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Summary—The program SPOPT estimates stability constants f,, and molar absorptivities ¢,,, of all
light-absorbing species M,L_H, by analysis of the absorbance-concentration (or absorbance-pH) curve.
The program DCMINUIT estimates dissociation constants and molar absorptivities of protonated
species. Both programs have been tested and compared with DCLET and LETAGROP-SPEFO for
analysis of the overlapping equilibria of a triprotic acid. Computer plots of the residual-square-sum -
function are used to test the conditioning of parameters. Two approaches are made to formulation of the
mathematical model, and several optimization algorithms are tested to find a reliable minimization
procedure. The accuracy of ill-conditioned parameters is shown to be dependent on the precision of the
absorbance measurements. General rules for investigation of 4A-pH curves are recommended.

The analysis of the absorbance-pH curve for a
polyprotic acid to determine dissociation constants
and molar absorptivities is not a straightforward
procedure. In the application of regression analysis
attention must be paid to formulation of a suitable
mathematical model for the system and to the choice
of an efficient minimization subroutine and min-
imization strategy. The precision of the spec-
trophotometric data should be as high as possible,
especially for evaluation of ill-conditioned parame-
ters. It must be discovered which parameters are
well-conditioned and which ill-conditioned, and
finally, criteria must be chosen to characterize the
reliability of parameter estimates, and to terminate
the minimization process.

This paper considers all these problems, warns
against unthinking application of regression analysis,
and suggests general rules for use of regression
procedures to obtain reliable estimates of dissociation
constants and molar absorptivities. Four regression
programs are discussed, viz. DCLET,' LETAGROP-
SPEFO? and two new programs, SPOPT and
DCMINUIT in which several minimization sub-
routines and two formulations of the residual-square-
sum function are available. The A-pH curve for a
triprotic acid involving one overlapping protonation
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equilibrium is analysed and the reliability of the
computer treatment is assessed.

THEORY

Structure of the regression programs used

Our “old” regression program DCLET,' Sillén’s
LETAGROP-SPEFO,? and our new programs
SPOPT and DCMINUIT, were modified to have
nearly the same structure (Fig. 1), as previously
described for the ABLET regression system.

SPOPT AND DCMINUIT

The RESIDUAL-SQUARE-SUM block

The regression analysis of spectrophotometric data
to provide molar absorptivities and stability con-
stants for the individual absorbing species requires
the minimization of the residual-square-sum function

n

l/ = Z M”i(Acxp.i—

i=1

Acalc, i)2 ( 1)

where A,,,; is the measured absorbance at a given
wavelength for given concentration of the three main

components M, L and H, for the equilibria

pM +gL+rH=M,LH, V)
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Fig. 1. Functional blocks of the program SPOPT.

with stability constants
By = M, L H J/(IMPILF[H]) ©)]

If J species absorb at the given wavelength, the
absorbance A of the solution (in a cell of path-length
d cm) is given by

J

A=d Z Epqr.j [MquHr]j

J
v R

where ¢,,, ; is the molar absorptivity of the Jjth species
and [M,L H,]; the free concentration of this species®’
and the mass-balance equations for the three basic
components are given by

’
S = Zl (B,o IMFILYH]); ()
j—
cn =[M]+pS ©)
c=[L]+4gS M
cy=[H]+rS 8)

U is assumed to be a second-degree function of m
unknown parameters in (m + 1) dimensional (and
hence parametric) space, m being sufficient for calcu-
lation of a position for the minimum. Parameters are
estimated by optimization in the multiparametric
space in which values are given for absorbance and
concentrations, and stability constants and molar
absorptivities are adjusted by the computer.

There are two approaches to the formulation of U
in the SPOPT program, corresponding to iwo
different ways of determining A.. The firstis a
general method based on equation (4), in which an
adjusted set of stability constants and molar absorp-
tivities, and free concentrations of the components
[M] and [L] are calculated ([H*] is known from pH
measurement), and hence A This version of
SPOPT is referred to as SPOPT(MB) (mass-balance
equation approach). In the second, the A—pH curve
for a mononuclear acid is written with the assump-
tion that base L is protonated to form the various
forms LH,, LH,, ..., LH,, etc. of the mononuclear
acid LH. As discussed previously, the equation for
the absorbance-pH curve may be written as

R
g+ Z ELn, 1Qtrleg an+ + log foir)

