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Data analysis in the chemical laboratory
Part 1. Analysis of indirect measurements
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Abstract

Response quantities of analytical chemistry investigations of, for instance, concentration or content of substances,
viscosity, stability constants or solubility, can be obtained as a non-linear transformation of directly measured
quantities or signals. The goal of the indirect measurements analysis is estimation of basic statistical parameters of
analytical results from the known non-linear transformation and from the statistical parameters of measured
variables. The analysis is based on Taylor series expansion, two-point approximation and Monte Carlo simulation.
An algorithm may be applied on any chemical, physical, biological or medical result.
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1. Introduction

A result of a chemical analysis y is often
calculated as the known functional transforma-
tion y = G(x,,..., x,,) from a number of directly
measured experimental quantities x,,...x,,. Due
to various kinds of errors the measured quantities
x;, i=1,...,m, are random variables. Using a
basic statistical treatment of measured data the
sample means ¥, and sample variances s%(x,),
i=1,...,m, are computed. To project these er-
rors into the resultant y is a topic treated in
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many analytical chemistry texts and is known as
error propagation. The well-known formula for
the random errors propagation

dG(x;)

s2(y) = ( - ) $(x) (m

t

is based on a number of assumptions: (a) the
random variables x; are uncorrelated; and (b) if
y is not a linear function of x,, then each s(x,)
must be sufficiently small relative to the corre-
sponding mean values of x; so that the function
G(x,,...,x,) can be reasonably linearized. If
one or more of these assumptions is invalid, Eq. 1
can be suitably corrected but only when making
use of a computer. A more difficult problem
occurs when the function G(x) is differentiable
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with great difficulty only. This problem, however,
can be solved by numerical methods.

This article compares the Taylor series expan-
sion, the two-point approximation, and the Monte
Carlo simulation for a calculation of the mean y
and the variance s%(y) of a response quantity
(i.e., an analyte concentration or an analyte con-
tent).

2. Theory

The treatment of the indirect measurements
under consideration in this paper leads to the
following problems: )

(1) The estimation of the result of the chemi-
cal analysis, i.e., the mean value y.

(2) The estimation of the total error expressed
as a standard deviation of chemical analysis, s(y),
from known errors of several measured quanti-
ties, s(x,).

(3) The inverse estimation of limiting errors of
measured quantities, s(x,), from the allowed er-
ror of the chemical analysis, s(y).

To express the absolute error of the ith vari-
able x;, the standard deviation s(x;) is conve-
nient; for the relative error of x; the relative
standard deviation (or the coefficient of varia-
tion) is used
8(x;) =s(x;)/x; (2)

For the first problem, if the experiment and
computation of G(*) could be done repeatedly to
generate a reasonable statistical sample of y;
values, the information on the random uncer-
tainty in y would be within reach. The computer
offers a convenient way of simulating the repeti-
tion. It is only necessary to generate new sets of
x; data, and the estimates of mean X;, variance
5%(x;), skewness g,; and kurtosis g,; are used,
cf. p. 101 in [1].

For the second problem the expression for
variance s*(y) as a function of individual vari-
ances s2(x;) is used. A simplification can often be
achieved using the relative errors.

For the third problem the expression for vari-
ance s(y) or variation coefficient 8(y) = s(y)/y
is used. The basic assumption is that individually

measured quantities x; have the same relative
effects.

To solve all three problems the mean y and
corresponding variance s%(y) of a function y =
G(xy,...,x,) must be known. The estimates
and s%(y) may be obtained by any of the follow-
ing methods: (1) Taylor series expansion of the
function y=G(x,,...,x,,); (2) two-points ap-
proximation; and (3) Monte Carlo simulation.

Whereas the method of Taylor series expan-
sion requires knowledge of at least first and sec-
ond derivatives of the function G(x,..., x,,), the
remaining two methods can be computer-assisted.

2.1. Method of Taylor series expansion

When a function of random variables is ana-
lyzed it should be realized that each non-linear
transformation of the random variable distorts its
distribution, and therefore changes the depen-
dence of variance on the mean value. In the case
when the single measured variable x has a con-
stant variance s2(x), the results of analysis y =
G(x) have a non-constant variance s*(y), Eq. 1.
Moreover, in the multivariate case the sample
mean j cannot be estimated by direct substitu-
tion of sample mean X into the function G(X),
ie.,

y#G(x) (3)
To estimate the mean ¥, the variance s*(y)
and higher statistical moments, the Taylor series
expansion of function G(x) can be used.
Suppose that the function y = G(x,,..., x,,) is
known. Let G(x) be doubly differentiable at least.
When writing the Taylor series expansion in the
neighbourhood of the vector of means X =
(%)...,%,,)T we obtain
Z 6G(x) -
5%, (x;—x,)

y=G(x) +
i=1

m §2G 2
Z szx)(xi —-X;)
82G(x)

8x;6x;

m—1 m

(x;—%)(x;,—%;)+...

