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Abstract 

Response quantities of analytical chemistry investigations of, for instance, concentration or content of substances, 
viscosity, stability constants or solubility, can be obtained as a non-linear transformation of directly measured 
quantities or signals. The goal of the indirect measurements analysis is estimation of basic statistical parameters of 
analytical results from the known non-linear transformation and from the statistical parameters of measured 
variables. The analysis is based on Taylor series expansion, two-point approximation and Monte Carlo simulation. 
An algorithm may be applied on any chemical, physical, biological or medical result. 

Z&y wordx Error propagation; Indirect measurements; Monte Carlo simulation; Taylor series expansion; Two-points 
approximation 

1. Introduction 

A result of a chemical analysis y is often 
calculated as the known functional transforma- 
tion y = G(xr,..., x,) from a number of directly 
measured experimental quantities x1,. . . x,. Due 
to various hinds of errors the measured quantities 
xi, i = 1,. . . , m, are random variables. Using a 
basic statistical treatment of measured data the 
sample means Zi and sample variances sz(xi), 
i=l ,. . . , m, are computed. To project these er- 
rors into the resultant y is a topic treated in 
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many analytical chemistry texts and is known as 
error propagation. The well-known formula for 
the random errors propagation 

s2(xi) 

is based on a number of assumptions: (a) the 
random variables xi are uncorrelated; and (b) if 
y is not a linear function of xi, then each s(xJ 
must be sufficiently small relative to the corre- 
sponding mean values of xi so that the function 
G(X t,. . . , x,) can be reasonably linearized. If 
one or more of these assumptions is invalid, Eq. 1 
can be suitably corrected but only when making 
use of a computer. A more difficult problem 
occurs when the function G(x) is differentiable 
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with great difficulty only. This problem, however, measured quantities Xi have the same relative 
can be solved by numerical methods. effects. 

This article compares the Taylor series expan- 
sion, the two-point approximation, and the Monte 
Carlo simulation for a calculation of the mean J 
and the variance s*(y) of a response quantity 
(i.e., an analyte concentration or an analyte con- 
tent). 

To solve all three problems the mean j and 
corresponding variance s*( y 1 of a function y = 
G(x 1,.. .,x,J must be known. The estimates j 
and s*(y) may be obtained by any of the follow- 
ing methods: (1) Taylor series expansion of the 
function y = G(xi,..., x,); (2) two-points ap- 
proximation; and (3) Monte Carlo simulation. 

2. Theory 

The treatment of the indirect measurements 
under consideration in this paper leads to the 
following problems: 

(1) The estimation of the result of the chemi- 
cal analysis, i.e., the mean value j. 

(2) The estimation of the total error expressed 
as a standard deviation of chemical analysis, s(y), 
from known errors of several measured quanti- 
ties, s(xJ 

(3) The inverse estimation of limiting errors of 
measured quantities, &xi), from the allowed er- 
ror of the chemical analysis, s(y). 

To express the absolute error of the ith vari- 
able xi, the standard deviation s(xi) is conve- 
nient; for the relative error of xi the relative 
standard deviation (or the coefficient of varia- 
tion) is used 

S(q) =s(xi)/xi (2) 
For the first problem, if the experiment and 

computation of G(e) could be done repeatedly to 
generate a reasonable statistical sample of yi 
values, the information on the random uncer- 
tainty in y would be within reach. The computer 
offers a convenient way of simulating the repeti- 
tion. It is only necessary to generate new sets of 
xi data, and the estimates of mean Ki, variance 
S*( Xi), skewness g,,i and kurtosis g2,i are used, 
cf. p. 101 in [l]. 

For the second problem the expression for 
variance s*(y) as a function of individual vari- 
ances s2(xi) is used. A simplification can often be 
achieved using the relative errors. 

For the third problem the expression for vari- 
ance s*(y) or variation coefficient S(y) = s(y)/J 
is used. The basic assumption is that individually 

Whereas the method of Taylor series expan- 
sion requires knowledge of at least first and sec- 
ond derivatives of the function cj(xl,. . . , xJ, the 
remaining two methods can be computer-assisted. 