L (9
1+ Z 1Q(tog an+ +log Borr)

r=1

A =dc,

In the expression (rlogay. + logpy,), the con-
ventional activity pH scale may be used and the
protonation constants fi,, may be expressed as a
function of the mixed stepwise dissociation constant
K, = ay.[LH,_,J/[LH] and so

rlog ay. +log B, = Y pK,;—rpH (10

i=1
This version of SPOPT is referred to as SPOPT(DC)
(recurrent equation of the A-pH curve for dis-
sociation constants determination).
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DCMINUIT also contains a residual-square-sum
function formulated by use of equations (9) and (10).
Both SPOPT(DC) and DCMINUIT determine dis-
sociation constants pK,, and SPOPT(MB) deter-
mines stability constants or protonation constants

l()g lg()qr‘
The MINIMIZATION block

Regression analysis finds estimates for the un-
known parameters B,,,,, and &,, by minimizing the
difference between the experimental and calculated
data. The general problem is to find the best values
of parameters B, and ¢, ,, j =1, J, for which U
is minimal. Here, 4,,,, is a measured absorbance
for the ith point and A, is calculated from
A = f(pH,,TiN,, €,,), where pH is known as an
experimental quantity. The non-linear estimation
problem is really simply a problem of optimization in
the parameter space in which the 4 and pH values are
known and the f§ and ¢ values are the variables. The
function U must have its minimum at a point where
either (i) all derivatives U /0p, are zero (j = 1, J), (a
stationary point), or (ii) some derivatives U /0B; do
not exist (a cusp), or (iii) the point B; is on the
boundary of the allowed region (an edge: point).
When it is realized that there may be any number of
stationary points, cusps and edge points, all of which
may be arbitrarily hard to find by simple sampling of
the function value, the whole problem begins to
appear hopeless unless some simplifying assumptions
are made. The usual simplification consists of aban-
doning the attempt to find the global minimum and
being satisfied with a local minimum for which the
parameters have a physical meaning.

There are 30 minimization algorithms in the
SPONA routines library,® and these may be divided
into derivative and non-derivative routines. All may
be called by SPOPT. If in the search for a minimum
of U, the partial derivatives of U with respect to the
parameters must be calculated, then the method is
classified as derivative; otherwise, it is termed non-
derivative, )

Derivative methods used and selected for mention
here are the Steepest Descent Method,” Gradient
Method® and the Conjugate Gradients Method;®
the Grid Method,” the Simplex Method!" and
Rosenbrock’s Method'? represent the non-derivative
methods. However, the user is free to use any other
minimization routine in the SPONA library.®

DCMINUIT incorporates three different min-
imization methods from the MINUIT regression
system," each of which may be used alone or in
combination with the others, depending on the be-
haviour of U and on the requirements of the user.
First, a Monte Carlo searching non-derivative
subroutine’ may be used at the beginning of a
minimization when no reasonable initial value for the
parameters can be guessed, or when it is suspected
that there are several minima. Second. the Nelder and
Mead non-derivative simplex method'" is “safe”” and
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fast when far from a minimum, and may also be used
to converge to the exact minimum. Third, a derivative
method developed by Fletcher is extremely fast near
a minimum or in any “nearly-quadratic” region, but
slower if U is badly behaved. It uses the partial first
derivatives of U, calculated either analytically or
numerically. The program employs some “global”
logic; if one method fails, the other is automatically
caused to make another attempt. In addition, the
minimization can be guided or separated into steps by
the input data, which may cause a variable parameter
to be fixed at a constant value or restored to variable
status between minimization steps.

The ERROR ANALYSIS block

This block finds estimated confidence intervals for
the parameters. The partial first derivatives of U for
the estimates of the parameters may be calculated
analytically or numerically for all the A-pH points.
The square roots of the diagonal elements of the
covariance matrix are the estimated errors, or stan-
dard deviations, of the parameters.

DCMINUIT also prints the correlation coefficients
between the parameters (represented by the
off-diagonal elements), and the global correlation
coeflicient for a given parameter, which is the cor-
relation between it and that linear combination of the
other parameters most highly correlated with it."

The FITNESS TEST block

This test-of-fit block contains the STATS sub-
routine;'® its function has been already described."

The DATA SIMULATION block

This block contains the random error generator in
the RANDOM subroutine, and also the additional
subroutines SIMUL and NORAND.*"® It calculates
a simulated 4-pH curve by addition of generated
random errors to the calculated precise values of
absorbance for given pH values.

The user may select values for the errors in the
parameters and for the instrumental error of
the spectrophotometer. Then, for given values
of the independent variable pH, the precise values
of the independent variable A are calculated. Each
precisely calculated point is then transformed into &
simulated “‘experimental” one by addition of a
random error having Gaussian distribution. The
actual distribution of errors generated is then tested,
and four statistical moments, Pearson’s Chi-Square
test' and the Hamilton R-factor test' are applied.

The FREE CONCENTRATIONS block

This block calculates for each experimental point
the free concentrations [M] and [L] from the current
set of stability constants f,,, the chemical com-
position of the solution and the stoichiometric
coefficients pgr of each species, and given value of
[H*]. Subroutines COGSNR and CCSCC are used.
CCSCC is a “book-keeping” routine of COGSNR,

7
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which is used in SCOGS™ to evaluate free concen-
trations of species by the Newton--Raphson method.

