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Summary—The general program ABLET is a system of subprograms for non-linear regression analysis
of experimental data to find an appropriate model. The structure of ABLET provides a suitable
organizational framework in which just two specific subroutines have to be supplied by the user. The
resulting program can estimate non-linear model parameters with their standard deviations, test the
agreement between experimental data and a mathematical model, test the accuracy and reliability of the
parameters found, and simulate synthetic data for preselected parametric values. Heuristic, and/or
algorithmic minimization strategies aid examination of the local and overall minima. The method of

construction of the program for a particular system is discussed.

The original LETAGROP VRID of Sillén and Ingri'?
has been rewritten in the form of the subroutine
LETAG in autocode MOST F 13 for the ODRA
1013 computer,’ in Fortran for the Hewlett-Packard
2116B,* and in Fortran IV for the EC 1040 or EC
1033 computers.’ Various programs®'® have been
based on LETAG and applied to studies of pro-
tonation and complex-formation equilibria and de-
termination of stability constants.”'?

More than ten years of experience with the use of
LETAG, and critical comparison with other up-to-
date minimization algorithms, have led to the im-
proved version, ABLET, and rgvision of all our
previous programs based on it. Adaptation of the
ABLET system to a particular equilibrium problem
is now much easier. The ABLET system also makes
a statistical test of the reliability of the estimated
parameters, plots a curve-fitting graph by a printer
routine, and provides three minimization strategies
for finding not only the global minimum but also any
selected one. Minimization may be done algo-
rithmically or by trial-and-error or by a combination
of the two.

The seven programs of the ABLET family®*? are
(1) DHLET for determination of thermodynamic
dissociation constants and parameters of the ex-
tended Debye-Hiickel equation, (2) DCLET for de-
termination of dissociation constants and molar ab-
sorptivities,”® (3) NCLET for determination of
stability constants from competitive titration equi-
libria,'" (4) MRLET for determination of ligand
purity and the stability constant of a predominant

Part 1V-—Talanta 1979, 26, 569.

complex from mole-ratio data,” (5) SPLET for deter-
mination of stability constants and parameters of a
chemical model from absorbance data,?® (6) EXLET
for analysis of extraction/photometric data,” and (7)
POLET for deterinination of stability constants and
complex stoichiometry from potentiometric ti-
tration.? ' ’

The ABLET system allows the minimization sub-
routine to be changed from LETAG to another
subroutine from the library.

THEORY

Modus operandi of the ABLET system

In studies of chemical equilibria it is often neces-
sary to fit a function f (x; f) to a set of experimental
data. Unknown parameters are estimated by mini-
mizing the difference between the experimental and
calculated data:

"
U= Zl wi(ycxp,i e ycalc.i)z = minimum (1)
i=
where w, represents the statistical weight, y,; is
a single observation made for x, and
Vearei =f (X3 B1s Bas - .+, By) is the functional re-
lationship assumed to exist. Each observed y, for a
given x, is related to the calculated value of y; by the
equation y, =f;+¢ where ¢ represents a random
error. Random (or observational) errors are assumed
to follow a Gaussian (normal) distribution expressed
as

exp[—e?/25°(y)]
n/2s(y)

fle)= ©))
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where s3(y) is the variance of y. Theoretically, the
assumption that the model giving minimum U is the .
best fit is justified only if (i) the correct form of the
equation for y,,, is known and used, (ii) there are no
errors other than random errors in y, (iii) the random
errors in y have a Gaussian distribution, and (iv) w;
is an exact indication of the inherent accuracy of y;.
None of these conditions is usually strictly fulfilled,
but U = minimum is still widely used as a criterion
because there is no better alternative.

A computer program for analysing data from
equilibrium studies may usefully be constructed from
logical units, each consisting of one or more sub-
routines. The division of the program into logical
units aids the understanding of the functional struc-
ture of the whole program, Fig. 1.

The MASTER unit contains the main part of the
program. The INPUT unit reads and checks data,
and makes some preliminary calculations. The
RESIDUAL-SQUARE SUM unit formulates the
sum of squared residuals, i.e., the squares of the
differences between experimental and calculated val-
ues of the dependent variable. The relevant mathe-
matical model in the form of an explicit or iinplicit.
functional relationship must be available.

Example. The dissociation equilibrium  of
HL:, HL'=L°"'4H*, is characterized by the
thermodynamic (activity) dissociation constant
KT = aya, Jay.. The dependence of the mixed dis-
sociation constant K, = ay[L]/[HL] on ionic strength,
1ssuming.that both ions HL? and L*~' have roughly
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the same ion-size parameter d (107'° m) and that
the overall salting-out coefficient is given by
C = Cy.— C,, is expressed by the Debye-Hiickel
equation in the form

pK, =pK, — AI'*(1 = 2z)/(1 + Bal'?) + CI (3)
where
A =0.5112 mole~ "2 12 K32

and
B =0.3291 mole~*2.m~".1'"2 . K'2.10"

for aqueous solutions and 25°. The mixed dis-
sociation constant pK, represents a dependent vari-
able and the ionic strength I is taken as the indepen-
dent variable, because it can be adjusted precisely so
that its random error is less than that of the de-
pendent variable pK,. The three unknown parameters
pKT, @ and C are to be estimated by minimization of
U:

U= Z wi(pKd,exp,i 3 pKa,calc,i)2 (4)

i=1
‘The program used is DHLET.®?