2.1. Method of Taylor series expansion 

When a function of random variables is ana- 
lyzed it should be realized that each non-linear 
transformation of the random variable distorts its 
distribution, and therefore changes the depen- 
dence of variance on the mean value. In the case 
when the single measured variable x has a con- 
stant variance S*(X), the results of analysis y = 
G(x) have a non-constant variance s*(y), Eq. 1. 
Moreover, in the multivariate case the sample 
mean F cannot be estimated by direct substitu- 
tion of sample mean _? into the function G(Z), 
i.e., 

j # G(Z) (3) 
To estimate the mean 8, the variance s*(y) 

and higher statistical moments, the Taylor series 
expansion of function G(x) can be used. 

Suppose that the function y = G(xi, . . . , x,,J is 
known. Let G(x) be doubly differentiable at least. 
When writing the Taylor series expansion in the 
neighbourhood of the vector of means E = 
(Z 1,. . . , Z,JT we obtain 

m 6G(x) 
y = G(Z) + c - 

i-l 
axi txi -zi) 

m-l m 

+c c 
6*G(x) 
Sn(xi-Xi)(Xj-Xj)+ . . . 

i=l j=i+l I I 

(4) 
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where all first and second derivatives are calcu- 
lated for the vector of mean values jii. E3y using a 
mean value operator E(s) at both sides of E!q. 4 
the expression for the estimate of mean F may be 
written as 

1 m 6’G(x) 
7 = G(z) + y ,F -s*( Xi) 

r-1 w 

m-1 m S*G(x) 
+CC- 

i-l j>i 
sx sx cov(xi~ xj) 

i j 
(5) 

where j = E(Y) = E(G(x)), S*(Xi) = ~(Xi -Zi)*] 

and where E[(xi - iii)] = 0. The symbol coy(xi, xi) 
stands for the covariance which gives a measure 
of “linear dependence” between the two vari- 
ables Xi and xj. 

For computation of variance s*( y ) the lin- 
earization based on Taylor expansion is obviously 
used. More precise is to apply approximation 4 
with neglecting the higher moments. (i.e., the 
skewness and curtosis). The resulting approxi- 
mate relation for variance is termed the rule of 
propagation of absolute errors and can be ex- 
pressed by 

s2( xi) 

m-1 m SG(x) 6G(x) +a cr-- 
i-l j>i 8 

6x, cov(xi, xi) 
J 

m-l m S*G(x) 
+CC -S*( Xi)S*( Xj) 

j-1 j>i 6xisxj 
(6) 

When the resulting error s(y) is formed from m 
sources of additive errors, i.e., G(x,, . . . , xm) = 
Cx, is linear combination of xi and each source 
has its own variance SF(x), the following expres- 
sion for the estimate of error can be used 

S2( Y) = ~~Is2(xi) + 2mf’ 2 coV(xi9 xj) (7) 
i-l j>i 

where covIxi, xi) again is a measure of linear 
dependence between the two variables xi and Xj. 

There are two limiting cases of estimation of total 
error of measurements, s(y) from Eq. 7: 

(1) The sources of errors are quite indepen- 
dent, so that the covariances cov(Xi, xi) are equal 
to zero. The resulting estimate of an error will be 
proportional only to the quadratic mean of errors 
6(xi) coming from m sources, 

s(Y> = 
J 

g s2(xi) (8) 
i-l 

(2) The sources of errors are linearly depen- 
dent. Then covariances cov(x,, xi) are given by 

coV( Xi, Xj) = \iS*( Xi)S*( Xj) 

The resulting estimate of the total error will be 
proportional to the arithmetic mean of errors 
6(xi) coming from m sources 

s(Y) = E 6(xi) (9) 
i-l 

For various analytical operations and signal 
measurements in a chemical laboratory, the func- 
tion G(x) can be expressed by a power-type rela- 
tionship 

y=G(x)=xf~.x’J?. -.a -xGm;I= 
,fix? (10) 

where ai are known coefficients usually equal to 
r 1. The estimation of the absolute error s( y ) or 
s*(y) by Eq. 6 is then rather complicated. The 
logarithmic transformation leads to the simpler 
expression 

