By Milan Meloun : 2 1

Chemical _____._. . .ilding and testing:

Spectrophotometry

PECTROPHOTOMETRY and potentiometry are
S two useful methods for elucidating the

composition of solutions, The power of the
techniques lies in the fact that quantitative absorb-
ance or pH measurement can be performed without
disturbing the complexation equilibria under con-
sideration. Equilibria studies of complexes involve
finding a chemical model of the complex-forming
system and determining the number of complexes in
solution, their stoichiometry, stability constants,
and molar absorptivities.

The spectrophotometric and potentiometric
study of solution equilibria has been greatly ad-
vanced by the introduction of computer-assisted
methods of data processing.'™"° The computer is
connected to the primary instrument (spectropho-
tometer or pH mcter) with a predetermined func-
tion, the computer function being limited by the in-
telligence of a program and by the power of the
logic tools used in a program. Thus, the computer is
both more versatile and more difficult to use.

Computer-assisted analysis of solution equilibria
has made great progress during the last 25 years; we
now have more appropriate numerical methods
available than those developed by Ingri and Sillén.’
To make any progress in equilibria study today, we
must pay attention to the advanced numerical algo-
rithms and structure of sophisticated program-sys-
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tems. Computer interpretation of spectra thus en-
ables a much better understanding of solution equi-
libria.

Design of chemical model

Considering a system of mectal M, ligand L, and
proton H in which M and L absorb radiation in the
visible and/or ultraviolet (UV) region, chemical in-
teraction can lead to complexes represented by:

pM+ gl +rH=M,LH, (1)
with the overall stability constant
Boor = IMLH)/ (IMPILV[HY )

From Lambert-Beer’s law it is obvious that for
the M solution at the k™ wavelength, the absorb-
ance, A, ,, for unit pathlength is defined by:
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where PQR are the maximum value of possible
stoichiometric indices that they can reach, and ¢, «
is the molar absorptivity at k™ wavelength for the
complex species M,L H,. Thus, given sufficient
values of A, it should be possible to evaluate f,,,
and ¢,,, for the designed chemital model.
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SPECTROPHOTOMETRY continued

Programs for chemical model search

The advanced computer program of speciral
analysis is constructed fro. . rwelve Jogical units,
each having a specific function und each consisting
of several subroutines. This structural classification
{Figure 1) of a sophisticated program seems (o be
valuable in understanding the anatomy and modus
operandi of a program and its further implementa-
&ion.c“i.l"lﬂ

The residual-square-sum unit. The spectrophoto-
metri¢ equilibrium program adjusts parameters fi,,,
and ¢, for any absorbance data by minimizing the
residual-square-sum function U defined by

n n
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where the dependent variable 4, represents the ele-
ment of the absorbance matrix of size (n, X n,)and
the independent variables are adjusiable total con-
centrations of basic components ¢y, ¢;, and ¢, be-
ing adjusted in a2, solutions during the experiment,
Unknown parameters might be divided into three
groups: 1) the number of light-absorbing complexes
n,, and their sioichiometry (p, g, r),, j = 1, n, 2)
stability constants and molar absorptivities of all

concentrations of all complexes (M, L ]}, j = I,
n,, in all n, solutions.

The minimization unii. The regression problem is
to find the best estimates of parameters, §§,, j = |1,
m, for which a residuai-square-sum function U = X
exps — Veares)’ takes on its smallest value where Voure
= fix; Bi. Bay . . ., B.). The nonlinear estimation
appears as simply an optimization problem in the
{m + 1)-dimensional parametric space in which y’s
and x's are given numbers and f’s are the variables
(Figure 2). :

The theorems of calculus'’ state that the function
U must take on its smallesi value at a point where:
1) all derivatives dU/dp, = 0,5 = }, .. ., m (asta-
tionary point); 2) some derivatives dU/df, do not
exist (a cusp); or 3) the point B, is not on the bound-
ary of the allowed region (an edge point). The usual
simplification consists of abandoning the aitempt
to find the global minimum apd being satisfied with
a local minimum for which f has a physical megn-
ing. A local minimum may be defined as a point f3,,,
where for all points in_some neighborhood around

-

B we have U(B) > Ulf,.).
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Figure 2 Graphical interpretation of a systematic search
of @ minimum U, in (m + 1}-dimensional parametric
space, for two parameters m = 2, i.e, 3-D space. Para-
metric standard deviations s(f}\) and s{fi:) are estimated
from the last U contour "D boundary."

