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Introduction

Principal component analysis (PCA) performs a decomposition of absorbance martrix, i.e. from
the many methods of multivartate data display only those that arc considered which arg based
on the extraction of factors. Factor data analysis (FA) also focuses on the reduction of
dimensionality of data. Consider, the absorbance malrix 4 is of dimension m = n, where m
is the number of rows, 1. e. solutions for which all spectra have been measured and # is the
number of wavelengths at which each spectrum have been monmtored.

Application of PCA means a decompasition of fhe sowrce absorbance matrix 4 into a
product of two martrices T and PT and ke matrix of undescribed vavinhility E according to

A=TP+E .

The matrix T of dimension M * £ is called the marix of latent varicbles and contuins &
columns vectors 1. c. the main components. The matrix P of dimension N = f is called the
matrix of logdings and individual columns vectors represent g measure of coniribution of a
particular latent variable for description ol variability of columns of source absorbance matrix.
Une way of calculation of matrices T and P s based on decomposition of covariance matrix

Z being detinedby Z -~ ATA . Decomposition is performed by diagonalization of the matrix

Z, Bigenvalues g, express a vanance of corresponding lateni variable and are a measure of the
isolated information (variability) and the matrix @ and their corrcsponding efgenvectors g,
bemg equal to the matrix 2. The mairix T 1s possible to caleulate using relation

7= (PTPYIPTAT
Data reduction can therefore be achicved by reducing the dimensionality of the data space by
removing the error associated with the absorbance data. This error is a mixture of experimental
error and random deviation {rom the fitted model. Various techniques have been developed
to identify the true dimensionality of the data, These techniques can be clussified into two
categories as follows:

{a) Methods based upon a knowledge of the experimental error of the data,
{(b) Approximate methods requiring no knowledge of the experimental error of the data.



THEORETICAL

Tested example: Simulated absorbance matrix for 10 solution and 31 wavelengths concerns
acid-base equilibria of Bromocresol Green (¢, = 3.44 — 538210+ mol 1"}y with two species
L- a HI in range of pH pH = 6.49 ~ 3.49. The samplec of random errors with the standard
deviation s, f4) = 0.0006 is added to absorbance data. Values of x-axis correspond to the
number of light-absorbing species while the values of y-axis to the residual standard deviation
§,(A}. Horizontal line denotes supposed the instrumental standard deviation of absorbance of
spectrophotometer used, 5, (A} The value s,/4) approximales best s, /4) for £ = 2. It is
obvicus that preater value & does not bring any significant decrcasing a value s,/4)).
Analogically, the absorbance data sct of this example for all following methods are used.

A. Methods based on a knowledge of the instrumental error of the data

1. KANKARE METHOD
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Fig. 1 Kowkare method. Horieontal line  ooripaaved number of species in solution, The values
denaotes wvalue of the instrumental croor

5..{4). Best approximation of s, () for k— 54} for different number of supposcd species k are
2. Higher value of & docs not bring any plotted against an integer &, #.{4) - f{k) and a
significant decreasing of «,{4) searched number of light-absorbing species is such value

& for which 5{A4) is close to the instrumental standard
deviation of absorbance s, (4} fnr specirophoiomeler used.

2. THE METHOD OF REAL ERROR

The residual standard deviation AF of the second
moment of an absorbance mailrix or the real error can be
nsed to identify the irue dimensionality of a spectra data
set. The RE is a measure of the lack of [ ol a PC
modet to a data set and 18 calculated by
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Fig. 2 The method of real error, |lorizon-  dimension, & is the number of samples, A 15 the number
tal tine denotes value of the instrumental  of variables and & is the PC dimension (i. & the number
BITOr, Sy, {4). Best approximation of 5, () of Jatent variables) being  scrutinized. The true
for £=2 dimensionality of 8 data set & iz the number of



dimensions required to reduce the RE to be approximately equal to the estimated experimental
error of the absorbance dala. The RE may be ploited against &, RE = f{%), and when the RE
reaches the value of the instrumental error of spectrophotometer used, f4j, the
corresponding & represents the number ol light-abserbing species in a mixture.
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3. THE METHOD EXTRACTED ERROR

