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Abstract

The main parts of exploratory data analysis (EDA) are discussed. For data presentation the quantile plot and
quantile-box plot are proposed. Special techniques for empirical probability density construction and empirical
quantile—quantile plot creation are described. Some graphically oriented methods for selection of optimum power
transformations are presented. These graphical aids in EDA are demonstrated on Hinkley’s well known data.
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The classical approach to statistical data analy-
sis is based on some strong assumptions about
their statistical nature such as independence, nor-
mality and homogeneity. Frequently the data are
less than ideal and their effective analysis can be
realized in two stages. The first stage is ex-
ploratory data analysis (EDA), where data for
uncovering typical relationships and patterns are
surveyed and treated. The second stage is confir-
matory data analysis (CDA), where probability
models are created and tested.

According to Tukey [1], EDA is ‘“detective
work”. It uses as its tools various descriptive and
graphically oriented techniques that are typically
free from strict statistical assumptions about data.
These techniques are often called “distribution
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free” and are based only on basic assumptions
such as continuity and differentiability of underly-
ing density. EDA techniques are especially effec-
tive for the investigation of the statistical be-
haviour of data from new or non-standard mea-
surements or for the creation of probability mod-
els. A typical chemometric example is trace anal-
ysis. :

One of most frequent tasks in statistical data
analysis is the one-sample problem based on a
sample x,,..., x, representing the behaviour of a
univariate (random) variable x. For this case EDA
has three main goals: visualization of statistical
features of the sample; construction of an empiri-
cal sample distribution and comparison of this
distribution with theoretical ones; and data trans-
formation for improving their distribution such as
symmetrizing or normalization.

The realization of these goals involves the uti-
lization of techniques well suited especially for
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small and moderate sample sizes [2]. The most
popular EDA methods for one-sample problems
with applications in chemistry have been surveyed
[3].

In this paper, selected simple EDA techniques
are discussed. The full set of EDA analysis tech-
niques used in the module Basic Statistics in the
package ADSTAT has been described elsewhere
[3]. Some EDA techniques are demonstrated on
Hinkley’s well known data (sample of 30 values)

[4].

SOME BASIC CONCEPTS

The EDA techniques for small and moderate
samples are based on order statistics:

Bty S Xy = wre Sy

which are the sample values (assumed to be dis-
tinct) arranged in increasing order. Let F.(x) be
the distribution function from which values x, are
sampled. It is well known that the transformed
random variable

Zy=F[x;) (1)

has independently of the distribution function F,
the beta distribution Be [i, n —i + 1]. Its mean
value is given by

E[Zy] =i/(n+1) (2)

The elements V}; of the covariance matrix V
for all Z,(i=1,...,n) are simple functions of i,
j and n only. Using back transformations of

E[Z )], we obtain the relationship
E[x(i)] =Fe_1[Z(i)] =0.(5) (3)

where Q (P, is a quantile function and P,=i/(n
+1) is the cumulative probability. A detailed
description of the quantile function properties
and its advantages for constructing empirical
sample distributions was given by Parzen [5].
From Eqn. 3 we can deduce that the order
statistic x,, is a raw estimate of the quantile
function Q. (P,) in the position of P,. For estima-
tion of the quantile x, = Q,(P) at a value i /(n +
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1) <P <(i+1)/(n+ 1), the piecewise linear in-
terpolation

=\t L) (P 1/ (n+ 1))[x(i+1) —x(i)] +Xx
(4)

can be used. The variance D(xp) can be calcu-
lated from the equation

D(xp) =P(1-P)/[nf2(xp)] (5)

where f.(x,) is a probability density function
corresponding to the distribution function F,.
Equation 4 can be used for estimation of

sample quantiles xp or x,_p for P,=27" (i=
1,...,n). These quantﬂes are called letter values
[6] All letter values except i = 1 (median) are in
pairs. For example, we can estimate the lower
quartile x,,s (P;=0.25) and upper quartile Xg7s
(P, =0.75), etc.