The ADDITIONAL SUBROUTINES block

This block contains subroutines for format-free
reading of integers (READI) and reals (READR).?

The INPUT block

This contains subroutine DATA which reads the
experimental data, the independent variable, pH, the
dependent variable, 4,,,, and does some preliminary
calculations.”” The measured values of pH,, are
corrected for any deviation of the glass electrode
from Nernstian slope (WK), for any difference in
temperature from 298.16 K (WT), and for the liquid-
junction potential correction in pH units (WW). WZ
is pay. for the standard buffer solution used for
calibration.

pHcon- - [(PHm.d o WZ) x 59.16
x WT/(WK x 298.16)]

+ WZ +WW (11)

The OUTPUT block

This prints the parameter estimates and their stan-
dard deviations, and a printer-plotiing subroutine
PLOTT? makes a graph of experimental and calcu-
lated A-pH curves. A graph of U as a function of
parameter values in the region of the pit may be
plotted by DIGIGRAFPH equipment to allow in-
vestigation of the conditioning of the parameters in
the U function.” Computer-drawn plots of the hyper-
paraboloid response surface (1 — U) as a function of
any two chosen parameters are of great assistance in
deciding whether parameters are ill-conditioned.

Computation

The computations were done with an EC
1033 (500K) computer and the DCLET,!
LETAGROP-SPEFO,> DCMINUIT, SPOPT,

SQUAD(84),?" and FA608 + EY608% programs in
the Computing Centre of the College of Chemical
Technology, Pardubice, Czechoslovakia.

DISCUSSION

Identification of ill-conditioned parameters

The reliability of any estimates of ill-conditioned
parameters depends on the choice of minimization
method. The refinement of parameters should lead to
a minimum, preferably local rather than global, for
which the parameter values have physical meaning.
In the analysis of the absorbance-pH curve of a
triprotic acid, for example, the seven parameters ¢,
euns PKG1s Eunye DKooy ELuy, PKs have to be estimated.
If |pK,; — pK,;,_ ] >3 the protonation equilibria do
not overlap, but when |pK,, — pK,,_,| <3, overlap
does occur.
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Fig. 2. Experimental A-pH curve for 7-(carboxyphenyl-

azo)-8-hydroxy-quinoline-5-sulphonic acid measured by ex-

ternal titration, with spectrophotometer VSU2-G (Zeiss,

Jena, GDR). Experimental conditions: . =4.18 x lO“sM,

4 =540 nm, path-length 0.998 cm, I = 0.1 (NaClo, +
Na,PO, + HCIO, + EDTA), 25°.

As an example, the absorbance-pH curve of 7-.
(3-carboxyphenylazo)-8-hydroxyquinoline-5-sulpho-

- nic acid® (I) illustrated in Fig. 2, was analysed by the

regression program SPOPT(MB). A shortened out-
put appears in Table 1. Since &, pK,,, &4 and &y, are
well-conditioned in mathematical model (4), a graph-
ical representation of the hyperparaboloid, simplified
for two parametric co-ordinates (m =2) in (m + 1)-
dimensional space shows a well-developed minimum
U.n In Fig. 3 this appears as a maximum of
(1 — Upn)- The shape of the hyperparaboloid for the
ill-conditioned parameters is a rather flat-bottomed
saucer; this pit cannot be improved and also cannot
be reached by any minimization method (Figs. 4-6).

The search for true estimates of the parameters,
then, cannot give a certain answer, and no method is
able safely to find a pit in U. Careful choice of a
minimization subroutine and strategy is necessary,
because some algorithms will fail, some will lead
quickly to the global minimum, and others will
terminate at local minima in dependence on the initial
guesses for the parameters.

Choice of minimization algorithm

From the 30 minimization algorithms included
in SPOPT (265 K) three derivative and three
non-derivative methods were selected. The non-
derivative method LETAG from DCLET! (82 K),
LETAGROP-SPEFO? (240 K) and three minimiz-
ation methods of DCMINUIT (150 K), were com-
pared with selected algorithms of SPOPT.

The derivative Gradient® method and the non-
derivative Grid,' Rosenbrock!? and Simplex"
methods of SPOPT and the derivative Fletcher
method'® of DCMINUIT, are algorithmic in nature
and readily find the global minimum, Ug,,=
3.60 x 10-* (Table 2). The derivative Steepest
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Table 1. Non-lincar regression of the experimental A-pH curve of (I) by algorithmic
minimization by the Gradient method® of the SPOPT(MB) program,; the free concentrations
of the protonated species are expressed as percentages of the total concentration o