The root mean square error XE of an absorbance data matrix is a measure of the difference
between the raw data and the data after reconstruction in the short cycle using the first &
principal eomponents. The XE is delined by
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Fig. 3 Method of the exiracied error. Hon-
2ontal lne denotes value of the instrumen-
tal emror, s, (4). Besl approximation of
Sefd) for £=2

covariance matrix Z and £ is estimated number of
significant latent variables. Analogically as in previous
method the estimates ¥£ may be plotted as a function of

Xt: - fk) .

comparison with the magnitude of an experimental error of the spectrophotometer used the
number of the light-absorbing species may be estimated. Comparing relations for RF and XE,

MFN RE. Although related, the XF and RE of a data

latent  variables, and on base of a

and simplifying yields we get XE =

set measure different sources of erver. The X& nyeusures the difference between raw data and
reproduced data using & PC dimensions. The RE however measures the differcnce between
the raw and the pure data containing no experimental error.

4. THE AVERAGE ERROR CRITERION
The average error of absorbance € is simply the average of the absolute values of the
differences belween the raw and reproduced data,

NM
. NM
o previously, The truc dimensionality of absorbance data
T matrix is the number of dimensions required (o reduce
the average error to be approximately equal to the

estimated average error of the daia.
S Values of the average error are ploited against the
) number of latent variables & and comparcd with the
instrumental error of spectrophotometer used, s, /4;.
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Fig. 4 Method af the svergge errer, Hod-
zontal line denotes value of the instrumental
crror, £, f4). Best approximation of 5, £4)
for k=12
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When é reaches s (4), corresponding & estimates the
munber of light-ahsorbing species in solution.



5. THE METHOD OF x? CRITERION
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Fig. 3 Method of the x* kritéria. ori-
zontal line denotes magnitude of »2, | and
a vertical line separates values of &, for
which H, was accepted
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Ability of absorbancc matrix A=’ gpproximating the
real matrix 4 depends om the number of latent variables
k. With increasing # the degree of approximation also
increases. The first mataix Ae=f which reproduces a
matrix 4 in range of experimental errors is considered
4% Ihe best approximatien and corresponding £ is taken
as the number of hight-absorbing species in sohution.

For absorbance data sets where the standard
devialien varies from one absorbance point to another
and is not constant Bantlett proposed a chi-squared {(x2)
criterton, This method takes into account the variability
of the error from one data point to the next, but has the
major disadvantage that one must have a reasonably
accurale error estimate for cach data point. The chi-
squared (x?) criterion s delined

where ¢, 15 the standard devia-tion associaled with the mecasurable

A; and 4, is the reproduced data using & PC dimensions. The criterion is applied in an
tterative manner (£ = 1, 2, __, M} and the true dimensionalily of the data is the first value of
k at which ¥, < (N - DM - &) 88 X ey = (N - k)M - k). The number of lighl-sbsorbing
species corresponds the first & value lor which %2, is less than critical value G —

6. THE METHOD OF STANDARD DEVIATIONS OF EIGENVALUES
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Fig. 6§ Method od standard deviations of
eigewvalue. Horizontal line denotes the
magnitude of standard deviattons of elgen-
values 5, while vertical line separates those
2, which are greater than corresponding
standard deviation. First two elgenvalucs arc
greater than their standard deviations

Hugus a El-Awady® related (or the standard deviation of
an eigenvalue of the covariance matrix Z the equation,
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ments of a malrix of eigenvalues @ and o, are the
standard deviations of elements of a matrix Z given with
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cstimates of standard deviations corrcsponding elements
A, a4, of an absorbance matrix 4. The number of light-
absorbing species in solution? is equal to the number of
cigenvalues which are greater than o, .

B. Methods based on no knowledge of the experimental error of the data

If no knowledge of the expenimental error associated with the data 1s available then one of the
following techniques has to be applied to approximale the rue dimensionality of ihe data,
although the results obtained from (hese could be used to approximaie the size of the error
contained in the data. Most of the techniques presented here are empirical functions.



