra in rows. In our study
it was found that sufficient size of absorbance matrix seems to be about 30 spectra and a little bit
smaller number of wavelengths. We can conclude that a higher number of data points collected
in a given wavelength range improve ability of the indices to predict the number of light absorbing
components. Recorded spectra should be digitized into the maximum number of data points,
especially for data set with low SER value and many components.

(d) Real experimental data: Wernimont-Kankare procedure estimates the instrumental
standard deviation of spectrophotometer used, s (A) = 0.0007 in range 380 - 650 nm. This valueinst

can be used for a prediction of SER value for experimental data. Only two indices, IND and RESO,
predict correct number of components for a concentration of minor component 0.5%
(corresponding to SER = 7.9). Except χ and s(g) all other indices predict correct number for a2

concentration 1% (corresponding to SER = 15.7) and χ and s(g) for 1.5% (corresponding to SER2

= 23.6), cf. Table 4. All extensive simulations and experimental data treatment showed that most
of the indices accurately predict the number of components that contribute to a set of absorption
spectra. For the simulated spectra all indices predicted highly accurate, all being absolutely correct
for data sets with SER of at least 10. For data with higher noise the EV, RESO and IND predicted
best.

Conclusions
1. The detection limit is the reliable limiting value for which the signal is still different from noise.
2. Two indices, RESO and IND, are stable in many situations and correctly predict a minor
component in a mixture event its relative concentration is about 0.5 - 1% relatively to remaining
components. Both can detect minor components and solve the ill-defined problem with severe
collinearity in spectra.
3. Most indices predict the correct number of components for data sets with the signal-to-error
ratio SER of at least 10 but RESO and IND of at least 6.
4. Wernimont-Kankare procedure is a reliable method for determination of the instrumental
standard deviation of spectrophotometer used.
5. In case of real experimental data the RESO, IND and methods based on knowledge of
instrumental error should be preferred.
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Table 1 Search of a detection limit for 13 indices procedures proposing a number of components for simulated three-
component system with various levels of homoscedastic noise level from 0.0003 to 0.0028 and various
concentrations of third minor component; (bold digit means correct value found)

Noise Precise methods Approximate methods
level

SNR SER

All Minor All Minor s (A) RSD RMS AE χ s(g) ψ RPV EV IE IND F-test RESOk
2

Concentration of minor component 0.25%

0.0003 932 2.3 9.23670 2 2 2 2 2 2 2 2 2 2 23 3

0.0007 485 1.2 1594 4.0 2 2 2 2 2 2 2 2 2 2 2 2 2

0.0014 226 0.6 802 2.0 2 2 2 2 2 2 2 2 2 2 2 2 2

0.0028 107 0.3 402 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2

Concentration of minor component 0.5%

0.0003 932 4.7 3670 18.3 3 3 3 3 3 3 3 3 3 34 2 2

0.0007 485 2.4 1594 8.0 2 2 2 2 2 2 2 2 2 23 3 3

0.0014 226 1.1 802 4.0 2 2 2 2 2 2 2 2 2 2 2 2 2

0.0028 107 0.5 402 2.0 2 2 2 2 2 2 2 2 2 2 2 2 2

Concentration of minor component 1%

0.0003 932 9.3 3670 36.7 3 3 3 3 3 3 3 3 3 3 3 3 3

0.0007 485 4.9 1594 15.1 3 3 3 3 3 3 3 3 3 3 32 2

0.0014 226 2.3 802 8.0 2 2 2 2 2 2 2 2 2 23 3 3

0.0028 107 1.1 402 4.0 2 2 2 2 2 2 2 2 2 2 2 23

Concentration of minor component 1.5%

0.0003 932 13.8 3670 55.0 3 3 3 3 3 3 3 3 3 3 3 3 3

0.0007 485 7.3 1594 23.9 3 3 3 3 3 3 3 3 3 3 3 3 3

0.0014 226 3.4 802 12.0 3 3 3 3 3 3 3 3 3 3 32 2

0.0028 107 1.6 402 6.0 2 2 2 2 2 2 2 2 2 2 2 33

Concentration of minor component 2.5%

0.0003 932 23.3 3670 91.7 3 3 3 3 3 3 3 3 3 3 3 3 3

0.0007 485 12.1 1594 39.9 3 3 3 3 3 3 3 3 3 3 3 3 3

0.0014 226 5.7 802 20.0 3 3 3 3 2 3 3 3 3 3 3 3 3

0.0028 107 2.7 402 10.0 3 3 3 3 2 3 3 3 3 2 3 2 3

Estimation of detection limit for SER = 10 10 10 10 24 10 10 10 8 16 4 12 6



Table 2 Search of a detection limit for 13 indices procedures proposing a number of components for simulated three-
component system with various levels of heteroscedastic noise level: (a) from 0.00001 to 0.0003; (b) from 0.00001
to 0.0007; (c) from 0.00001 to 0.0014; (d) from 0.00001 to 0.0028 and various concentrations of third minor
component; (bold digit means correct value found)