There are more than 40 various optimization
algorithms,"' ™" all of which fall into two broad
classes: derivative-free methods and derivative
methods. If in the search for a minimum of U, the
partial derivatives of U with respect to §; must be
calculated, the method is 2 derivative method;
otherwise, the method is termed derivative-free.

Some derivative-free methcds are: direct search-
ing (Grid search method, Monte Carlo method,
Rosenbrock’s method); the simplex method; and
the pit-mapping method. Derivative methods in-
clude the Gauss-Newton and Newton-Raphson
methods, the steepest descent method, the conju-
gate gradients method, and the Davidson-Fletcher-
Powell variable metric method.

The minimization process may be organized by
two different algorithmic and heuristic (trial-and-
error) ways. The algorithmic process performs
minimization quite automatically and usually finds
the global minimum or the lowest minimum from
several local ones. The heuristic process depends
more on deci- ‘nns of the user. The user must then
decide whethui it is sufficient to know the location
of any local minimum or whether the knowledge of

the global minimum is required. The user should

Special insert on wew research microscopes:
Circle No. 3 for literature, No. 4 {or demonstration
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Flgure 3 Graphicai interpretation of residuals quickly
shows (from top to bottom): 1) an extreme rbservation
{an ouilier); 2) a trend in the residuals; 3) the frequency
of sign changes; and 4) an abrupt shift level of the ex-
paciment.

guess the initial parameters, minimization steps,
and organizational framework to control the proc-
ess from iteration to iteration, %!~ "

The error analysis unit. There are several statisti-
cal measures corresponding to a precision of esti-
mated parameters and a confidence interval of cal-
culated regression curve, In LETAGROP-SPEFQ,"* the
standard deviation for absorbance, s(A)}, is denoted
as SIGY and is calculated by dividing the U, at a
minimum by the number of degrees of freedom,
For standard deviations of various parameters,
s(#), the ‘D boundary’’ last contour of U,” U =
Unin + $5%(A), is defined and s(f3;) for each param-
eter is calculated as the maximum difference s(f}) =
max [ (B, — P.in)i] between the value for f3; at any
point on the D boundary and the value for §; at the
minimum (Figure 2).

PSEQUAD" also evaluates the partial, multiple,
and total correlation coefficients expressing an in-
terdependence of two parameters f§; and 3, A cor-

Speclai Insert on new research microscopes:
Circie No. 3 for literature, No. 4 for demonstration

relation coefficient of zero signals the complete in-
dependence of the species while + 1 or — | means a
complete correlation between them, and two such
parameters cannot be estimated simultaneously.

The fitness test unit. To identify the ‘“‘best’
chemical model when more than one is possible or
proposed, the analysis of residuals, r, = y,,, -
Yeatei» 15 performed. If the model represents the data
adequately, the residuals should be randomly dis-
tributed about y,. predicted by the regression equa-
tion. While graphical presentation of residuals (Fig-
ure 3) will quickly discover an extreme observation
(an outlier), a trend in the residuals, the sign
changes, and an abrupt shift level of the experi-
ment, the statistical analysis makes a rigorous test
of achieved degree-of-fit if residuals are represented
by a normal (Gaussian) distribution. To do so,
some statistical variables are calculated:'*'¢ the re-
sidual mean, the mean residual and its standard de-
viation, the skewness (which should be zero), the
curtosis (which should be equal to 3), and the Pear-
son Chi? test. The Hamilton R-factor is a measure
of relative fitness expressed as a percentage. A value
less than 0.5% describes an excellent fitness
achieved while greater than 2% expresses a poor fit.

The data simulation unit. To test the suitability
of a program function for a particular equilibrium
case, simulated data are often used. For optional
values of parameters (i.e., stability constants, molar
absorptivities, etc.), and for given values of inde-
pendent variables (i.e., concentrations, pH, etc.),
the ‘‘theoretical’’ points of the curve are precisely
calculated. Each ‘‘theoretical’’ point is then frans-
formed into an ‘‘experimental’’ one by the ad: on
of a random error, e, generated by the random
numbers generator and added to the basic instru-
mental error of the spectrophotometer used,
Sima{A), given in input data.

Generated random errors should have a Gaussian
normal distribution and therefore an actual distri-
bution of generated errors is tested. The mean error
(should be 0), the average error and its standzrd de-
viation, the skewness (should be 0), the curtosis
{should be equal to 3), and Hamilton R-factor are
calculated and an actual distribution is tested.