7. THE AVERAGE EIGENVALUE CRITERION

- ceiceeeem The average eigenvatue critenion 1s based upon retaining
. only those & latent variables or & PC dimensions whose
w0 gigenvalues g, are above the average eigenvalue,

if the PCA is performed via its corrclation matrix Z
the average eigenvalue will be unity as the variance of

.'L each variable 15 unity. Therefore only those dimensions

) " . whose eigenvalue are greater than 1 should be retained.

: “ . . . . . . For this reason this mecthod is also known as the
.. . " eigenvalue-one criterion.

a The number of [atent variables & is then cqual to the

Fig. 7 Average value criterion. First o0 pumber of light-absorbing specics in solution.
eigenvalues arc greater than an arithmetic

mean of eigenvalues

8. THE METHOD OF EXNER FUNCTION

The Fxner psi () lunchion may be wsed lor identifying
the true dimensionality of a data. This

function is defined as
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the overall mean of the absorbance matrix A and 4, is
k the repreduced data using the first £ latent variables.
Fig. 8 Method of Exner function. Value  The 3 funetion can vary from zero to infinily, with the
# = 0.1 is achieved for & — 2. Higher best fit approaching zero. A  equal w0 1.0 is the upper
value & does not bring significant decrea~  Jirir  for sipnificance as  this means the data
sing value ¢ reproduction using & dimensions is no better than sayving
each point is equal to the overall data mean. Exner
proposed that (.5 be considered the largest acceptable ¥ value, because this means the fit is
twice as good as guessing the overall mean for each data point. Using this reasening = 0.3
can be considered a fair correlation, + = 0.2 can be considersd a good correlation and = 0.1
an excellent correlation. It means that for o < 0.1 the corresponding & can be taken as the
number of light-absorbing species in solution.
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9. THE METHOD OF RESIDUAL VARIANCE (THE SCREE I EST)

The scree test for identifying the rue dimensionalily ol a data sel 15 based on the observation
that the residual varnance should level off betore those dimensions containing randomn error
are included in the data reproduction. The residual variance associated with a reproduced data

NoM
Z E (A,-4 é;)z
set, is defined as RV = 447 Y which 15 equal to the square of the XF error. The

residual variance can be expressed as a percentage as
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of the eigenvalues of the data martrix. this expression
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can bc converted to RPY - IDH[E 2.1 gﬁJ.
-kl a=1
When the residual percent variance is plotted against
the number of & PC dimensions used in the data
veproduction, RPV - f{k). the curve should drop
rapidly and level off at some point. The point where the
curve begins to level off, or where a discontinuly
appears, is taken to be the dimensionality of the data
space. This is explained by the fact that successive cigenvalues (& PC dimensions) explain less
variance in the data and hence this explains the continual drep in the residual percent variance.
However the error eigenvalues will be equal, if the experimental crror associated wilh the dala
iy truly random, and hence the residual percent variance will be equal. Discontlinuity appears
in siluations where the errors are not random, in such stluations PCA exaggerates the non-
uniformity in the data as it aims to explain the variation in the data.

Fig. 9 The scree fesys

10. THE METHOD OF LOGARITHMS OF EIGENVALUES

The method of logarithims of eigenvalues' comes from
N an assumption that primary cigenvalues of the
| - covariancc matrix Z significantly diller in 2 magnitude
! i from secondary eigenvalues as their magnitude is
i approximately same. Thercfore the pnmary and
i sccondary cigenvalucs can be separated graphically ina
i plot log(g,) = fla). where o is the order of given

T cigenvalue in descending order.
' However, this test is not sufficiently scnsitive on a
& presence of light-absorbing species in relatively small
Fig, 10 Method of logarithmy of eigen-  guantities, Therefore same information about a noise in
vatues. Dashed cucve denote eigenvalues 1o ponce should also be supplied. When in one graph

for absorbance matrix with superimposed . Jovels of . ] 11 absorb
random noise with the standard deviations Various levels ol experimental ermor 0 absorbance are

loga (g}

2ug, (4) and 4%5,_f{4). Only for o = | plotted then the primary and sccondary eigenvalues may
and 2 the value log (g, does not depend  be casily recognized. The number of primary eigen-
on generated noise values is then equal to the number of light-absorbing

species in solution.