Minimization terminated at Uy, = 3.60 x 10~* with s(A) = 0.00352

Estimated values of parameters:
EPS(L.) = 3290 + 52

EPS(LH) = 5731 + &1

PKAI =7.34 +0.06

EPS(LH2) = 7028 + 181

PKA2 =396 + 0.08

EPS(LH3) = 16706 + 18

PKA3 =273 +0.08

i pay Acxp Acalc Residual [L]’ 0/0 [LH]’ o/n [LHZI’ % [LHJL %
1 1.565 0.6600  0.6721 ~0.0121 0.00 0.03 7.18 92.80
2 1.750 0.6660  0.6594 0.0066 0.00 0.07 10.58 89.36
3 1.817 0.6530  0.6536 —0.0006 0.00 0.09 12.13 87.79
4 2.000 0.6400  0.6336 0.0064 0.00 0.19 17.36 82.45
5 2.058 0.6310  0.6259 0.0051 0.00 0.24 19.35 80.41
6 2.244 0.5930  0.5963 —0.0033 0.00 0.52 26.83 72.66
7 2.500 0.5470  0.5436 0.0034 0.00 .37 39.42 59.21
8 2.550 0.5300  0.5319 -0.0019 0.00 1.64 42.06 56.31
9 2.750 0.4830  0.4828 0.0002 0.00 324 52.45 4431
10 2.788 0.4710  0.4732 —0.0022 0.00 3.66 54.31 42.03
11 2.956 0.4280  0.4318 —0.0038 0.00 6.10 61.54 32.35
12 3.000 0.4200  0.4214 -0.0014 0.00 6.92 63.10 29.98
13 .3.185 0.3820  0.3807 0.0013 0.00 11.36 67.65 20.99
14 3.250 0.3660  0.3678 —-0.0018 0.00 13.34 68.39 18.27
15 3.364 - 0.3500 0.3474 - 0.0026 0.00 17.38 68.53 14.08
16 3.518 0.3270  0.3239 0.0031 0.00 24.01 66.41 9.57
17 3.772 0.2950  0.2945 0.0005 0.01 37.52 57.82 4.64
18 4.000 0.2730  0.2761 —0.0031 0.02 51.14 46.62 2.21
19 4.082 0.2720  0.2709 0.0011 0.03°  56.02 42.29 1.66
20 4.369 0.2570  0.2574 —0.0004 0.08 71.49 27.87 0.57
21 4.872 0.2450  0.2455 -0.0005 0.30 88.76 - 10.87 0.07
22 5.569 0.2380  0.2393 —0.0013 1.63 96.00 2.36 0.00
23 6.266 0.2320  0.2320 0.0000 7.77 91.78 0.45 0.00
24 6.691 0.2220  0.2210 0.0010  18.36 81.49 0.15 0.00
25 6.750 0.2200 0.2188 0.0012 20.49 79.38 0.13 0.00
26 7.056 0.2050  0.2047 0.0003 34.28 65.67 0.05 0.00
27 7.295 0.1920  0.1912 0.0008 47.50 52.48 0.02 0.00
28 7.500 0.1800  0.1792 0.0008 59.20 40.79 0.01 0.00
29 7.740 0.1640  0.1665 —0.0025 71.60 28.39 0.00 0.00
30 8.000 0.1550  0.1558 —0.0008 82.11 17.89 0.00 0.00
31 8.072 0.1530  0.1534 —0.0004 84.41 15.59 0.00 0.00
32 8.250 0.1470  0.1486 —0.0016 89.08 10.92 0.00 0.00
33 8.464 0.1440  0.1446 —0.0006 93.03 6.97 0.00 0.00
34 8.915 0.1400  0.1401 —0.0001 97.42 2.58 0.00 0.00
35. 9.316 0.1400  0.1385 0.0015 98.96 1.04 0.00 0.00
36 9.855 0.1400  0.1378 0.0022 99.70 0.30 0.00 0.00

Statistical analysis of residuals:
Residual mean = 7.65E-10
Mean residual = 0.00214
Standard deviation = 0.00316
Skewness = —1.023

Curtosis = 7.336

Pearson’s Chi? = 4.00
Hamilton R-factor = 0.008302

CPU time (sec) = 1505.9

Descent’ and Conjugate Gradients’ methods are
algorithmic in nature, but did not reach the
global minimum and terminated at the local
minima Uy, =4.76 x 10~* and U,;, =4.013 x 10~*.
LETAG’ and LETAGROP, and the algorithm
MINUIT" allow use of both heuristic (trial-and-
error) and algorithmic minimization processes.

TAL. 32/10-~D

Generally, since algorithmic procedures lead mostly
to the global minimum, heuristic minimization is used
to allow the computer “to keep processing” near a
local minimum which has a physical meaning and is
supported by a preliminary graphical analysis. The
local minimum may correspond to a higher value of
U than the global value. The test for degree of fit
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usually cannot help much, because that achieved for
the local minimum seems to be nearly the same as
that for the global one.