For EDA purposes the modified definition of
cumulative probability

P,=(i—0.375)/(n +0.25) (6)

is often used. A discussion of a suitable definition
of P, was presented by Looney and Gulledge [7].

TECHNIQUES FOR DATA PRESENTATION

For the graphical representation of data, many
simple techniques such as the stem-leaf plot, box
plot, dot plot [1] and digdot plot [8] have been
proposed. The quantile-box plot (QBP) and
quantile plot (QP) are selected here. Symmetry
and tail length can be characterized by use of the
g-h distribution system [3,10].

Quantile plot

An empirical sample quantile plot Q(P) is
constructed as a dependence of x;, on P,. From
patterns of points some statistical features of data
such as symmetry, local concentration and rough
normality can be simply recovered. A detailed
interpretation of QP has been given elsewhere

[9].
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Fig. 1. Quantile plot for Hinkley’s data. —— —, Robust
estimate; - - , classical estimate.

For comparative purposes, the quantile func-
tions of a normal distribution

On(P) =p toup (7

where up are quantiles of the standard normal
distribution N(0, 1) and w and o are estimators
of location and scale, are superimposed on QP.

Two different normal quantile functions are
plotted. One is based on the sample mean x,
and sample standard deviation s. The other uses
robust quantile estimators u =x,5 and o = (x5
—Hans)y/ 1:349.

Figure 1 shows the quantile plot for Hinkley’s
data. It is clear that these data are positively
skewed and can be approximated in the middle
part by a normal distribution (with robust estima-
tors of location and scale).

Quantile-box plot

A quantile-box plot (QBP), proposed by Parzen
[5], is an extension of the idea of a box plot
introduced by Tukey [1]. A QBP consists of quan-
tile function graph (see previous section) on which
various boxes with vertices

[(P, 2(P)); (P, Q(1—P)); (1-P, Q(P));
(I‘P’ Q(l_P))]

are superposed. One usually chooses quartile (P
=1/4), octile (P =1/8) and sedecile (P =1/16)
boxes.
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TABLE 1
Theoretical tail lengths

Distribution T, T,

Normal 0.534 0.822
Rectangular 0.405 0.559
Laplacian 0.693 1.098

Within the quartile box one draws a median
line with the vertices

[(0.25, 0(0.5)), (0.75, Q(0.5))]

An approximate confidence interval for the me-
dian x,s= Q(0.5) is indicated by a vertical line
with vertices

(@550 = 157 X5 —X925)/0)]

The QBP with some quantile measures of sym-
metry such as [5]

8= [xo.s —0.5(xp, +x1—P,-)]/(x1*Pi —xp) (8)
(i=2,3,4) and tail length [5]

L= ln[(xl—P,» _xP,-)/(xo.75 _xo.zs)] )

(i =3, 4) can be used for the description of data
peculiarities at various distances from median.
The theoretical T, values for octiles (i = 3) and
sedeciles (i = 4) are presented in Table 1.

As described [3], the QBP can also be used for
the identification of polymodal distributions and

outliers.
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Fig. 2. Quatile-box plot for Hinkley’s data.
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Figure 2 shows the QBP for Hinkley’s data.
Corresponding values of S; and 7T, are presented
in Table 2. It is evident that the data are posi-
tively skewed and contain one outlying observa-
tion.

CONSTRUCTION AND COMPARISON OF SAMPLE
DISTRIBUTION

As an estimator of the empirical probability
density function, histograms with variable bins
and kernel type density are constructed. Compar-
ison of the sample distribution with theoretical
distribution is based on variants of the
Quantile—Quantile (Q-Q) plot. The probability—
probability and transformed distribution function
plots [5] can also be used [11].