Noise Precise methods Approximate methods
level

SNR SER

All Minor All Minor s (A) RSD RMS AE χ s(g) ψ RPV EV IE INDk
2 F-test RESO

Concentration of minor component 0.25%

(a) 1256 3.1 6215 15.5 3 3 3 3 3 3 3 3 32 2 2 2

(b) 433 1.1 2676 6.7 2 2 2 2 2 2 2 2 2 2 23 3

(c) 220 0.6 1380 3.5 2 2 2 2 2 2 2 2 2 2 2 2 2

(d) 159 0.4 684 1.7 2 2 2 2 2 2 2 2 2 2 2 2 2

Concentration of minor component 0.5%

(a) 1256 6.3 6215 31.1 3 3 3 3 3 3 3 3 3 3 3 32

(b) 433 2.2 2676 13.4 3 3 3 3 3 3 32 2 2 2 2 2

(c) 220 1.1 1380 6.9 2 2 2 2 2 2 2 2 2 2 23 3

(d) 159 0.8 684 3.4 2 2 2 2 2 2 2 2 2 2 2 2 3

Concentration of minor component 1%

(a) 1256 12.6 6215 62.2 3 3 3 3 3 3 3 3 3 3 3 3 3

(b) 433 4.3 2676 26.8 3 3 3 3 3 3 3 3 3 3 32 2

(c) 220 2.2 1380 13.8 3 3 3 3 3 3 3 3 3 32 2 2

(d) 159 1.6 684 6.9 2 2 2 2 2 2 2 2 2 2 23 3

Concentration of minor component 1.5%

(a) 1256 18.8 6215 93.2 3 3 3 3 3 3 3 3 3 3 3 3 3

(b) 433 6.5 2676 40.2 3 3 3 3 3 3 3 3 3 3 3 3 3

(c) 220 3.3 1380 20.7 3 3 3 3 3 3 3 3 3 3 32 2

(d) 159 2.4 684 10.3 2 2 2 2 2 2 2 2 23 3 3 3

Concentration of minor component 2.5%

(a) 1256 31.4 6215 155.4 3 3 3 3 3 3 3 3 3 3 3 3 3

(b) 433 10.9 2676 67.1 3 3 3 3 3 3 3 3 3 3 3 3 3

(c) 220 5.5 1380 34.5 3 3 3 3 3 3 3 3 3 3 3 3 3

(d) 159 4.0 684 17.1 3 3 3 3 3 3 3 3 3 3 3 32

Estimation of detection limit for SER = 13.4 13.8 13.8 13.4 34.5 17.1 13.4 13.4 13.8 17.1 6.7 10.3 3.4



Table 3 Number of components predicted by 13 indices for simulated three-component system for various size of
absorbance matrix, homoscedastic noise level 0.0007, SER = 15.7 and relative absorbance of all three components
1 : 1 : 0.02; (bold digit means correct value found)

Matrix size Precise methods Approximate methods
n × m

s (A) RSD RMS AE χ s(g) ψ RPV EV IE IND F-test RESOk
2

10 × 10 2 2 2 2 2 2 2 2 7 5 23 1-3

12 × 10 2 2 2 73 3 3 3 3 3 3 3 1-3

20 × 10 4 2 2 2 7 23 3 3 3 3 3 1-3

20 × 20 4 2 2 -3 3 3 3 3 3 3 3 3

40 × 20 23 3 3 3 3 3 3 3 3 3 3 3

41 × 41 43 3 3 3 3 3 3 3 3 3 3 3

82 × 41 33 3 3 3 3 3 3 3 3 3 3 3

Table 4 Number of components predicted by 13 indices for simulated (first digit in each cell being valid for
corresponding SER value) and experimental (second digit in each cell) spectral data of three-component system and
various concentrations of third minor component c [%] when for simulated data a homoscedastic noise level 0.00073

was used while for experimental data a value s (A) = 0.0007 was found; (bold digit means correct value found)inst

Precise methods Approximate methods

c SER s (A) RSD RMS AE χ s(g) ψ RPV EV IE IND F-test RESO3 k
2

0.5 7.9 2, 2 2, 2 2, 2 2, 2 -, 2 -, 2 2, 2 5, 23, 2 2, 3 3, 2 2, 3 3, 3

1.0 15.7 2, 3 3, 3 2-3, 3 3, 3 3, 2 3, 2 3, 3 3, 3 3, 3 3, 3 3, 3 5, 3 3, 3

1.5 23.6 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 5, 3 3, 3

2.5 39.3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 5, 3 3, 3

(-) means that a value can not be estimated


