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Abstract. Nonlinear regression program DHMINOPT has been used for an
analysis of a set of values expressing the dependence of mixed dissociation
constant on ionic strength according to the extended Debye-Hueckel law. Effi-
ciency of program has been examined on simulated data loaded with generated
random errors. Goodness-of-fit brings various regression diagnostics enabling
to prove a reliability of a regression process and parameter estimates. For five
selected sulphonephtalein indicators, i.e. Bromocresol Green, Bromophenol
Red, Bromocresol Purple, Bromothymol Blue and Phenol Red, the thermo-
dynamic dissociation constant has been determined at 25°C together with the
ion-size parameter and the salting-out coefficient.
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In determination of dissociation constants, one of the most important problems
concerns the activity coefficients. Since individual activity coefficients are not acces-
sible, some conventions have been adopted in defining them for electrolyte solu-
tions. According to Bronsted [1] and Guggenheim [2] it can be assumed that only
one linear term expressing the salting-out effect is used in an extended Debye-
Hueckel model. In the previous works in this field the first attempts in estimation of
thermodynamic dissociation constants, an ion-size parameter and the salting-out
coefficient were published [3, 4]. Regression programs for model building in solu-
tion equilibria may be classified according to a blocks structure [4-6]. Several
subroutines can make a part of one block, for example, the minimization block, the
error analysis block, etc. The division of a program into such blocks is of great help
in understanding an anatomy and function of a sophisticated regression program.
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This paper pays attention to a reliability of parameters estimated and elucidates
various regression diagnostics for proving an adequacy of the model proposed with
experimental data with the use of new algorithm DHMINOPT.

Theoretical

Modus Operandi

To estimate thermodynamic dissociation constant, an ion-size parameter and the
salting-out coefficient of the extended Debye-Hueckel equation expressing a de-
pendence of mixed dissociation constant on an ionic strength, three programs
DHMINUIT, DHFIT, DHLET are compared with new DHMINOPT. Using
structural classification an elucidation of modus operandi and a comparison of
programs is much easier:

(1) Residuals sum of squares of U(f): This block contains the regression model
being the same in four programs DHMINOPT, DHMINUIT, DHFIT and
DHLET. The theoretical model f(x; ) consists of a dependence of the mixed
dissociation constant K, = a;;- [L*"']/[HL*] on an ionic strength when both ions
HL? and L?™! have roughly the same ion-size parameter 4 in the dissociation
equilibrium HL? = L' + H* with K] = ay-a; /a;;, and that the overall salting-
out coefficient is given by C = Cy; — C;. This dependence is expressed by the
Debye-Hiickel equation

pK, = pK! — A/I(1 — 22)/(1 + B& /1) + CI, (1)

where A = 0.5112 mole ™ *2-12-K%? and B = 0.3291 mole *?-m™* - ['2-K!2-10*°
for aqueous solutions and 25°C. The mixed dissociation constant pK, represents a
dependent variable y while the ionic strength I is the independent variable x. Three
unknown parameters pK! (in general notation being ), & (being f8,) and C (being
;) are to be estimated by minimization of a residual sum of squares function U(f)

U(ﬁ) = Z Wi(pKa,exp,i - f(In PK, é, C))2

= Z Wi(pKa,exp,i - pKa,calc,i)2 = minimum’ (2)

i=1

where w, are the statistical weights.