Empirical probability density

A histogram is a piecewise constant estimator
of sample probability density (PDF). The his-
togram height in the jth class bounded by values
(¢;_y, t;) is calculated from the relationship

fu(x) = (”hj) lcn(tj—l’ tj) (10)
where the function C,(a, b) denote the number
of sample elements within (a, b) and h; =t —
t;_; is the length of the jth interval. Now, the
problem encountered is the choice of boundary
values {¢}(j =1,..., M), the number of class in-
tervals M and their lengths /; with respect to the
histogram quality. In our programs the simple
data-based two-stage technique is used.

In the first stage, the number of class intervals

M, = int[2.46(n — 1)*]

is assessed. In the second stage, the individual
lengths h; are determined. The estimation of A ;

TABLE 2
Characteristics of symmetry and tail length for Hinkley’s data

Quantile i S; T;

Quartile 2 —0.025 0.000
Octile 3 —0.134 0.712
Sedecile 4 —0.163 0.879
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Fig. 3. Histogram for Hinkley’s data. — — —, Normal PDF;
------ , histogram.

is based on the requirement of equal probability
in all classes. For this purpose the empirical
quantile function Q(P) based on order statistics
X(; is implemented.

In practice, the P-axis is divided into identical
intervals of size 1/M,. For these intervals the
corresponding quantile estimates ¢; = x(j /M) are
constructed by using Eqn. 4, where P=j/M,.
Practical experiences has hitherto demonstrated
that this construction is suitable even for strongly
skewed sample distributions. Figure 3 shows the
histogram with a normal probability density su-
perimposed for Hinkley’s data.

The kernel-type non-parametric estimator of
sample probability density f(x) can be con-
structed on the basis of the Lejenne—Dodge—
Kaelin procedure [12].

Comparison of sample distribution

For the purpose of comparison of empirical
sample distributions with theoretical distribu-
tions, variants of the Q—Q plot are suitable. The
classical Q—-Q plot is based on a comparison of
the empirical quantile function Q(P,) =x, with
a chosen theoretical quantile function Q. (P).
For theoretical distribution functions of the type
F.[(x — p) /o] it is advantageous to use the stan-
dardized quantile function Qs(P)).
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When the empirical and theoretical distribu-
tions coincide, the relationship

x(i)=lL+UQTs(Pi) (11)

is valid. Here usually u is the shape parameter
and o is the parameter of scale. For some three-
parameter distribution the shape factor is usually
a parameter of the plot. Our programs select a
shape factor value that straightens the individual
points best.

Owing to the strong dependence among order
statistics and their non-constant variance, the
Q-0 plot gives a very patterned appearance and
the degree of linearity is difficult to quantify.
Michael [13] introduced the stabilized probability
plot and Kafander and Spiegelman [14] proposed
the conditional Q-Q plot.

For EDA purposes we use the empirical prob-
ability plot (EPP) [2]. In EPP the quantiles
Qs(P,) are replaced with simulated ones 7, gen-
erated from chosen theoretical distribution.

The process of the computation of 7, can be
divided into three main steps: from an assumed
theoretical distribution the simulated samples
{xl}i=1,...,n; j=1,...,25) are generated,
from all samples (j=1,...,25) the order statis-

tics x(ji) are computed; and the simulated quan-

tiles 7; are medians from corresponding order

statistics of all simulated samples:
ai 1 25
T,= med{x(i), ) x(i)}

Based on the second largest values and second
lowest values in the sequence {x(;, ..., x3)}, the
boundary of the 85% confidence intervals can be
constructed. An analogous procedure for the case
of logistic regression has been described [15].

Figure 4 shows the classical Q—Q plot and Fig.
5 shows the EPP plot for Hinkley’s data. In both
plots the normal distribution is selected as a
theoretical distribution. The systematic deviation
from linearity indicated a non-normal sample.

POWER TRANSFORMATION OF DATA
Power transformation is used in the context of

EDA as a tool for simplifying the data distribu-
tion. Suitable power—law transformations may re-
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Fig. 4. Q-Q plot for Hinkley’s data (theoretical is normal
distribution).

sult in a distribution that is nearly symmetrical
and perhaps more nearly normal.