Loading spectral points by high random errors
may bring a decrease in accuracy and precision of
parametric estimates. A lower value of s;,,(A) leads
to more accurate and precise values of parametric
estimates. When more parameters are to be refined
or when poorly conditioned parameters are in the
model, data of lower precision may yield erroneous
and uncertain values of parametric estimates.

The free concentration unit. In solution equilib-
ria studies the calculation of free concentration of
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SPECTROPHOTOMETHY continued

each species in a complex-forming system is based
on the total (analytical) concentrations of basic
components and the stability constants., The chemi-
cal model is defined by stoichiometric coefficients
(v, g ), Jj = 1, n. Species concentrations ex-
pressed in mass-balance equations are calculated
for cach experimental absorbance-concentration
curve point and various approaches may be
found.'”'" Some are based on COGS subroutine'’
when free metal, ligand, and proton concentrations
are calculated by the derivative-free, iterative
method: Starting from an initial guess that com-
plexation is negligible, [M] = Cyops (L] = €0,
and [H] = ¢, ., the method calenlates concentra-
tion for each complex to give €y aes €1 care, and
Crieatee 1 he initial estimates of [M], (L}, and [H] are
then replaced by [M] (G loy o e E]
((‘L.cxp‘/cl,.ualc)”2‘ and {"I! ((\H,up/‘:'Il,calc)l/z' Wilh
these new estimates the calculations are repeated
until all values of calculated total concentrations
differ from experimental ones by less than a speci-
fied quantity (usually 0.001 % of ¢, ., €1C.).

The species number unit. There is a theorem in
the matrix calculus that the rank of matrix which
can be written as the product of iwo other matrices
is equal to the smaller of the ranks of two latter ma-
trices. As the rank of the absorbance matrix was
proven to be equal to or less than a number of ab-
sorbing species in solutions,” " n/, where n. € n/<
a1, + n, itisuseful to determine the integer n/at the
beginning of spectral analysis.

The second moment matrix is formed from the

product of absorbance matrix A and its transponse”

AT by the formulaM = (1/n,) - A - A7, which leads
to a symmetric square matrix of order n, and of
rank n/, rank (M) € n. Wernimont?® relared that
the matrix M has at most n/ nonzero eigenvalues,
and the number of nonzero eigenvectors is the
mathematical rank of the matrix A,

As each element of the absorbance matrix 4 is
subject to experimental ervor, the number of nop-
zero eigenvalues is min(n,, n,). Let the eigenvalue
of M be a; and let the independent components in
the system be k. The residual standard deviation of
absorbance is given by:

L1

selA) = [(tr(M) ~ Z. aln— K2 (5)

When the precision of the absorbance measure-
ment S, (A) is determined by the instrumental error
of the spectrophotometer used, it may be set so that
if 5,(4) € s5,.(A4), zen n/ < k; tr(M) is trace of
matrix M, i.e., the sum of elements on diagonal of
matrix.

Factor analysis FA608"' can also be applied to
find fatal, accidental errors in the absorbance ma-
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trix. From second moment matrix M and its o/
eigenvectors, mairix (7 from these veciors is com-
puted. An approximation matrix 4 ' of the absorh-
ance matrix A is now obtained, A’ = G- G’ 4. All
points that satisfy the inequality (4 — A > S
$.(A) are neglecied and substituted by the smoothed
value 4. Option of fis recommended to be f = 3.
When f <3, it is a risk that too many points could
be smoothed and the spectrum therefore damaged.
For a removal of outliers only f is recommended
from the experience of Kankare?® 10 be a suitable
value equal to 3 or higher. After they have been
smoothed, all the matrices are recalculated and n/
estimated again but no resmoothing is performed.

The method of matrix teiangularization origi-
nated by Wallace and Katz®* and modificd by Varga
and Veatch® met with some criticism, so the
method of factor analysis is preferred.

The species selector unit. Only two programs,
LETAGROP-SPEFO' and PSEQUAD,'® use the species-
selector to search a true cheieical model from sev-
eral proposed ones. To the initial set of species from
input, the program adds one after another from a
list of species being ready for testing. If a new spe-
cies improves the residual-square-sum function U
for the given data set and fulfills the F, condition’ it
is accepted; otherwise it is rejected. The test for the
“final”’ set of species is that no new species are ac-
cepted when all the rejecied ones have been recycled
through the program.

Sometiimes the best estimates of B, may come
out quite low as compared with iis standard devia-
tion, s(3,,,), and one may ask whether the value log
Poer 15 significant or not. Sitlen’ counts as “‘signifi-
cant’” only if 8, > F, - s{f,,.); hence species which
do vot fultill this condition are rejected. The ) may
he correluted to a value for the “level of confi-
depce,” which would mean the probability that the
corvespanding parameter would be significantly
postive, The fact that a certain species has been re-
jecied by the species selector doss not mean that it
does not exist, though the data analyzed give no
sttong evideace for its sxistence.