(2) Minimization: This block searches for the best estimates of the parameters
vector f = {pKJ, 4, C} by minimizing a difference between the experimental and
calculated data ¢; = pK, .,,; — PK, cai.; so that U(f) is minimal. The nonlinear
estimation problem is simply a problem of optimization in the parameter space in
which the pK, and I values are known and given while the f values are the variables.
The theorem of calculus tells us that the function U(f) must have its smallest value at
a point where (i) all derivatives 6U(B)/6; =0, j =1, 2, 3, and is denoted as a
stationary point; (i) some derivatives 6 U(f)/0f; do not exist, and is denoted as a
cusp; (iii) the value of f; is on the boundary of the allowed region, and is denoted as
an edge point.
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The MINUIT procedure [7] in DHMINUIT applies three different minimization algorithms each
may be used alone or in combination with two others: first, a Monte-Carlo searching non-derivative
method is used at the beginning of a minimization when no reasonable starting point is known.
Second, the Nelder and Mead simplex method is based on a n-dimensional convex polyhedron
(simplex) specified by (n + 1) vertices, i.e. a triangle in two dimensions, a tetrahedron in three, etc.
Third, a derivative minimization subroutine based on a variable metric method by Fletcher of the
original Davidon-Fletcher-Powell algorithm is extremely fast near a minimum or in any “nearly-
quadratic” region but slower if the function U(f) is badly behaved. DHMINUIT employs some
“global” logic being built into the program: if derivative method fails, it automatically causes the
Nelder and Mead method to be called to make another attempt. In addition, the minimization can be
guided or separated into steps which cause a variable parameter to be fixed at a constant value or
restored to variable status in between minimization steps.

DHFIT employs the algorithm FIT [8] based on the Morrison derivative method.

DHLET employs the algorithm LETAG [4] based on the modified Sillen’s LETAGROP-VRID
method [9]. The principle of the method of “pit- mapping” (in Swedish leta-grop) is the approximation
of a criterion function U(f) in vicinity of 8% of the i-th iteration by the m-dimensional elliptic
hyperparaboloid. The coefficients of this hyperparaboloid are calculated from (m + 1)(m + 2)/2 points
{B;, U(p;)}. Substituting these points into the equation for m-dimensional hyperparaboloid we get
(m + 1)(m + 2)/2 linear equations for an estimation of their coefficients. Knowing these coefficients
from the analytical derivation a minimum of approximate paraboloid may be calculated and therefore
also the vector i+,

DHMINOPT employs the modified double-dog strategy as an alternative to Marquardt method
proposed by Militky [11, 14]. The principle of this derivative method is to reach an acceptable
minimization step between direction of linear approximation of f(x; f) and antigradient direction.
This step is calculated as a linear combination of these two directional vectors [14].

(3) Statistical analysis: This block calculates confidence intervals of parameters
and correlation coefficients. The square-roots of the diagonal elements of the co-
variance matrix are the standard deviations of the parameters.

The normalized off-diagonal elements are the paired correlation coefficients r;; between the ith and jth
parameters expressing the interdependence of two parameters when other parameters are not been
assumed. The multiple correlation coefficient R; is a measure of the dependence of the given ith
parameter on linear combination of all the others. If correlation coefficient r;; is equal to zero, the two
parameters are uncorrelated, while when r;; = 1 or —1 the two parameters are completely correlated
(collinear). Highly correlated parameters indicate that the elliptic hyperparaboloid shape exhibits a
shallow pit.

DHMINUIT is able to plot the U(f) function contours in the space of any two chosen variables
at a time. U(f) contours give the most detailed description of the shape of the residual sum of squares
function (cf. Fig. 1).

The suitable determination of the confidence interval of parameter f* is based on the maximal
length A, of the projection A,; into the parameter axis §,. In DHLET [5-6] the estimate of standard
deviation of the k-th parameter, ¥, is calculated by

A= max (Akj) (3

J

and the confidence interval of the parameter f, is estimated by
by — Ay < ¥ < by + A, 4)

Simpler is instead of projections to search directly coordinates of extreme points on the confidence
ellipsoid in directions of individual parameter axes [13].
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Fig. 1. The 3D graph of a
(1 — U(p)) response surface for
pK,—1 data from Table 1
indicates a that 4 and C are
well-conditioned in the model
because the surface exhibits an
obvious maximum, b two ill-
conditioned parameters 4 and
pKT, and ¢ two ill-conditioned
parameters pK! and C. For both
cases, b and ¢, there is no well
defined maximum (1 — U(p))

If a linearization of the regression model (1) can be used the 100(1 — a)%;th confidence interval of a
prediction f(x*; b) in the point x* may be calculated too [14]. The confidence intervals of prediction
calculated in DHMINOPT for the whole range of independent variable I form the confidence bands.