11. THE METHOD OF IMBEDDED ERROR FUNCTION

The imbedded ervor function f£ 15 an empirical lunclion developed to identify thosc & latent
variables or PC dimensions containing crror without relving upon an eshimate of the error
associated wilh the absorbance dala matnx. The imbedded error is a function of the crror

.l”
Y g,

a ki
NM (M -k)

of the difference between reconstructed and pure data and describes this part of errors which

eigenvalues and takes the following form fE = and represents a measure



e remains in reconstructed data. The behavior of the fE

. lunction, as & varies from 1 to M, can be used to deduce
: the true dimensionality of the data. The /£ function
should decrease as the true dimensions are used in the
data reproduction. However when the true dimensions
5. L arc exhausted, and the error dimensions are incloded in
= the reproduction, the & should increase. This should
T occur because the error dimensions are the sum of the
squares of the projections of the error points on the

K ' error axis. If the errors are uniformly distributed, then

Fig. 11 Methad of lmhedded error fun-  their projcetions onio the crror dimensions should be
etion. Punction IE = fik} reaches a mini- approximately equal.
mum for £=2 ’
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12. THE METHOD OF FACTOR INDICATOR FUNCTION

The factor indicator function IND is an empirical
1 function which appears more sensilive than the IE
3 function to identify the true dimensionality of an
© absorbance data matrix. The function 1s composed of the
same components as the f£ function, and is defined as

MO

1 _
II: .’__-". ! M
II'. - < J Z £
il _ackel
T -
e e e Np - ANMB) R e RE s the
Fig. 12 Method of factor indicater function (M -k) (A - k)

residual standard deviation of absorbance. This function,
like the f& function, reaches a nunimum when the correct number of latent variables or & PC
dimensions have been employed in the data reproduction. Ilowever, it has been seen that the

minimum is more pronounced and can eften occur in situations where the /E function exhibits
Ty THNITNU,

13, MavLinowskl F-TEST

- Malinowski® 7 developed a test for determining the true

’ dimensionality of a data sct based on the Fisher variance

2 ! ratio test {F-test). The F-test is & quotient of two

= variances obtained from two independent pools of sam-

= g ples that have normal distributions. As the cigenvalues

i i . oblained from a PCA are orthogonal, the condition of
A

independence is satisfied. It is common to assume that
the residuad errors n the data have a normal distribution;
if this is true, then the varianec cxpressed by the crror
K eigenvalues should zlso follow a normal distribution.
Fig. 13 Malinowski Ftest. Values on x-  This will not be the case if the errors in the data ate not
axis comespond to the number of lisht ypjform or if systematic creors exist. The pooled
absorbing species in mixture while values uiapee of fhe ervor cigenveetors is obtained by
on y-BXIS {0 testing eriterion F{_‘T' M - &). dividing the sum of crror eigenvalues by the number of
Highest £ fulfilling H, is for £ =2 . . .
pooled veectors M - £ For distinguishing primary and
secondary eigenvalues the null hypothesis Hy:



g, = g vs. alternative H,: g™ > g ™ is formulated. In case of validity of null hypothe-
sis the test criterion
M

E IN-a+13(M-a+1)

F{l,M-k) = “"‘{‘;‘r D0 . j“ with 1 and A - & degrees of freedom is
-k+ -k |
2 &
a=k-]

applied. When testing the & is varied from the smallest cigenvalues inrange M- 1, M- 2, ..,
1. The first &-th reduced eigenvalue for which it is valid that £{1, Af - ) is greater than
critical value for given signilicance level is taken as the smallest and corresponding i
represents the number of light-absorbing speceics in solution.