In G(X) = 2 ai * In Xi 
i-l 

Then 

(11) 

d In G(x) 1 dG(x) 

dx =- G(x) dx (12) 

Substitution of Eq. 12 to Eq. 6 and rearrange- 
ment leads to a simplified form for the relative 
error (variation coefficient) 

S(Y) 

= 
r ~~~~~~~ 

~~~~s*(Xi) + 2”~’ ~ aiajrijs( Xi)6( Xj) 
‘P i=l j>i 

(13) 
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where rij represents the correlation coefficient 
expressing the closeness of linear dependence 
between variables Xi and “i. Eq. 13 is called the 
rule of propagation of relative errors. The quality 
of estimates F, s’(y) and S(y) is dependent on 
the quality of quadratic approximation of the 
function G(x). 

,f Although the estimate 7 is normally suffi- 
ciently accurate, some inaccuracy may be found 
in the estimation s’(y) [2]. 

Eq. 13 may be used for estimation of relative 
errors 6(xi) such that a relative error of chemical 
results 6(y) will not be greater than the selected 
value for H in %, i.e., 100 *6(y) IN. In solving 
this inversion problem, the independence of the 
measured variables xi and the principle of the 
same relative influence 

= H/m 

are assumed. Here ai, i = 1,. . . , m, are coeffi- 
cients of function G(x), Eq. 10. For the case of a 
ratio G(xi, XJ =X,/X, an estimate of the mean 
J is controlled only by the variance 8*(x,) and 
not by the variance 6*(x,). 

2.2. Method of two-points approximation 

Manly’s procedure [3] of two-point approxima- 
tion is based on replacement of the probability 
distribution of function G(x) by the two-points 
distribution with the same mean and variance. 
For the case of single x the estimate of the mean 
is expressed as 

J=(G[f+s(x)] +G[Z-s(x)]}/2 (14) 

and the estimate of variance by 

s*(y)={G[X+s(x)] -G[&s(x)]}*/4 (15) 

Both simple relations give better results than 
Taylor’s formula for a function of the type in (Eq. 
10). 

When the function G(x) is a function of m 
independent random variables x1,. . . , x,, the 
summation of Eqs. 14 and 15 can be used 

S”(y) ~ ~ (G[Zi+S(Xi)] -G[fi-s(Xi)]}* 
i-l 

/Am (17) 

2.3. Method of Monte Carlo simulation 

The mean F and its variance s*(y) as a func- 
tion G(x) of random variables X, may be deter- 
mined by computer-assisted Monte Carlo simula- 
tion method. Schwartz [2] showed that this gen- 
eral procedure is well suited for simulation of 
statistical behaviour of even rather complicated 
systems. The following steps can be formulated: 

(1) Selection of the function G(x): for many 
chemical problems the function G(x) is usually 
known. The great advantage of Monte Carlo sim- 
ulation method is that the function G(x) need not 
necessarily be expressed in explicit form. 

(2) Distribution of measured variables: in 
chemistry it is usually assumed that measured 
variables are independent and have normal distri- 
bution. Then the Monte Carlo simulation method 
requires numerical values of quantities Z,, s(xi), 
i=l , . . . , m, only. 

When these values are not available, two limit- 
ing values of interval [A,B] in which the variables 
xi are expected should be supplied. The approxi- 
mate probability density function can be then 
expressed by the parabolic distribution 

f(xi) =6(xi-A)(B-x,)/(B-A)* 

for A <xi < B. The situation is more complicated 
when some correlation among the input variables 
exists. Then the simultaneous distribution of all 
variables xi, i= l,..., m, should be specified; 
this will be simple only for the case of the normal 
distribution. 

(3) Generation of random numbers: most com- 
puter software contains a function that will gen- 
erate pseudo-random numbers from rectangular 