(4) Goodness-of-fit: This block contains the examination of fitness achieved by the
statistical analysis of residuals. The residuals are defined as the differences

pKa,exp,i - pKa,calc,i’

é

i

i=1,...,n,

()
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where pKa, exp,i s the i-th observation and pK,, caic,; is the i-th prediction. If the
proposed model represents the data adequately, the residuals should form random
pattern. Systematic departures from randomness indicate that model is not satisfac-
tory and detect: (i) an outlier or an extreme observation; (i) a trend in the residuals;
(iii) a sign change; (iv) an abrupt shift of level in the experiment.

In many regression programs used the statistical analysis of residuals represents the main diagnos-
tic tool and a resolution criterion in a search of the “best” model when more than one are possible or
proposed. The following statistical characteristics of residuals can be used for a fitness evaluation:
(1) The arithmetic mean of residuals known as the residual bias, E(é), should be equal to zero;
(2) The mean of absolute values of residuals, E|e|, and the square-root of the residual variance s%(&)
known as the estimate of the residual standard deviation, s(€), should be both of the same magnitude as
the (instrumental) error of dependent variable pK, ..., Sin(PK,). Obviously it is also valid that
8(8) = s, (PK,); (3) The residual skewness, g,(€), should be for Gaussian normal distribution of
residuals equal to zero; (4) The residual curtosis, g,(€), should be for Gaussian normal distribution
equal to 3; (5) The determination coefficient D? is computed from the relation

DIoq— U(b)

; (6)

-

Il
-

(pKa,exp,i -pK )2

a, exp.
1

where pK, .., = (1/n) Y7, pK, .., ;- The determination coefficient is for linear models equal to square
of multiple correlation coefficient; (6) When determination coefficient is multiplied by 1009, we
receive so called regression rabat, D?-100[%]; (7) In chemometrics the Hamilton R-factor of relative

fitness is often used being expressed by
[ Ub)
Ri= e o 7
Z pKZ,exp,i ( )

For pK, .,, = 0 it is valid that R* = 1 — D? and so that the following relation between R and D is
valid

(1 — D*)n pK, .2
R= [(1-D?%~- kel 8
\/( ) Z pK:, exp,i ( )

The Hamilton R-factor of relative fitness exhibits a difference between two models, pK, = f(I; ) and
pK, = 0. This rule is not correct for models with an intercept term and the values of the Hamilton
R-factor are incorrectly low. It should be noted that D? also R-factor are continuous function of the
number of parameters. While D? is an increasing function of the number of parameters, the R-factor
is decreasing function of this number. Therefore, both statistics are not convenient as the resolution
diagnostic for a search of models of different numbers of parameters. (8) To distinguish between
various models the Akaike information criterion AIC is more suitable to apply which is defined by
relation

AIC = —2L(b) + 2 m, o)

where m is a number of estimated parameters (here is 3). The “best” model is considered to be a model
for which this criterion reaches a minimal value. Using the least-squares and models which do not
belong into the same class the AIC criterion may be expressed

uU(b)

AIC=nlIn |::| + 2m, (10)
n
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where m is 3. To above application of statistical analysis of classical residuals é it should be critically
noted that the diagnostic use of classical residuals is not rigorous but of a rather approximate
character. The classical residuals do not exhibit zero mean, they are biased and they are a linear
combination of errors &. Moreover, they are dependent on true values of parameters f* which are
unknown.

While for linear regression models all characteristics for an identification of influential points are
function of residuals &; and diagonal elements H;; of projection matrix H = X(X™X)™'XT for nonlinear
regression models the situation is rather more complicated as the parameter estimates and residuals
cannot be expressed so simply as the linear combination of experimental data. When the Taylor type
linearization of original nonlinear model is used, all methods of identification of influential points in
linear models can be used. The procedure starts from the one-step approximation of the parameter
estimate computed without i-th point

é.
bl = b — (1T Lg,—
(i) ( ) 11 _ P

>
ii

(11

where P; are elements of a projection matrix, P = J(JTI)71J7T, cf. ref. [14].
The influential points may be easily identified on base of the one-step approximation of the
jackknife residuals &,; calculated by
8.
&= ———, (12)
S/l =B

i

where 87, is residual variance computed by using estimates by,

- FER. S} (13)

Jackknife residuals higher than 3 indicate highly influential points.
Nonlinear measure of an influence of the i-th point on the parameter estimates is represented by the
likelihood distance

LD; = 2[InL(b) — In L(b,)]. (14)

In case of the least-squares the likelihood distance is expressed by

LD, =il [U(”m)] . (15)

U(b)

When LD, > ¥%_,(2) is valid the i-th point is strongly influential. The significance level « is usually
chosen to be equal to 0.05 then 3 45(2) = 5.992.