To test the algorithms selected, the initial guesses
of parameters from graphical analysis were ¢ =
3300, &4 = 5800, pK,, =73, tn,=9800, pK,,=
3.3, gy, = 16800, pK,;=2.55 The routines of
SPOPT(DC) were applied several times with different
sets of initial guesses and most led to the same global
minimum, U,,, = 3.60 x 107% This global minimum
was also reached when mass-balance equations
were used in the residual-square-sum function of
SPOPT(MB) (Table 1).

In DCMINUIT, global logic was used (Table 2,
Combination, ALGOR.); when one of the three
minimization methods fails, another automatically
makes another attempt. Minimization was guided by
user’s commands from data and three minimization
routines of MINUIT" were used (Table 2, Combina-
tion, HEURIST.). The algorithmic strategy leads to
the global minimum obtained with SPOPT, but the
heuristic strategy terminates at another local min-
imum, U, =4.31 x 1074,

DCLET! uses the heuristic strategy of LETAG,’
and gave a local minimum of U,;, =4.58 x 107% A
combined strategy (i.e., heuristic followed by algo-
rithmic) gave better refinement of the parametric
values and a slightly better fit was achieved,
Upin=3.67%x107%,

LETAGROP-SPEFO’ has a heuristic trial-and-
error strategy totally under control of the user.
Values for the minimization steps of all the par-
ameters to be refined must be supplied, and good
initial guesses are required to avoid divergence of
the iterative process. Here, a local minimum of
U,in=3.82 x 10~* was achieved, with a good fit to
the curve, and the parameter estimates had a physical
meaning.

Because the four programs terminate with refined
estimates that differ in value, the user must decide
which program to choose as the best for getting
reliable parameter estimates. It would be useful to
classify the various regression algorithms in applica-
tion. Two approaches were used: (1) comparison with
results of analysis of A-pH curves, (2) study of
simulated data.

For comparison, 23 absorbance-pH curves for 19
wavelengths were analysed by the FA608 + EY608
program;® the results were pK, =7.32+0.03,
pK,, =328 +0.03, pK,; =2.6010.02 with s(4)=
0.0030.2* SQUAD(84)” gave pK,, = 7.332 + 0.066,
pK,, =3.206+0.173, pK,;=2.503+0.294 with
s(A4) =0.0022. The absorbance matrix for 19 wave-
lengths gives more information about the pro-
tonation equilibria studied, so the estimates of the
constants should be more accurate than those found
by an analysis at one wavelength only. The results
found from the absorbance matrix appear to be in
agreement with the parameters corresponding to the
local minimum.
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To select reliable aigorithms for analysis of 4-pH
curves, simulated data were investigated.

Modelling absorbance—pH curves by use of simulated
duta

The use of simulated 4-pH data allows the anal-
ysis of real experimental data to be tested in a
situation where the parameters are known. Such
modelling serves (i) to test whether each parameter is
ill-conditioned or well-conditioned in the mathe-
matical model in question, (i) to examine the
influence of the instrumental error of the spec-
trophotometer on the precision and accuracy of the
parameter estimates, and (iii) to find a reliable min-
imization routine which, for a similar shape of experi-
mental A-pH curve, will give the best parameter
estimates in the shortest time.

“True” values of seven parameters were chosen
to correspond roughly to the experimental par-
ameters for (I): & = 3300, &y = 5800, ey, = 9800,
&1y, = 16800, pK,; =7.3, prp=3.3 and pK,;=2.6.
The instrumental error, s,,4(4) was taken as 0.003.
For set pH values, 35 absorbance values were calcu-
lated precisely, then loaded with random errors. The
random errors had a normal distribution with the
mean approximately zero, the standard deviation of
the mean 0.003, the mean error 0.003, skewness
0, curtosis 3 and a Pearson Chi-Square value of
12.60 for 6 degrees of freedom and 0.95 significance
level. These errors appear to be Gaussian in nature
(Table 3).

In the analysis of the simulated A-pH curve,
the minimization was started either with a bad
initial guess (g = 6000, &, = 8000, pK,, =8.2, &4,
= 12000, pK,,=3.7, g, = 20000, pK,;=3.0) or a
good initial guess (the corresponding values being
3300, 5800, 7.3, 9800, 3.3, 16800, 2.6).

The Conjugate Gradients algorithm®  of
SPOPT(MB) found the best estimates of all seven
parameters either by the recurrent equation method
or by formulation on the basis of the mass-balance
equations (Tables 3 and 4).