The unkpown stolchiometry of complexes may be
detereined by the recently developed ESI meth
od "™ s aroup of complexes s divided into *‘cer-
iain'” complexes of known stoichiometry and ““un-
certain’ complexes; the stoichiometvy and stability
constams are estimated stinngancously and proven
by achieved degiee of il The real values found fox
stoichiometric indices should nov differ sigmify-
cantly from integers if the chemical model found is
right. ’

The absvgpiivity wndi. The adjustment of stability
constant fi,,, and wolar absorptivities €, _in

o

LETAGROP-SPEFO™ s made at two levels. The £,



SPECTROPHOTOMETRY continued

are varied at an upper level, and free concentrations
of complex-species in each solution are calculated.

Then, for each wavelength, the coptribution to U

for systematically varied valugs of ¢, is calculated,
assuming that the estimated s, gives the minimum
contribution to second-degree-surface function U,
After each iteration for each wavelength, negative
“insignificant’’ values of ¢,, are eliminated.
SQUAD? employs the ECOEF subroutine, which cal-
culates molar absorptivities ¢, of the /™ species for
the i wavelength with the use of an algorithmn
from Nagano and Metzler.?¢

The visualization tools unit. A 3-D graph of an
absorbance-response-plane visualizes absorbance
changes within a variation of concentrations of
basic components, helps to design an experimental
plan of solution preparation, and also demonstrates
a quality of fitness of calculated regression spectra
through experimental points.

Printer-plot in SQUAD visualizes a degree-of-fit of
each spectrum aad its particular decomposition to
the absorbance increments of individual species in
the system. It is beneficial in experimental design to
exclude those solutions with concentrations that in-
dicate poor absorbance for some species (Figure 4).

The response-surface-plane of the residual-
square-sum function U represents the paraboloid in
two optional parametric coordinates in the neigh-
borhood of the minimum (pit), U.,. For two op-
tional parameters, the shape of paraboloid (1.0 —
U) is investigated for conditioning parameters in
the model. The regular paraboloid shape proves
that both parameters are well-conditioned in a mod-
el and so their determination may lead (o accurate

(4,

LLAMBDA

Figure 4 Each experimental specirum is decomposed
into spectra of individual species of chemical model in-
dicated by spectra in the complex-forming system.
Spectra of six solutions are described by a simple sys-
tem of MLz, ML, and L color complexes.
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Figure & Response-surface of residual-square:sum func-
tion (1 — W) for two well-conditioned parameters in mod-
gl (a), and for twa ill-conditioned parameters in model (b)
whose estimation is rather uncertain. Example of a mod-
el of two overiapping protonation aquilibria by absorb-
ance-pH curve analysis. (Reproduced with permission
from Talanta 32, 973-986 [1985].)

and precise estimates. The “‘flat-bottomed-saucer”’
shape of the pit-neighborhood illustrates two ill-
conditoned parameters; their determination is
rather uncertain and regression analysis can lead to
uncertain estimates only (Figure 5).

The U function contours may be plotted in the
space of any two optional parameters at one time.
This gives the detailed description of the shape of
the U, neighborhood.

Physical meaning of estimated molar absorptivi-
ties is considered from a spectrum ¢ = f(A) for each
light-absorbing species. Realistic and nonnegative

“values of £ and the smooth shape of the spectrum

are examined.

The additional subroutine unit. Reilley and
Smith?’ extended complementary tristimulus color-
imetry to a determination of equilibrium constants
and of a formula of metal complexes for simple and
consecutive reactions during which colored sub-
stances are present or are formed. SQUAD(84)'® en-
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ables a calculation of chromaticity coordinates {X,
Y, Z} and also CIE (Commission Internationale de
PEclairage, 1931) coordinates {x, »}.

This unit contains a list of mathematical library
subroutines necessary for a regression program.
Format-free input reading routines are here,

The input/output unit, Some programs, such as
SQUAD? and SQUAD(84),'® use self-explanatory mes-
sages whenever fatal errors or other misprints on in-
put cards are detected and program execution is in-
terrupted. Even when spectra treated by computer
analysis are from a spectrophotometer giving a high
degree of precision, the selection of a certain range
of data may be necessary. Often some species are
present in low concentration. There may be
““enough to interfere, but not enough to determine’’
a specimen., Unfortunately, there is no unified
method of input preparation for handling such situ-
ations when more programs for a comparison are
executed.