(5) Data simulation: This block serves for debugging a program or for an examina-
tion of reliability of parameters estimation. For chosen parameters and their stan-
dard deviations, the “theoretical points” along the exact curve pK, = f(I; pKa, &, C)
are calculated. Each theoretical point is then transformed into an “experimental”
one by the addition of a random error (having, for example, a Gaussian normal
distribution) obtained with the aid of a random-number generator.

Loading the theoretical points with high random error may, however, decrease
the accuracy and precision of the parameters estimated. When several parameters
are to be refined or ill-conditioned parameters are in model, data with a low
precision may result in erroneous values of the parameter estimates.
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Quality of Regression

The quality of nonlinear regression model is examined using following criteria:

(1) The quality of parameter estimates: The quality of parameter estimates is
considered from their confidence intervals or from their variances D(b;). Often the
empirical rule is used: the parameter is considered to be significant when its estimate
is greater than 3x its standard deviation. High values of parameters variance are
often caused by termination of minimization process before reaching a minimum.

(2) The quality of curve fitting: An agreement of proposed model with experimen-
tal data is examined by the goodness-of-fit characteristics based on the statistical
analysis of residuals.

(3) The quality of experimental data: For examination of a quality of experimental
data the identification of influential points by regression diagnostics is used. The
suitable diagnostics are the likelihood distances LD; and jackknife residuals €;.

Software

DHMINOPT was applied from CHEMSTAT package [14] (Trilobyte, Pardubice) on IBM PC while
other computations (DHFIT, DHLET, DHMINUIT) were performed on the EC1033 computer at
the Computing Centre of the University of Chemical Technology, CS-532 10 Pardubice, Czechoslova-
kia.

The package CHEMSTAT is available from authors upon request.

Results and Discussion

There were 20 points of dependence pK, = f(I) calculated for pre-selected values of
parameters pK = 5.000, & = 0.45 and C = 0.300 and loaded with random errors
generated for an instrumental error of dependent variable s, (pK,) = 0.005. For
an initial guess of parameters (pK1)® = 1, (3)¥ = 0, C© = 1 the sum of squares
U(b?)is 325.7. The program DHMINOPT reaches a minimum U(b) = 4.94-107%
with parameters estimates pK} = 4.997, 4 = 4.524, C = 0.299 while DHMINUIT
U(b) = 4.957-10* with 4.997, 4.525, 0.299, DHFIT with 4.997, 4.525, 0.299 and
DHLET with 4.996, 4.559, 0.298. The point and interval estimates found by DHMI-
NOPT are in Table 1.

As ill-conditioned parameters (here 4) in Fig. 1 have little influence on the
residual sum of squares function U(f3), they have large value of parameters standard
deviation and their determination is less certain. On the other hand, well-condi-
tioned parameters (here pK], C) lead to a pronounced maximum in (1 — U(f)) so
that they have a great influence on the hyperparaboloid and parameters standard
deviations are rather small.

The multiple correlation coefficient R(&4) = 0.9515 reaching largest value proves
that & is strongly correlated with pK! and C. The matrix of paired correlation
coefficients shows highest negative correlation between parameters & and C and
then between & and pK}. This correlation may be elucidated by a flat shape of the
maximum (1 — U(pB)) in Fig. 1. Smaller correlation between pK} and C proves an