The hyperparaboloid response surface shows that
three parameters, &y, pK, and pK,;, are ill-
conditioned, because the minima are broad and
indefinite (Figs. 3-6). They cannot be determined
accurately or precisely. The last U-contour (the “D
boundary”) may be expressed as the supercurve
U = U, +s¥A), so the standard deviation in each
parameter b, is defined by the expression s(b) =
max(bp — b,;,); Which is the maximum difference
between the value for b; at any point on the *“D
boundary”, and the value for b, at the minimum.
The standard deviations for the ill-conditioned par-
ameters s(e.y,), s(PK,,) and s(pK,;) have significantly
greater values than those for the well-conditioned
parameters. Because the response surface resembles a
flat-bottomed saucer, there is a large amount of
uncertainty in the location of the pit.
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Table 3. Non-linear regression of a simulated A-pH curve by the Conjugate
Gradients algorithm® of SPOPT(DC), with 5,,,(4) = 0.003

True values of parameters

Estimated values of parameters

EPS(L) = 3300 3275+ 30
EPS(LH) = 5800 S811 £+ 13
PKA1 =173 7.3+0.03
EPS(LH2) = 9800 9851 + 2716
PKA2=133 33 +£031
EPS(LH3) = 16800 16776 + 52
PKA3 =26 2.60 4 0.19
i pH v R Error Aep Ay Residual X
1 1.450  0.68248 —0.00222 0.6803  0.6817 -0.0014
2 1.610  0.67426 —0.00100 0.6733  0.6735 -0.0002
3 1.770  0.66294 0.00350 0.6664  0.6622 0.0042
4 1.930  0.64766 ~0.00286 0.6448  0.6471 -0.0023
5 2.090 0.62756 0.00030 0.6279  0.6272 0.0007
6 2.250  0.60200 —0.00244 0.5996  0.6018 —-0.0022
7 2410  0.57084 0.00188 0.5727  0.5708 0.0019
8 2.570  0.53472 0.00111 0.5358  0.5349 0.0009
9 2730 0.49514 0.00138 0.4965  0.4955 0.0010
10 2.890  0.45434 —0.00242 0.4519  0.4549 —0.0030
11 3.050 0.41474 —0.00043 0.4143  0.4155 -0.0012
12 3.210  0.37850 0.00287 0.3814  0.3794 0.0020
13 3370  0.34704 —0.00251 0.3445  0.3479 —0.0034
14 3.530  0.32099 0.00657 0.3276  0.3219 0.0057
15 3.690  0.30027 —0.00226 0.2980  0.3010 -0.0030
16 3.850  0.28433 0.00165 0.2860  0.2851 0.0009
17 4.010 0.27239 0.00288 0.2753 - 0.2731 0.0022
18  -4.170  0.26363 0.00119  0.2648  0.2642 0.0006
19 4.330  0.25730 0.00057 0.2579  0.2579 0.0000
20 4490  0.25276 0.00018 0.2529  0.2533 —0.0004
21 4.580  0.25081 ~0.00352 0.2473  0.2514 ~0.0041
22 4.670  0.24919 —0.00365 0.2455 . 0.2497 —-0.0042
23 4760  0.24784 0.00005 0.2479  0.2484 —0.0005
24 4.850  0.24672 —0.00416 0.2426  0.2473 —0.0047
25 5.235  0.24347 0.00169 0.2452  0.2440 0.0012
26 5620  0.24109 0.00356 0.2447  0.2417 0.0030
27 6.005  0.23772 0.00380 0.2415  0.2384 0.0031
28 6.390  0.23112 0.00215 0.2333  0.2321 0.0012
29 6.775  0.21846 0.00297 0.2214  0.2198 0.0016
30 7.160  0.19856 0.00250 0.2011  0.2002 0.0009
31 7.545  0.17584 —0.00138 0.1745  0.1770 —0.0025
32 7.930 0.15779 —0.00138 0.1564  0.1582 —0.0018
33 8.315  0.14715 -0.00116 0.1460  0.1468 ~0.0008
34 8.700  0.14194 ~0.00258 0.1394  0.1412 —0.0018
35 9.085  0.13963 0.00161 0.1412  0.1387 0.0025
Statistical analysis of Statistical analysis of
random errors: residuals:
Error mean = 2.41E-04 Residual mean = —1.14E-04

Mean error = 0.00218
Standard deviation = 0.00255
Skewness = 0.471

Curtosis = 2.437

Chi? (6, 0.95) = 5.46
Hamilton R-factor = 0.00660

Mean residual = 0.00203
Standard deviation = 0.00246
Skewness = —0.041

Curtosis = 2.482

Chi? (6. 0.95) = 4.09
Hamilton R-factor = 0.00633

To test whether a model represents the data ade-
quately, the residuals are analysed. These should be
randomly distributed about the predicted regression
curve, and systematic departures from randomness
indicate that either the model or the parametric
estimates are not satisfactory. To analyse the re-
siduals, their statistics are compared with the statis-
tics of the imposed random errors; it is checked
whether both distributions are Gaussian in nature,
and whether the errors agree in magnitude and/or
sign. The degree of fit of the curves in Table 4 is good

enough, so the minimization process is assumed to
have terminated successfully. Table 4 also shows how
the instrumental error of absorbance affects the pre-
cision and accuracy of the parameter estimates, other
things being equal.