4
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where all first and second derivatives are calcu-
lated for the vector of mean values X. By using a
mean value operator E(+) at both sides of Eq. 4
the expression for the estimate of mean y may be
written as

7=60+3 & 200 st(x)
m-1m §2
+ ,-)_:: b i; xG;:,) cov(x,, %) G)

where 5 =E(y) = E(G(x)), s%(x;) = El(x; - x,)*]
and where E[(x; — X,)] = 0. The symbol cov(x;, x;)
stands for the covariance which gives a measure
of “linear dependence” between the two vari-
ables x; and x;.

For computauon of variance s*(y) the lin-
earization based on Taylor expansion is obviously
used. More precise is to apply approximation 4
with neglecting the higher moments. (i.e., the
skewness and curtosis). The resulting approxi-
mate relation for variance is termed the rule of
propagation of absolute errors and can be ex-
pressed by

8G(x
s*(y) = E ( 2

s2(x;)

m-1 m 5G(x) 6G
L g

i=1 j>i i

m1m82 (X)

+ X X

i=1 j>i Sxisxi

cov( x;, X;)
J

s*(x)s*(x;))  (6)

When the resulting error s(y) is formed from m
sources of additive errors, i.e., G(x,,...,%x,) =
Y x; is linear combination of x; and each source
has its own variance 6,-2(x), the following expres-
sion for the estimate of error can be used

m-1m

s*(y) = 232(J6)+2 Y Yoov(x,x) (7)

i=1 i=1 j>i

where cov(x;, x;) again is a measure of linear
dependence between the two variables x; and x;.
There are two limiting cases of estimation of total
error of measurements, s(y) from Eq. 7:

(1) The sources of errors are quite indepen-
dent, so that the covariances cov(x;, x j) are equal
to zero. The resulting estimate of an error will be
proportional only to the quadratic mean of errors
8(x;) coming from m sources,

()= Loz ®)

(2) The sources of errors are linearly depen-
dent. Then covariances cov(x;, x;) are given by

cov( x;, X;) = s (x;)s*(x;)

The resulting estimate of the total error will be
proportional to the arithmetic mean of errors
8(x;) coming from m sources

m
s(y) = L 8(x)) )]
i=1
For various analytical operations and signal
measurements in a chemical laboratory, the func-
tion G(x) can be expressed by a power-type rela-
tionship
m
y=G(x) =xf1-xg2- - -xpm=[Txf (10)
i=1
where a; are known coefficients usually equal to
F 1. The estimation of the absolute error s(y) or

s2(y) by Eq. 6 is then rather complicated. The

logarithmic transformation leads to the simpler
expression

In G(x) = f‘, a;-In x; (11)
i=1
Then
d In G(x) 1 dG(x)
dx G(x) dx (12)

Substitution of Eq. 12 to Eq. 6 and rearrange-
ment leads to a simplified form for the relative
error (variation coefficient)

8(y)

m-1 m

Ea252(x)+2 Y Yaar,8(x)8(x;)

i=1 i=1 j>i
(13)
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where r;; represents the correlation coefficient
expressing the closeness of linear dependence
between variables x; and x;. Eq. 13 is called the
rule of propagation of relative errors. The quality
of estimates 7, s*(y) and 8(y) is dependent on
the quality of quadratic approximation of the
function G(x).
,  Although the estimate ¥ is normally suffi-
ciently accurate, some inaccuracy may be found
in the estimation s2(y) [2].

Eq. 13 may be used for estimation of relative
errors 8(x;) such that a relative error of chemical
results 8(y) will not be greater than the selected
value for H in %, i.e., 100-8(y) < H. In solving
this inversion problem, the independence of the
measured variables x; and the principle of the
same relative influence

la;18(x)) = |a,18(x,) = ... = |a,,|8(x,,)
=H/m

are assumed. Here a;, i=1,...,m, are coeffi-

cients of function G(x), Eq. 10. For the case of a

ratio G(x,, x,) =x,/x, an estimate of the mean

y is controlled only by the variance 8%(x,) and
not by the variance 8%(x)).