Table 1. Regression analysis of simulated data of extended Debye-Hiickel equa-
tion by DHMINOPT. Data are calculated for pK = 5.0, 4 = 4.5, C = 0.3 and
loaded with random error generated for s;,(pK,) = 0.005.
(a) Point and interval estimates of parameters with their statistical characteristics.
Accuracy is expressed by the relative systematic deviation of each parameter

in percent.
Half-length of

Standard confidence interval Relative
Parameter Estimate deviation syst. dev.
Bi b; s(by) A, Ag,; erar(b;), [%]
pKt 49973 0.0034 0.0090 0.0106 0.054
a 4.5237 0.0790 0.2446 0.2446 —0.527
C 0.2990 0.0024 0.0069 0.0075 0.333

(b) Matrix of partial correlation coeffi-
cients of parameters, r;;.

pKT a c
pK” 1 —0.844 0.612
a —0.844 1 —-0917
C 0.612 —0.917 1

(c) Goodness-of-fit test by an analysis of residuals and identification of influential points (i)

Indep. Response Generated Classical Jackknife Likelihood
variab. measured error residual residual distance
i I pK, € ¢ & LD
1 0.01 4.8646 —0.004744 —2.1330E—-03 —6.8887E—01 6.8351E—03
2 0.04 4.7752 —0.000030 2.4165E—03 8.5434E —01 7.5280E —03
3 0.09 4.7019 —0.006361 —4.0980E —03 —9.7670E — 01 1.3443E—-02
4 0.16 4.6661 0.003561 5.6531E—03 1.2521E4+00  2.1715E—-02
5 0.25 4.6407 0.006528 8.4750E — 03 1.5134E4+00  6.9497E—02
6 0.36 4.6145 —0.005988 —4.1547E—-03 —9.7966E —01 8.8595E—03
7 0.49 4.6084 —0.011194 —9.4401E—03 —1.5190E + 00 1.0674E —01
8 0.64 4.6318 0.001692 3.4004E —03 1.0004E+00  7.4421E—03
9 0.81 4.6484 —0.002600 —9.0466E — 04 —3.9492E—01  4.4736E—03
10 1.00 4.6726 —0.008887 —7.1712E—-03 —1.3154E+00  4.2531E-02
11 1.21 47179 —0.003061 —1.2931E-03 —49730E—01  4.6641E—03
12 1.44 4.7769 0.007956 9.8064E —03 1.6213E+00 1.3634E—01
13 1.69 48213 —0.003755 —1.7924E—-03 —6.0626E—01  4.8549E—03
14 1.96 4.8896 0.000613 2.7163E—03 9.1282E—01 5.6278E—03
15 2.25 4.9522 —0.008288 —6.0162E—03 —1.1970E+00  2.0001E—02
16 2.56 5.0424 0.003049 5.5155E—-03 1.2396E +00 1.6851E —02
17 2.89 5.1242 —0.001204 1.4830E —03 7.3327E—01  4.8170E—03
18 3.24 5.2178 —0.000704 2.2302E—03 8.3698E —01 6.2688E —03
19 3.61 5.3129 —0.005627 —24221E—-03 —7.3291E—01 7.4632E —03
20 4.00 5.4196 —0.005772 —2.2707E—-03 —7.1440E —01 7.1671E—03
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Goodness-of-fit test

Residuals
Bias, E(€) 1.2037E—-08
Mean of absolute values of residuals, E|€| 0.0042
Mean abs. values of relative residuals, 100E|€,| [%%] 0.08711
Variance, s2(&) 2.6021E —05
Standard deviation, s(é) 0.0051
Skewness, g, (é) 0.1527
Kurtosis, g,(é) 2.3874
Residuals sum of squares, RSS 4.9439E-04
Regression rabat, 100D2, [%,] 99.957
Akaike information criterion, AIC —2.0291E+02
Hamilton R-factor, [%] 0.101

independence of these two parameters and corresponds to a well-developed maxi-
mum (1 — U(p)).

Statistical analysis of residuals is a criterion of reliability of parameters estima-
tion. The residual standard deviation s(€) is in good agreement with the pre-selected
value of instrumental error, s, (pK,) = 0.005. Sufficiently close fitness is proved by
high value of regression rabat D? = 99.95% and low value of Hamilton R-fac-
tor = 0.1019{ expressing a good fit. The normal distribution for residuals is exam-
ined with skewness g,(€) and curtosis g,(€). Normal distribution of residuals is
proved by low value of skewness g, (€) (for normal distribution g, (€) should be equal
to 0), and by curtosis g,(€) (for normal distribution g, (&) should be equal to 3), and
for the normality test it is y2,, < x3-,(20 + 1).