Numerical values of stability constants and molar
absorptivities may not seern very interesting in out-
put. The graphical interpretation brings greater ef-
fect as a diagnostic tool for the search of a most
probable * chemical model. Spectra-fitting, 3-D
graph, graph of molar absorptivities and their stan-
dard deviations, graph of deconvolution of each ex-
perimental spectrum, distribution diagram of the
relative population of all species, and graph nf a 3-
D response plane (I — U) dependent on two op-
tional parameters are the most frequently used
graphs. The plane (! - U) is a function of two
chosen parameters.
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Procedure of chemical model building

The procedure of chemical model building and
testing contains the experimental part followed by a
computer-assisted analysis in a sequence (Figure 6);

1. Evaluation of instrumenta! error of the spec-
trophotometer, s,,(4). Wernimont’s procedure?®
of spectrophotometer performance examination is
applied on spectra measured for various concentra-
tions of potassium dichromate in order to evaluate
Ss{A). As the matrix rank for X,Cr,0, is equal to
one, the standard deviation s,(A) estimated by
factor analysis FA603% represents the requested in-
strumental error, §;,,(A4).

2. Plan of spectral measurement. Concentrations
of basic components ¢y, ¢,, and ¢, shonld be varied
over a broad range to cover all possible complexa-
tion steps by a technique of mole-ratio method (g,
= Cp/Cp OF ¢ = € /Cy 1$ varied) or the continuous
variations method {(x, = cy/{cytc) or x, =
c /{Cp+ €y ) is varied).

3. Preliminary analysis. Fot *‘analytical wave-
lengths” of absorption maxima the mole-ratio
curves A = fgyh or A4 = flg, ), the Job curves 4
= flh or A = f(x,), are evaluated to determine
the dominant complex prevailing in the complex-
forming system. Graphs and/or computer-assisted

“multiparametric curve-fitting methods MRLET and

MRFIT,* JOBCON,?® DCLET,” SPOPT, LETAGROP-
SPEFO,'* NCLFT * and PSEQUAD'® may be applied.
4. Number of species by factor analysis. Factor
analysis FA608% estimates the number of light-ab-
sorbing species being equal to the rank of absorb-
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ance matrix. Fatal, outliers points in the spectra are
also detected by FA608, correcied, and rank deter-
mination repeated. Outliers-free spectra are then
ready for chemical model determination,

$. Setting up chemical model hypothesis. To the
dominant species denoted as ‘‘certain’’ complexes
found by preliminary analysis, one new species af-
ter another from a list of suggested species is added
and the resulting model tested. Stoichiometry of
some ‘‘uncertain’’ complexes may also be deter-
mined by the ESI method.*

6. Diagnostic tools testing chemical model. After
termination of minimization, some diagnostic tools
are examined to accept or reject a tested hypothesis
of a chemical model. Quite incorrect hypotheses
may lead to divergency, cyclization, or failing of the
minimization process. To set up a new hypothesis,
the following diagnostics are considered: 1) physi-
cal meaning of estimates of parameters found or
realistic values; 2) physical meaning of species con-
centrations calculated or realistic molarity in a

range from 10°* up to 10; 3) physical meaning of
estimated standard deviations of parameters or
realistic values, 4) parametri¢ correlation coeffi-
cients express an interdependence of two param-
eters; 5) achieved degree-of-fit is a criterion of reli-
ability of parametric estimates; 6) found real-values
of stoichiometric indices by the ESI method®
should be near integer values; 7) deconvolution of
each experimental spectrum to absorbance incre-
ments of individual species helps to design a new ex-
periment; and 8) 3-D graph of (1 — U) response
surface, to examine the conditioning of the param-
eters in the model.

7. Search of best computation strategy. Analysis
of simulated spectra enables: 1) a search of the best
computational strategy of efficient regression anal-
ysis; 2) an investigation of the sensitivity of each pa-
rameter in the chemical model assumed; 3) an
examination of the influence of s, ,(A4) on the accu-
racy and precision of the parameters estimated; and
4) for a given type of data and model expected in ex-
perimental spectra, to find the precision and accu-
racy of parametric values.

Conclusion

Structural classification of equilibrium spectra-
analyzing programs makes possible easier elucida-
tion of sophisticated modus operandi and helps to
understand the experimental and computational
procedure of chemical model byilding and testing.

SPECTROPHOTOMETRY continued
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