14, BARTLETT 1SOTROPY TEST
Bartlett 1sotropy test uses the nuil hypothesis about an

B equality of M - & lowest cigenvalies of a covarance
§- matrix Z in form: Hy 1 g, =85 = .. = &y -
x B The test criterion B 15 delined
g - + _a. —
W = {N- Mﬁ 11 J (M -k ]n[g_f‘—J where g.* is the

£E

o - ] ] W - » .J
T -

2 q & 8

K arithmetic mean and g,* the geometric mean of M - &

Fig. 14 Barden rest. Verical line lowest eigenvalues of matrix Z. Supposing a validity of

separates values & for which H, iz not  H, the criterion ¥ has approximately ¥? distribution

accepted with 0.5 (M — k +2) (M — &k — 1) degrees of freedom.

The integer & is changed k=0, 1. 2, ... up to the first

value of & for which the W is lower than x2. The number of light-absorbing species is then
equal to a number &-f for which H, was not accepted.

DISCUSSI0N
1. Estimation of the instrumental error of spectrophotemeter used, s, (4}

For a determination of the instrumental error of spectrophotometer used, s, /4], Wernimonl-
Kankare method® based on the concentration dependence of a spectral standard was applied.
One spectral standard in solution means one light-absorbing species and therefore a rank ol
absorbance matrix is equal to 1 and corresponding residnal standard deviation of absorbance
xf4) may be estimated from a graph 5,/4) = f{%). Analogically, s, f4) may bc cstimated with
the use of the real error RE, the extracted error XE and the average error & for £ = L



Tabhle 1 Estimation of the instrumental emor of Qpectr(:p]mlnmeter used, s,m(A),

Repeatahﬂlty

Kank, £=1 “ 0.0037G G.00064 " 000038 000031 000036 000024

RE, k=1 0.00048 (.00040 0.00018 0.00015 0.00022 000018

XE, k=1 0.00047 0.00038 0.00018 000015 0.00021 0.00017

e, k=1 0.00024 0.00021 0.00019 0.00016 I 0.00018 | 0.00015
i -

In determination of s, (A4} the most pessimistic estimates of 5,/4), RE, XE, and ¢ were taken
for potassium bichromate i. e. 5,/4) = 0.00070, RE = L0048, XE = (1.0047 a é = 0.0024.

2. Criticism of the algorithm used

An algorithm for estimation of the number of light-absorbing specigs in solution was validated
using four various sets of abserbance data: 16 sets of spectra of dissociation cquilibria of
sulphonephtaleins Bromocresol Green, Phenol Red, Thymol Biuc and 4 sets ol spectral
standards potassium bichromate, cobalt(I1y suiphate and copper{Il} sulphate.

2.1 Acid-base equilibria of some sulphonephtaleins (Table 2}
For simple acid-base equilibrium of sulphonephtalcins HL. # H* + L- and with ihe use of
known matrix of melar absorptivities the abserbance matrix Am= with precision of 9 valid
digits is calculated. Generated random errors with the instrumental standard deviation 5, (4}
(=0.0003, 0.0006, 0.0009, 0.0020 a 0.0040) have been superimposed to all absorbance values.
Absorbance data describing two various light-absorbing species L- and HL were calculated for
Bromoereso] Green (sets Al through A3S), Phenol Red (sets A6 through Al0) and Thymol
Blue (sets Al1 through Al35). Last set Al6 concerns six lighl-absorbing species from all three
sulphonephtaleins used was of experimental naturc. Table 2 shows that found ,(4; 15 always
slightly lower than an optioned value s, (A} used lor a simulation.

Except the Bartlett 1sotropy test the all other methods reached true estimation & = 2. When
a number of light-absorbing species was & = 6, only seven methods i. ¢ s,/4), RE, XF, ¢
chi"2, o, and logig} found true estimales & Tt is interesting that successful methods are mostly
based cn preliminary knowledge of the instrumental error s, (4}

2.2 Spectra of three standards

I‘or a comparison of effectivity of factor analysis tor a search of the nunber of light-absorbing
species a set of speetra of a Beer concentration dependence of 3 spectral standards was
applied. Four experimental sets of spectra (B1 through B4y were measured in which spectral
standards K,Cr,0,, CoS0,+ 7H,( a Cu80,* 5H,0 were combined {Table 3). Very low values
of 5,..(4) prove quite reliable specirophotometer and experimental technigque used.