Errors in absorbance cause systematic errors in the
parametric estimates: the relative systematic error of
the parametric estimates e,.(b,) depends on the instru-
mental error s,,(4) approximately according to
en(b) = g + ks;,o(A). The intercept ¢ and slope k
were calculated for seven parameters from the data of
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Table 4, and found to be
Parameter &, b &Ln pK., ELn, PK., ELn, pK.s
fntercept ¢ 0.0091 —-0.0164 0.0093 —4.9550 1.1236¢  —0.0998 . 2.1967
Slope k 195.79 29.45 92.18 6464.50 —1513.8 34.88 —2367.34

The higher values of the slope for the three ill-
conditioned parameters & ,, pK,; and pK,; illustrate
the greater importance of absorbance precision for
accuracy of these estimates. Thus, for elucidation of
overlapping equilibria, only high-precision data are
suitable. Application of non-linear regression to im-
precise data is very likely to lead to false values for
the parameter estimates,

Tables 5 and 6 list the methods that did not fail,
and which terminated reasonably quickly, selected
from 15 derivative and 15 non-derivative algorithms
‘of SPOPT, two of DCMINUIT, one of DCLET! and
one of LETAGROP-SPEFO.? Derivative algorithms
were tested with the use of good and bad initial
guesses, but the non-derivative ones with just bad
guesses. Good initial guesses were used in order to
find a true minimum for comparison with any min-
imum found from a bad initial guess.

Starting from a good initial guess, the lowest value
of U, (2.086 x 10~*, perhaps representing a global
minimum) was found by the Gradient and
Rosenbrock methods. Close to this was
Upin = 2.093 x 1074, found by the Steepest Descent,
Conjugate gradients and Grid methods.

With good guesses, the relative systematic errors
of the estimates found for the well-conditioned

2

Table 4. Non-linear regression of the simulated

and ill-conditioned parameters had nearly the
same magnitude: e (euy,) = 0.4%, ru(pK.) =0.27,
e.(PK3) =0.1% for the ill-conditioned and e (e.)
= 0.8%, em(ery) = 0.1%, and e (ery,) = 0.4% for the
well-conditioned parameters. Starting from a bad
initial guess the algorithms found the same estimates
as before only for the well-conditioned parameters.
The relative systematic errors of the ill-conditioned
parameters were about 10 times greater than
those for the well-conditioned ones: e (e y,) = 10%,
en(PK.2)) = 3.4, and e, (pK.;) = 2.7%,.

Figure 7 demonstrates that well-conditioned par-
ameters are not loaded by significant systematic
errors, but the broader confidence interval for esti-
mation of the ill-conditioned parameters indicates
some uncertainty in the estimates.

The statistical analysis of the residues in Tables 5
and 6 shows that a good fit was achieved by most of
the algorithms. The mean residual and its standard
deviation are less than s;,,(4) = 0.003. The Hamilton
R-factor is 0.6-0.7%,. From a mathematical point .of
view, a satisfactory fit indicates that the parameter
estimates have been refined sufficiently.

A-pH curve by the derivative Conjugate Gradients

algorithm® of SPOPT(DC); data are simulated for various instrumental errors of the absorbance, s,,,(4); bad
initial guesses of the parameters were used

Sin(4) 0.000001 0.0005 0.001 0.002 0.004 0.006
Error mean 1.40E-7 6.98E-5 1.40E-4 2.79E-4 5.58E-4 8.37E-4
Mean error 8.69E-7 0.00043 0.0009 0.0017 0.0035 0.0052
Standard deviation 9.71E-7 0.00049 0.0010 0.0019 0.0039 0.0058
Skewness 0.561 0.561 0.561 0.561 0.561 0.561
Curtosis 1.689 1.689 1.689 1.689 1.689 1.689
Pearson’s Chi? 9.57 9.57 9.57 9.57 9.57 9.57
R-factor _ 3.0E-6 0.00125 0.00251 0.00501 0.01002 0.01502
EPS(L) = 3300 3300 3303 3307 3314 3325 3339
EPS(LH) = 5800 5800 5801 5801 5802 5806 5809
PKAl1 =173 7.30 7.30 7.31 7.31 7.32 7.34
EPS(LH2) = 9800 9800.5 10191 9859 . 10453 12326 12854
PKA2=33 3.30 3.26 3.20 3.24 3.09 3.06
EPS(LH3) = 16800 16800 16800 16791 16790 16812 16816
PKA3 =26 2.60 2.57 2.60 2.55 2.38 2.31
U in 2.93E-11 7.30E-6 3.00E-5 1.81E-4 4.67E-4 1.05E-3
s(A) 1.00E-6 0.00051 0.00103 0.00205 0.00408 0.00613
Residual mean ~8.29E-11  -—-3.06E-7 1.28E-6 —~S591E-6  6.85E-6 —6.27E-6
Mean residual 8.44E-7 0.00042 0.0008 0.0017 0.0033 0.0050
Standard deviation 9.15E-7 0.00046 0.0009 0.0018 0.0037 0.0055
Skewness 0.158 0.141 0.185 0.154 0.154 0.147
Curtosis 1.574 1.578 1.598 1.588 1.599 1.599
Pearson's Chi’ 11.86 8.66 14.14 11.86 10.03 8.66
R-factor 0.00000 0.00118 0.00237 0.00473 0.00942 0.01413
CPU time (sec) 150.02 411.44 173.98 305.42 159.46 279.52
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Table 6. Non-linear regression of the simulated A-pH curve by various non-derivative minimization algorithms of
SPOPT(DC), DCMINUIT, DCLET and LETAGROP-SPEFO; the process was started with bad initial guesses of the