2.2. Method of two-points approximation

Manly’s procedure [3] of two-point approxima-
tion is based on replacement of the probability
distribution of function G(x) by the two-points
distribution with the same mean and variance.
For the case of single x the estimate of the mean
is expressed as

¥ ={G[x +s(x)] + G[x—s(x)]}/2 (14)
and the estimate of variance by

- - 2
s?(y) = {G[x+s(x)] - G[x-s(x)]}" /4 (15)
Both simple relations give better results than
Taylor’s formula for a function of the type in (Eq.
10).
When the function G(x) is a function of m
independent random variables x,,...,x,, the
summation of Eqs. 14 and 15 can be used

y= g: {G[®; +s(x;)] + G[x;—s(x,)]}/2m
(16)

and

m

32()’) = E {G[ii'*—s(xi)] - G[ii_s(xi)]}z

i=1

/4m (17)

2.3. Method of Monte Carlo simulation

The mean ¥ and its variance s*(y) as a func-
tion G(x) of random variables x, may be deter-
mined by computer-assisted Monte Carlo simula-
tion method. Schwartz [2] showed that this gen-
eral procedure is well suited for simulation of
statistical behaviour of even rather complicated
systems. The following steps can be formulated:

(1) Selection of the function G(x): for many
chemical problems the function G(x) is usually
known. The great advantage of Monte Carlo sim-
ulation method is that the function G(x) need not
necessarily be expressed in explicit form.

(2) Distribution of measured variables: in
chemistry it is usually assumed that measured
variables are independent and have normal distri-
bution. Then the Monte Carlo simulation method
requires numerical values of quantities ¥;, s(x,),
i=1,...,m, only.

When these values are not available, two limit-
ing values of interval [A,B] in which the variables
x; are expected should be supplied. The approxi-
mate probability density function can be then
expressed by the parabolic distribution

f(x;) =6(x,— A)(B—x,) /(B - A)’

for A <x; < B. The situation is more complicated
when some correlation among the input variables
exists. Then the simultaneous distribution of all
variables x;, i=1,...,m, should be specified;
this will be simple only for the case of the normal
distribution.

(3) Generation of random numbers: most com-
puter software contains a function that will gen-
erate pseudo-random numbers from rectangular
distribution R(0,1). For two independent random
numbers R;, R;, , the Box—Miiller transforma-
tion is used to generate two independent random
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numbers N;, N,

N;=y(-2In R;)sin(27R;.,) (18)
N, =y(—21In R;) cos(27R; ) (19)

which have standardized normal distribution. The
jth simulated value of the ith variable x; will be
expressed by

xfi=Ns(x;) +%; (20)

(4) The choice of the number of simulations:
the rules for the determination of the necessary
number of simulations are the same as for the
determination of sample size. The minimum
number of simulations for the requested 100(1 —
a)% confidence interval D of the mean is ex-
pressed by the relation

Bonin = [4“1—a/252(y)]/D2+1 (21)

where u,_, , is the quantile of standardized
normal distribution and s?(y) is the estimate of
variance from the first 50 simulations.

(5) The display of results: this step includes a
graph of an empirical probability density function
of simulated data {y[}, j=1,...,ny,, and a cal-
culation of the estimates of location and spread,
y* and s2(5*).

3. Computation

The program Propagation-of-Errors calculates
the results of indirect measurements or the ana-
lytical quantity (concentration, content, etc.) ¥
and the variance s?(y) as a result of several
errors concerning various experimental and in-
strumental operations. In addition to the classical
method of Taylor series expansion, two com-
puter-assisted methods can be applied, i.e., the
two-points estimation method and the Monte
Carlo simulation method. The function G(x) is
inserted in the one-row panel using the usual
algebraic notations. The maximum number of
directly measured variables (m) = 10. For these
variables the value X; and error s(x;) are re-
quired. For all methods the approximate mean y,
variance s2(y) and variation coefficient 8(y) are

computed. For Taylor expansion all required
derivatives are computed using difference for-
mula. For Monte Carlo simulation the kernel
probability density function is also creacted cre-
ated. The probability density function of normal
distribution N[y,s%(y)] is calculated and drawn.

The program Propagation-of-Errors in the
package CHEMSTAT is available from the authors
up on request.

4. Results

The following samples illustrate the applica-
tion of the computational Propagation-of-Errors
technique.

4.1. Sample ' 1: error in arsenic content in isotope
dilution

Arsenic was determined by the isotope dilu-
tion method. The initial specific activity was a, =
3.7 x 10% s~1. After addition of the standard m,
=5x 107 g of arsenic, the specific activity was
a, =5.3x10% s~!. The relative error of the ar-
senic content in the sample should be estimated
supposing that the relative error of weighing is
8(m) = 0.03%, and the relative error of the activ-
ity measurement 8(a,) = 8(a,) =1%. The con-
tent of arsenic, m,, in the samples is calculated
by
G(:)=m,=m(a,—a,)/a,

Because this expression is not in the form of Eq.
10, Eq. 13 cannot be used. Assuming that the
quantities m,;, a, and a, are not correlated,

results obtained by three methods of the Propa-
gation-of-Errors program are identical (Table 1).