In casc of Bl seven methods, RF, XF, & cki*2, Oy B and RPV, true value & = 2 were
found. For B2 nine methods, i. e. 5,{4), RE, XE, & chi"2, a, RPY, logig) and F true value
& = 2 were found. For B3 same result as for B2 was received. l'or three spectral standards in
a mixture in case of B4 nine methods, i. e. 5,(4), RE, &, chi*2, O lag{g), IND, F and W,
found true values.



2.3 Reliability of validated methods

Critical comparison ol all methods of determination of the number of light-absorbing species
in solution was carricd out {Table 4). The percentage of successiul deterimination of & for the
individual methods is presented here. It may be concluded that the first group contains very
reliable methods (Kankare method .‘.-i_(f{,l' the method of real method RE, the method extracted
error A, the average error crilerion &, the method of standard deviations of eigenvalues T
the method of logarithms of eigenvalues log(g)} with a successful determination of 91 ﬂlmugh
100G%. The second group contains refiable methods (the method of »? eriterion ¢chi®2, the
scree test KPF and Malinowski F—tcst) with a successful determinaton of 81 through 90%.
The third group contains anreliable and quite unreliabie methods (the average eigenvalue
criterion g,, the method of Exner function PS8, the method of imbedded crror function /£, the
method of factor indicator function /ND, Bartlett test W) with a successful determination less
than 80%.

Conclusion

1. Wemimont-Kankare procedure was used as the best method for determination of the
instrornental standard deviation of spectrophotometer used, 5, £4) = 0.0007 in range 380 -
650 nm.

2. Analysing 20 sets of spectra with 14 methods of factor analysis there were found the most
reliable methods: Kankare method, the method of real error, the method of extracted error,
the average error criterion, the method of standard deviations of eigenvalues and the
methed legarithms of eigenvalues.

3. Generally, the most reliable mcthods seem to be mcthods based on knowledge of
instrumental error.

6. In determination of the number light-ahsorbing species it is more reliable and highly
recomumended to make a comparison of different methods of factor analysis. The methods
bascd on knowledge of instrumentsl error are preferred.

References

1. Malinowski E. R. (1977) Anal. Chem. 49; 606.

Kankare 1. L. (19707 Anal. Chem. 42 1322.

3. Brereton R. G., Dara Handling in Science and Technology — Velume 9: Multivariate
Pattern Recognition in Chemomeirics, Chaprer 3, ). M. Deane: Data Reduction Using
Principal Components Analysis, Elsevier, Amsterodam — London ~ New York - Tekyo,
1962,

4. Cepan M., Pelikan P., Ligka M. Metody faktorovej analyzy v molekudovej spektrometrii

I Abstraktnd Jaktorova analVza a wrdenie pociu aktiveych zlofiek v spekirdeh zmest,

{in press).

Hugus Z. Z. Ir., Bl-Awady A, A. (1971) 1. Phys. Chem. 75: 2054,

Malinowski E. R. {1987) I. Chemometrics 1: 33.

Malinowski . R. (1989) }J. Chemometrics 3: 49.

Antoon M. K., D’Esposite L. . Koenig 1. L. (1979 Appl. Spectrose. 33: 351.