distribution R(O,l). For two independent random 
numbers Rj, Rjtl the Box-Miiller transforma- 
tion is used to generate two independent random 
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numbers Nj, Nj+, 

Nj = \i(-21nsin(2aRj+l) (18) 

~+ 1= d(-2InRi)(2aRj+l) (19) 

which have standardized normal distribution. The 
jth simulated value of the ith variable Xi will be 
expressed by 

x~~=N~s(x~) +~i (20) 

(4) The choice of the number of simulations: 
the rules for the determination of the necessary 
number of simulations are the same as for the 
determination of sample size. The minimum 
number of simulations for the requested 1000 - 
a)% confidence interval D of the mean is ex- 
pressed by the relation 

nmin= [4U1-o/2S2( Y)]/D2 + l (21) 

where u1 -a/Z is the quantile of standardized 
normal distribution and s*(y) is the estimate of 
variance from the first 50 simulations. 

(5) The display of results: this step includes a 
graph of an empirical probability density function 
of simulated data {y;), j = 1,. . . , nmin, and a cal- 
culation of the estimates of location and spread, 
F* and s*(j*>. 

3. Computation 

The program Propagation-of-Errors calculates 
the results of indirect measurements or the ana- 
lytical quantity (concentration, content, etc.) jj 
and the variance s*(y) as a result of several 
errors concerning various experimental and in- 
strumental operations. In addition to the classical 
method of Taylor series expansion, two com- 
puter-assisted methods can be applied, i.e., the 
two-points estimation method and the Monte 
Carlo simulation method. The function G(x) is 
inserted in the one-row panel using the usual 
algebraic notations. The maximum number of 
directly measured variables (m) = 10. For these 
variables the value Xi and error s(xJ are re- 
quired. For all methods the approximate mean j, 
variance s*(y) and variation coefficient S(y) are 

computed. For ‘Taylor expansion all required 
derivatives are computed using difference for- 
mula. For Monte Carlo simulation the kernel 
probability density function is also creacted cre- 
ated. The probability density function of normal 
distribution N[ ~,s*(y)] is calculated and drawn. 

The program Propagation-of-Errors in the 
package CHEMSTAT is available from the authors 
up on request. 

4. Results 

The following samples illustrate the applica- 
tion of the computational Propagation-of-Errors 
technique. 

4.1. Sample ‘1: error in arsenic content in isotope 
dilution 

Arsenic was determined by the isotope dilu- 
tion method. The initial specific activity was a, = 
3.7 x lo4 s-l. After addition of the standard m1 
= 5 x lo-’ g of arsenic, the specific activity was 
a, = 5.3 X lo6 s - ‘. The relative error of the ar- 
senic content in the sample should be estimated 
supposing that the relative error of weighing is 
S(m) = 0.03%, and the relative error of the activ- 
ity measurement 6(a,) = 6(a,) = 1%. The con- 
tent of arsenic, mX, in the samples is calculated 

by 

G( *) = m, = m,( a, - a2)/a2 

Because this expression is not in the form of Eq. 
10, Eq. 13 cannot be used. Assuming that the 
quantities m,, a, and a, are not correlated, 
results obtained by three methods of the Propa- 
gation-of-Errors program are identical (Table 1). 

Table 1 
Analysis of indirect measurements in isotope dilution 

Taylor series Two points Monte Carlo 
expansion estimation simulation 

ji (B) 7.1122x 1O-5 7.1124x 1O-5 7.1142x 1O-5 
s (YX%) 1.0130x lo+ 1.0132x lo+ 1.0433x lo+ 
6 (yX%lo) 1.42 1.42 1.47 
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4.2. Sample 2: error in indirect viscosity measure- 