In many instances the symmetrizing of the
data distribution by using a simple power trans-
formation:

y=g(x)=x~(B) for >0
y=g(x)=Inx for =0 (12)
y=g(x)=—x"(=-p) forp<0

can be obtained. This transformation is not scale
invariant and is not a continuous function of 8. It
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Fig. 5. EPP plot for Hinkley’s data (theoretical is normal
distribution).
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Fig. 6. Selection graph for Hinkley’s data.

is suitable for positive data only. Optimum trans-
formation can be selected by minimizing some
robust measures of skewness:

gr=[(Yo15 —Yos) _()’o.s—yo.zs)] ;
/(Y075 = Yoas) (13)

As a diagnostic tool a selection graph can be
simply constructed. This graph is based on the
requirement of symmetry of quantiles about the
median. This requirement can be mathematically
described by the relationship [16]

(xP,-/xo.s)A (B) + (xO.S/xl*P,‘)A (B)y=2" (1)

Letter values, where P, = 25t fori=2, 35ds.,
are usually chosen. The selection graph has on
the y-axis the quantities xp/xos and on the
x-axis the quantities x,s/x;_p. For comparison
of computed points with ideal courses for con-

stant B, the solution of the equation
(B e (—~B) =72 O=<x= T3 0xy <l
(15)

is superimposed on the graph. Figure 6 shows the
selection graph for Hinkley’s data. It is clear that
it is suitable to choose B = 1/3. The value g = 0.2
leads to the minimum value gg = 0.06.

Another exploratory technique for graphical
estimation of power 8 was described by Emerson
and Stoto [17].
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The Box—Cox power transformation family,
which is a continuous function of B, can be
defined by

y=g(x)=[x"(B)-1]/B
y=g(x)=Inx

for B#0
for =0 (16)

This transformation can be used for positive data
only. After slight modification the range of appli-
cability can be arbitrarily extended.

The properties of this transformation family
have been studied in depth (e.g., [6]). Based on
the assumption that for some B, y is a normally
distributed variable N(u,, o7), the likelihood
function can be constructed. The logarithm of
likelihood function has the form

In L(B) = —n/2In(s}) + (B - 1)2_ In x;
)

where s% is the sample variance of transformed
data. The likelihood function can be plotted
against B8 in a suitable range (the standard range
is —3<B<3). On this plot the 100(1 —a)%
confidence interval of power B:

2[ln L(B*) —In L(B)] <x*(1) (18)
is superimposed, where B* is the maximum like-
lihood estimator of B. In the confidence interval
defined by Eqn. 18 are all values of B for which
In L(B) € In L(B*) — 0.5x%(1), where x> is a
quantile of the y-squared distribution. From the

s
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XX
o %
X X
s X
X X
X X
X Xx
X
-28.2 X 3,
X X
X X
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Fig. 7. Likelihood function plot for Hinkley’s data.
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width of the confidence interval the quality of
power transformation can be indicated.

Figure 7 shows the likelihood function plot for
Hinkley’s data. The optimum power maximizing
In L(B)is B=0.2.

The quality of power transformation can also
be described by using the above-discussed graphi-
cal techniques.

PROGRAM SYSTEM ADSTAT

ADSTAT contains eight modules of statistical
methods for univariate and multivariate data [3].
Manipulations with ADSTAT are very simple by
using pull-down menus and panes. Individual
program modules are built in a window-like envi-
ronment. This environment includes the powerful
block-oriented data editor, context-sensitive help
system and unified graphical presentation. Ex-
ploratory methods included in the module Basic
Statistics can be divided to three main parts:
techniques for presentation of data; construction
of empirical sample distribution and its compari-
son with twelve theoretical distributions; and
power transformation of data by using Eqns. 12
and 16. .

The above-mentioned and more complex EDA
techniques described elsewhere [3] are used.

Conclusion
The program system ADSTAT is well suited
for EDA of one-sample problems on personal
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computers. An extensive description of algo-
rithms used in ADSTAT and examples of its
utilization for the analysis of chemical data are
available [3].
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