parameters
Program SPOPT(DC) DCMINUIT DCLET SPEFO
Algorithm Grid Simplex Rosenbr.  Simplex LETAG-alg. LETAG-comb. LETAGROP
EPS(L) = 3300 3259 3413 3259 3331 2573 3322 3324
+ 28 1 141 +28 +5 + 34 + 15 + 41
EPS(LH) = 5800 5807 3276 5803 5805 ‘5128 5787 5755
+13 + 832 + 14 +12 +43 +3 +59
PKA1 =730 7.33 7.93 7.336 7.315 8.35 7.325 7.32
+0.026 +097 10026 +0.0146 +0.02 +0.003 +0.22
EPS(LH2) = 9800 9840 5826 8945 11243 8733 7823 5842
+ 2543 +13 + 2334 +20 +31 +1 +23
PKA2=13.30 3.30 7.41 3.41 3.109 3.56 3.63 5.84
+0.29 +0.14 +0.34 + 0.008 +0.00 +0.00 +0.22
16784 16694 16773 16791 15818 16741 16668
+ 50 +25 +45 +29 +0 +0 +31
PKA3 = 2.60 2.60 2.83 2.66 2.486 2.98 272 2.83
+0.18 +0.004 +0.14 + 0.008 +0.00 + 0.0000 +0.22
uo : 0.774 0.774 0.773 0.771 0.773 0.773 0.773
Ui, (terminated) x 10* 2.093 2.608 2.086 2.638 195.7 2.647 3.191
Residual mean —1.63E-6 —2.58E-5 4.064E-9 -—2.01E-5 —6.92E-5 2.04E-5 —3.99E-11
Mean residual 0.0020 0.0020 0.0020 0.0025 0.0021 0.0025 0.0026
Standard deviation 0.0024 0.0027 0.0024 0.0027 0.0023 0.0027 0.0030
Skewness 0.076 0.566 0.789 0.121 —0.498 - 0.316 0.188
Curtosis 2.438 3.836 2.416 1.595 1.773 1.855 1.630
Pearson’s Chi? 2.26 9.11 1.34 8.20 25.11 10.49 9.11
R-factor 0.00630 0.00704  0.00629 0.00708 0.06099 0.00709 0.00779
CPU time (sec) 545.2 330.5 530.2 97.0 83.3 90.9 446.8
CONCLUSIONS imization. routine is needed, which is safe, fast, and

To determine ill-conditioned parameters in an
overlapping equilibrium system, an efficient min-
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Fig. 7. Relative systematic errors of seven parameter esti-

mates refined by the five minimization algorithms (Tables 5

and 6, from top to bottom) Steepest Descent, Fletcher,

Conjugate Gradients, Grid and Rosenbrock methods. The

positions of the parameter estimates and corresponding

standard deviations are plotted on a relative percentage
scale.

able to find true estimates of the parameters. Study
of the effects of instrumental error shows that data of
the highest precision should be used; otherwise, esti-
matss of the ill-conditioned parameters are not accu-
rate enough. A criterion for determination of the
minimization process should be decided with the use
of a simulated data set.

Diagnostic tools such as (i) graphical . inter-
pretation of the hyperparaboloid response surface, in
parametric co-ordinates, (ii) examination of the de-
gree of fit by statistical analysis of the residuals, (iif)
comparison of the calculated parametric estimates
with the preselected true values, (iv) comparison of
the statistics of the imposed errors with those of the
residuals, (v) the size of the standard deviations
calculated from the last U contour (D boundary),
help in the examination of the conditioning of para-
meters in a particular model, and to determine the best
minimization strategy, the termination criterion, etc

The following procedure is recommended for re-
gression analysis.

(1) Formulate a suitable mathematical model.

(2) Choose and test (by use of simulated data) a
minimization algorithm suitable for safe ‘deter-
mination of ill-conditioned parameters.

(3) Set up computational conditions such as pa-
rameter limits, minimization steps, residuals statistics
for best parametric estimates, an efficient min-
imization strategy and a termination criterion for the
algorithm selected.

(4) Analyse the experimental 4A—pH curve.
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