Table 2 gives estimation of the thermodynamic dissociation constant pK[, an
ion-size parameter 4 and the salting-out coefficient C for five sulphonephtaleins, i.e.
Bromocresol Green (BCG) cf. Fig. 2, Bromophenol Red (BPR), Bromocresol Purple
(BCP), Bromothymol Blue (BTB) and Phenol Red (PR). Found estimates are in
good agreement with values from literature [3]. The confidence interval of each
parameter is calculated by Eq. (3) while literature value uses a threefold standard
deviation of each parameter. The four studied sulphonephtaleins have their ion-size
parameter within a narrow range 0.760—0.839 nm. The only exception is the ion of
the simplest, non-substituted sulphonephtalein, Phenol Red, for which the ion-size
0.361 nm is in agreement with the value 0.40 nm published by Sendroy and Rodkey
[15].

Conclusion

Many problems in protonation equilibria can be reduced to the problem of finding
a suitable mathematical model and its unknown parameters by minimizing the
difference between experimental and calculated data. Variety of regression diagnos-
tics introduced here serves as an efficient tool in search of true model. Besides a
regression model of extended Debye-Hueckel equation also other models of activity
coefficients, for example, containing an interaction terms between pairs of ions of
opposite charge in Debye-Hueckel equation may be applied in DHMINOPT.
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Table 2. Determination of thermodynamic dissociation constant, ion-size parameter and salting-out
coefficient for five sulphonephtaleins at 25°C. Data taken from Ref. [3] (A = 0.5115, B = 0.3291,
(1 —2?%—2>=23).

BCG BPR BCP BTB PR
Input data
1 pK, 1 pK, I pK, | rK, 1 rK,
0.010  4.901 0010 6017 0010 6085 00025 7.143 0039 7801
0.022 4871 0022 5970 0.022 6.039 0011 7.075  0.061 7.758
0.040 4834 0040 5935 0040 6009  0.024 7029 0.128  7.677
0.060 4808 0060 5908 0060 5986  0.045 6979  0.261 7:575
0.116 4765 0116 5872  0.116 5941 0.067 6.954 0353  7.538
0.232 4709 0200  5.841 0.232  5.901 0.127 6.924  0.635  7.465
0392  4.691 0392 5797 0392 5871 0251 6.878  0.789  7.455
0.594 4.677 0594 5775 0594  5.861 0.423 6.844 1.420 7450
0.920  4.664 1.004 5760  0.923 5.856  0.635 6.838 2250  7.465
1.330  4.662 1.445  5.765 1.330  5.863 1.004 6.822  3.610  7.520
2050 4686 2260 5788  2.000  5.884 1.445 6.826
3720 4785 4000  5.865 3720 5947  2.260 6.843
4.000 6.915
Parameters estimates
pKT 5.034 + 0.014 6.138 + 0.011 6.202 + 0.008 7.199 + 0.012 8.041 + 0.032
Liter.  5.033 + 0.013 6.138 + 0.010 6.198 + 0.017 7.199 + 0.011 8.035 + 0.018
a 7.60 + 0.73 7.85 + 0.60 8.39 + 045 7.76 + 0.66 361 +0.70
Liter. 7.59 =+ 0.60 7.84 +0.51 876 + 0.93 744 + 0.60 375 +£0.38
C 0.068 + 0.012 0.055 + 0.009 0.056 + 0.006 0.055 + 0.010 0.107 + 0.033
Liter.  0.068 + 0.010 0.055 + 0.008 0.055 + 0.012 0.055 + 0.010 0.100 + 0.018
DEBYE-HUCKEL EQUATION: Bromocresol Green
5.00
PK,
490 >l
|
X
l
|
480 H
470 -
Fig. 2. Curve fit for the dependence
of mixed dissociation constant on
the ionic strength for Bromocresol
1 1 1
/,,50_1 . J1i é % r Green expressing the extended

Debye-Hueckel equation
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