ments 

The viscosity of glycerol is calculated by the 
Stokes method from the following experimental 
data: the radius of the ball r = 0.0112 r 
0.0001 cm; the density of the ball d, = 
1335 kg rnm3, the density of glycerol d = 
1280 kg rnm3, the trajectory I, = 31.23 T 0.05 cm, 
the time t = 62.1 T 0.2 s, and the acceleiation 
due to gravity g = 9.801 m s-l. Viscosity, 7, de- 
termined by the Stokes method is calculated from 
the expression 

G( *) = 17 = 2gr*( d, - d)t/(91,) 

Because this relation is not of the Eq. 10 type, 
the relative error cannot be calculated with the 
use of a simple relationship. Results obtained 
from three methods of the Propagation-of-Errors 
program are in good agreement (Table 2). 

4.3. Sample 3: correlated errors in solution concen- 
tration 

A mass Cm> of 0.1 g zinc was dissolved in 
hydrochloric acid and diluted in a standard flask 
with a volume, V, of 1000 ml. A volume, V,, of 
100 ml of this solution was diluted to a volume, 
V,, of 1000 ml. The sample for analysis was pre- 
pared by taking V, = 5 ml and diluting into V, = 
25 ml. The concentration of the resulting sample 
and its relative error is calculated when the stan- 
dard deviation of weighing, s(m), is 0.3 mg and 
for the standard flasks SW = SW,) = 0.2 ml, 
SW,> = 0.05 ml, SW,> = 0.005 ml and s(V,> = 
0.025 ml. The concentration c is calculated from 

Table 2 
Analysis of indirect viscosity measurements 

Taylor series Tkvo points Monte Carlo 
expansion estimation simulation 

P (Pa s) 2.988x 1O-4 2.988~10-~ 2.986~10-~ 
s(y) (Pa s) 5.443X 10e6 5.443x10-6 5.304 x 10-6 
6(Y) (%o) 1.82 1.82 1.78 

Table 3 
Analysis of indirect measurements in solution concentration 

Taylor series Two points Monte Carlo 
expansion estimation simulation 

Y (g dmm3) 2.00 x 10-3 2.ooox10-3 2.ooox10-3 
s(y)(gdm-3) y7x10-6 ;;Tx10-6 zgx10-6 
NY)(%) . 

Errors in volumes V, and V4 are strongly corre- 
lated with errors of volumes V, and V,. 

The ideal case when correlation coefficients 
r(V,V,) = rW,V,) = 1 is considered first, while 
other variables are uncorrelated. From Eq. 13 it 
is 

6*(c) = [s(m)/m]*+ [s(V)/V]* 

+ bv1v~~1* + W2W212 

+ W3W312 + WiW41* 

- W W/J51 W2W21 

- W~‘,)/~31 bWI’,)/JSl 

and numerically 6(c) = 0.302%. 
Then, consider that the correlations between 

V, and v2,and between V, and V, are negligible, 
so that rW1vZv2) = rW313’v4) = 0 and then 6(c) = 
0.336%. 

Eq. 5 allows the mean concentration E to be 
estimated 

Z = mv,v,/( W,V,) + mV,V,[ s*( V)/( V3V2V,) 

+~*V*M~2W +~2WMv4/4w2)l 

-mV3s(vIb(~‘2)/(W2?~) 

- mW v3)4 V,>/( w2JS2) 

where the first term is equal to 2 X 10v6 g cmm3, 
the second 2.16 X 10-l* g crnT3 and the third is 
2.2 x 10-l* g cmW3. If the two smaller terms are 
neglected the mean concentration will be Z = 2 x 

low6 g cmm3 or 2 X low3 g dmm3. Results ob- 
tained from the Propagation-of-Errors method 
for a case r<V1V2> = r(V3VJ = 0 are presented in 
Table 3. Correlation between volumes V, and V, 
and also between V, and V4 diminishes the rela- 
tive error of the resulting sample concentration. 
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5. Conclusion References 

The Propagation-of-Errors program in CHEM- 
STAT applies three different approaches to analy- 
sis of indirect measurements. All three methods 
calculate the mean j, standard deviation s(y) 
and variation coeffkient 6(y) and lead practically 
to the same results. Application of the algorithm 
is simple, easy and quite convenient for analytical 
chemists but also physicists and biologists. 
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