Wernimont . (1967) Anal. Chem. 39: 554,

b

R



(1) weg (2) 2 (@) AN (@) 91 (23 (3)501 “(T) AdY TLI00'0
Mgy wd () 5 () T () oo (z) 2 ) aX (T g (D) qaey DTOO0 erep paemUILy H— D4 6vy
(1) veg *(2) 4 (2) aNI (@) 31 40 B0l ‘(@) Ad 1806070 __
{7y ed 7 B () o () zomue ME) 0 H{T) Y () H¥ (7) uey ‘6000°C 'BIEP PREIMUIG BT - Y
(1) weg *(2) d (@) aNT (7)) W1 "(7) (Dol (T) Add £5000°0
gy wd () 9 4(g) "o () g () 2 7)) TX (7)) T (D) yuey ‘00000 "TEP parenulg H-D24d LV
) ed (@) J NE) AN @) |1 (D) (350 () A ¥Z000°0
{7 sd (7Y 3 (D) "o (g) g (g} 2 () 4x (T o () quey ‘CO00°0 TIEp pAammuLg H -4 oY
{g)1mg (z) 4 {2y anl (=) 41 (@) FEor (7)) Ad GLE00°0
{7 18d 7)) T (2) Te () z.1ye (2) @ (2D AX ) Ay () ymy ‘DFO0D TEIER PHBMWLS “H - oYy Y
(1) ueg (T} 2 (2) ant () 41 17T (B)8o (7)) Ada CL100°0
“{(7) 15d (7)) S () "o () zoye (@) 2 (T AX ME) 3d D) Juey DTOOC BIEP PRTBIUIS H — O Y
(1) L] (7)1 E) NI ) g1 42y (3)80] (7)) Add 8400070
‘() 1sd (7)) B () "o (g} T (T 2 () 3 T Ty (D) ey ‘6000'(Q “eep palequuIg 11— o9d £y
(7} e 7y .1 2y aNI () g1 () {8)301 A7) AdY 1500070
(Zysd () BT e (7 oo (D) 2 (7)) X (T T (D) ywey ‘00000 BIEp PEIMWIG 11 - o3d v
(1) Heg (2) (7 aNI () a1 (@) (B¥0] (7Y Add . LTO000 .
gy wd () 8 AT e (g oo () 2 (T HX (D) A (T uey ‘CO00'0 BIRP pAARMIULG H — 0¥ 1y
poOIow AI3A3 I0] $13N0BM] U] {(que) panoy (s
satsads Bmqlosge-B1] Jo I3qUinU puno,| ‘y)™s ‘eep Jo dAp |  umngipnba 1o enosadg L

{uorEUMSa J|gB[IEABUN STOUSP {—) ‘152] Nafineq Jeq

Pl DSMOULBIA J “UOLUN] ORI I0KRF JO PO 243 (IN] © UONOUNT OIS pappaquul Jo porlam a1 T ‘san(zatadn jo swuyuedoe) Jo
poiaw Ay (3)80] ‘1531 22138 o) A JY ‘UOCDSUN JoUXY Jo poyiaid 2y 18d ‘sanfeAausZio JO SUONETAIP PIEpPUE]S JO POISIU 21 *8 “UOIIAID X Jo
POYIAUL 31 o, 1D “10LI2 3TRIDAE JO POJALL Y “I0LD PIIBNKD PO 2} Y POPSUL [B1 JO POYIAUT A T ‘POYISMT STENUEY YUY SWuod[y)

‘anjg [CWAYL - WL ‘P [oUsqd - O ‘Ussin) [osarcwiolg - 0og sueedeuoydns Jo enqimbe oseq-proe oy Jo emoadg 7 apqpf



(=) 1egl 1€) 4 () AN ) AT 9) (330 (S) Add

S0000°0

‘) sd () F4(9) T (g) 7,10 (0) 2 (9) 14X (5) T o) qwed | ‘slo¢o “mep [uewmadxy H-WL-21-0¥a | v9Iv
(0 Wefl () 4 °E) a2y g1 ) (3130 Tz) Add : FENO0 :

“(z) 15d () § (g} "0 ‘(7)) TuD () 2 (T Ax (T) Hu (T) yuey OF00°D BIFD PAB[OETS JI-WL| €SIV
1) Hed (7)) AN ) |l (D) (B33t () Add C6T100 0

(0) 15d () B (2} "o (g} IR M) 2 () AX T 2 (D) ue '0ZO0°D TIED pAIRnETS T -WLE IV __