Table 1

Analysis of indirect measurements in isotope dilution
Taylor series  Two points Monte Carlo
expansion estimation simulation

y(@® 7.1122%x1075  7.1124x1075  7.1142%x1073

s(yX%) 1.0130x10~% 1.0132%x10°% 1.0433x10°6

s (y %) 142 1.42 1.47
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4.2. Sample 2: error in indirect viscosity measure-
ments

The viscosity of glycerol is calculated by the
Stokes method from the following experimental
data: the radius of the ball r=0.0112 F
0.0001 cm; the density of the ball d, =
1335 kg m~3, the density of glycerol d =
1280 kg m 3, the trajectory /,=31.23 % 0.05 cm,
the time ¢=62.17F0.2s, and the acceleration
due to gravity g =9.801 m s~'. Viscosity, 5, de-
termined by the Stokes method is calculated from
the expression

G(+) =m =2gr*(dy—d)t/(91,)

Because this relation is not of the Eq. 10 type,
the relative error cannot be calculated with the
use of a simple relationship. Results obtained
from three methods of the Propagation-of-Errors
program are in good agreement (Table 2).

4.3. Sample 3: correlated errors in solution concen-
tration

A mass (m) of 0.1 g zinc was dissolved in
hydrochloric acid and diluted in a standard flask
with a volume, V, of 1000 ml. A volume, V;, of
100 ml of this solution was diluted to a volume,
V,, of 1000 ml. The sample for analysis was pre-
pared by taking ¥; =5 ml and diluting into V, =
25 ml. The concentration of the resulting sample
and its relative error is calculated when the stan-
dard deviation of weighing, s(m), is 0.3 mg and
for the standard flasks s(V)=s(V,)=0.2 ml,
s(V1)=0.05 ml, s(V3)=0.005ml and s(V,)=
0.025 ml. The concentration c is calculated from

G(') =c=mVV;/(VV,V,)

Table 2
Analysis of indirect viscosity measurements
Taylor series Two points Monte Carlo
expansion estimation simulation
y (Pas) 2988x107* 2.988x10"* 2.986x10°*
s(y)(Pas) 5.443x107% 5443x107° 5.304x10°°
8(y) (%) 1.82 1.82 1.78

Table 3
Analysis of indirect measurements in solution concentration -

Monte Carlo
simulation

Taylor series Two points
expansion estimation

7 (gdm™3) 2001073 2000103 2.000x10°3

s(y)(gdm~3) 6.732x107% 6.732x10"% 6.853x10°6
8(y) (%) 0.34 0.34 0.34

Errors in volumes V, and V, are strongly corre-
lated with errors of volumes V; and V.

The ideal case when correlation coefficients
r(VV,)=r(V,V,) =1 is considered first, while
other variables are uncorrelated. From Eq. 13 it
is

8%(c) = [s(m)/m]* + [s(V) /V]?
+[s() /] + [s(vy) /73]
+[s(V3) /] + [s(v) Vi)
- 2[5( Vl)/Vl] [s( V2)/Vs]
=2[s(V3)/Vs][s(Va) /Vi]

and numerically 8(c) = 0.302%.

Then, consider that the correlations between
V, and V,,and between V; and V, are negligible,
so that r(VV,)=r(V,V,)=0 and then &(c)=
0.336%.

Eq. 5 allows the mean concentration ¢ to be
estimated

E=mV\Vs/(VV)V,) +mViVs[s3 (V) /(V3V,V,)
+52(V2)/(VaWV,) +s2(V,) /(ViVVy)]
—mVss(Vy)s(V2) /(VW5Va)

- mVIS(Vs)S(‘G)/(VVsz)

where the first term is equal to 2 X 107 g cm 3,
the second 2.16 X 10712 g cm~3 and the third is
22X 1072 g cm 3. If the two smaller terms are
neglected the mean concentration will be ¢ =2 X
107%gcem™3 or 2x 1073 gdm~3 Results ob-
tained from the Propagation-of-Errors method
for a case r(VyV,) = r(V,V,) = 0 are presented in
Table 3. Correlation between volumes ¥, and V,
and also between V, and V, diminishes the rela-
tive error of the resulting sample concentration.
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