(1 ueg (@) 7 °(2) NI {2} |1 (@) (B)30] (7)) Add 6L000°0

(2 sd <) 2 () "o (g) g.wd () @ H(Z) A W) M C(T) Huey “6000°0 "BIEp pAtEIMUIIY H-WL| €IV
(1) e ‘) 4 () ANIT () T3 () (3)30] (T} AdY FE000°0

() wd (g} § () "o ) gy (7} 2 (2) A () I Q) yuey ‘0000 “BIEp paYeRnUIY H-~WL| IV
(1) yeg ) 4 Ty ANt @) Al (2 (3)307 (7)) AdY LTC00 0

{7y 1ed () BT "o (D) Toue (D) 2 (D) X 7)) A (@) qued “CO00'Q “BIEP PAIR[RIS H-WL] 11V
(7) weg ‘() 4 () QNI ‘() 11 47) E)3ol (7)) Add LFEOG0 __

() 1sd () 8 42} *0 () Tvud () 2 (D) TX (@) T {T) quey ‘0F000 WP pAleInIIS H-2I{ 0OV




() wregr () 4 () anl =) 31 7(g) (3)dor {7)

£2000°0 "L000°0

OFHS -FOsnD —

AdT ) 15d (D) B (2) o () 492 () 2 {€) ax () Ha (6) yuey “erep muswuadxy | O°HL T80 - OO | vd
(o1} g (2) 4 o) aNl ) 31 () (3)3o] “(T) LPOD0TD “LODO O o

AL (1) 13 (1) 3 42) "0 () Towp (2D 2 (D) X (D) T (D) quey “elep euotMadxy | OFHS -'OSPO - 0TI | €4

(11} Hegl () 1 °(8) ANT () 41 () (F)Fo () LYOBU0 L0000 O°HS -FO8MD

AdY (1) 154 1) 8 (2) "0 (T} Turwe (@) 2 () X (@) T (2) e EEp TenawLadxy ~ O'HL-"Os9D| d
| (b1) 1eg “(€) 4 (€} QNI () A1 () ()20l (7) 680000 LOOOT | ]

Add () wd (2) 3 4(7) "0 (T) Toe €2) 2 (@) 4x (@) A () yuey ‘mEp [pUeumady b OFLL -"0S0D - ‘ORI | 1

PO ATIAZ 10J SI9HIRIG W) (quey) puncy (i -1
garads Furqrosqe-1ySi| Jo 13N punoj (FF*s wepep yo dAL | wnugymba joJ ensadg 128

{UDTEWINSS A[YR[TeATUN S2OUAD () *352) NAMEET JMEd 1827 IYSmomely J ‘uonauny Jo1eaiplul 1015€] Jo pouaur aq gl ¢

LOLIETY JGLI PAPPAQUIN IO PO 313 B “sanjeauadie yo siuy3iedo| Jo poyraw 2 (SiEof 185] 33108 A1 A LH UONOING IRUXT 10 poqa sy asd ‘seneAusTie Jo SUGNRTAND PIRPORS jO
poiow 3y 'p ‘uoueqd X go PORISW AT Z, 193 1002 2Je0A Jo poylaw 3 JOLR PAIENXI POYINN 3 FX PO [C2T JO POYIAW Y} HY PO AEXUEY NUEN EULeITY)

“OFHS -'OS)) pue O -FOS0D 00N spaepums jo endadg ¢ agr]



Table 4 Accuracy of the estimaled number of light-absorbing species in a mixture: 1 denoles true

result, 0 denotes false results

{Algorithms: Kank Kankare meithod, RE the mathod of real method, XE the method extracted ervar, & method of average
error, chi*2 the methad of 3¢ criterion, o, the method of standard deviations ol cigenvalues, psi the method ol Exner
function, RPY the scree test, log(g) the method of logarithms of cigeovalues, EE the method of imbedded eror function ,
IND the method of factor indicator [unction, F Malinowski f—test, Bart Bartlett test, (-) denvles unavailable cstimation)
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