The MINIMIZATION unit contains the least-
squares curve-fitting algorithm LETAG?" which esti-
mates unknown parameters by the minimization of
a residual-square sum function. LETAG is based
on the approach developed by Sillén and Ingri'?
which approximates the residual-square sum as a
possible or proposed. The statistical analysis of re-

-

RESTDUAL -SQUARE SUM INPUT

(SUBROUTINE UBBE)

(SUBROUTINE DATA)

STATISTICAL TESTS

ERROR ANALYSIS

MASTER

(MAIN PROGRAM)

DATA SIMULATION

MINIMIZATION OUTPUT

ADDITIONAL SUBROUTINES

Fig. 1. The functional units

.are SUBROUTINE UBBE, SUBROUTINE DATA,

of the general ABLET program. The three units to be written by the user

MAIN PROGRAM. The rest of the ABLET system

is identical for all programs.
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Table 1. Shortened form of LETAG minimization process for input data listed in Table 3

DHLET PROGRAM

DHl lT SIMU[ATED DATA SET

XXXXXX RURIK =7 xxxxxx LASK (INITIAL GUESS):

NUMBER OF E
NUMBER OF POSITIVE PARAMETERS =3

ESTIMATED PARAMETERS =3

NUMBER OF TWIST MATRIX ELEMENTS =0

INITIAL GUESS OF THE FIRST PARAMETER (PKT) =4.9
THE SECOND PARAMETER (A)= 5.0
THE THIRD PARAMETER (C)=0.15

xxx RURIK =3 xxxxxx STEG (STEP OF PARAMETERS):

1012 2045 3015

XXXXXX RURIK 2 xxxxxx UTTAG (RESIDUAL-SQUARE SUM):

U = 7.67215E-01 4.90000 5.00000 0.15000 .

xxxxxx RURIK =35 xxxxxx SKOTT (SHOT):
U = 7.67215E-01 490000 5.00000 0.15000
U = 3.16076E-01 5.02000 5.00000 0.15000
U = 1.79436E 00 4.78000 5.00000 0.15000
U = 6.36359E-01  4.90000 5.45000 0.15000
U =9.31824E-01 4.90000 4.55000 0.15000
= 1.38683E-01 4.90000 5.00000 0.30000
=2.35673E 00 4.90000 5.00000 0.00000
U = 2.46029E-01 5.02000 5.45000 0.15G00
U =3.62017E-02 5.02000 5.00000 0.30000
U = 1.14367E-01  4.90000 5.45000 0.30000
MINUSGROP (MINUS PIT)

(@ des
1 T I |

KBOM (PARAMETERS) NUMBER  VALUE DARRI DARR2
1 4.98758E 00  —1.00000 —1.00000
2 5.17657E 00 —1.00000 —1.00000
3 2.76862E-01  —1.00000 —1.00000

PROVA (TESTING)

U = 1.85920E-03 4.98758E 00 5.17657E 00 2.76862E-01

1 ITERATION U = 1.85920E-03 4.98758E 00 5.17657E 00 2.76862E-01

2 ITERATION U = 1.55934E-03 4.99138E 00 5.04157E 00 2.76862E-01

3 ITERATION U = 3.07154E-04 4.99590E 00 4.55719E 00 2.98522E-01

4 ITERATION U = 3.03922E-04 4.99606E 00 4.55890E 00 2.98029E-01

5 ITERATION U = 3.03919E-04 4.99605E 00 4.55925E 00 2.98007E-01

6 ITERATION U = 3.03919E-04 4.99605E 00 4.55925E 00 2.98007E-01

second-degree surface of an elliptical paraboloid for
one of the two parameters (ie., m=2) in
(m + 1) = 3-dimensional space. For more paramcters
than two (m > 2), it deals with a hyperparaboloid in
{m + 1)-dimensional space.

Table 1 gives an example of a DHLET output
which estimates three parameters, pK7, ¢ and C [from
20 data points (pK,, )] from Table 2. Key 7 calls the
block LASK, which reads the initial guessed values
for the parameters. Key 3 calls block STEG which
reads the size of the initial minimization steps. Key
2 calls block UTTAG which calculates the residual-
square sum function for an actual parameter value.
Then a systematic search of parameters by block
LETA, called by key 5, begins.

The minimization process starts with a “central”
set f, equal to initial guessed values for the parame-
ters, supplied by the user, and calcuiates U for f. and
for sets where one or two elements in f, have been
changed by steps A,. In the heuristic (trial-and-error)
strategy, these steps are always supplied by the user,
but in the algorithmic strategy they are supplied by
the user only for the first iteration; for subsequent
_iterations they are calculated by the program.

From the U values for (m + 1)(m + 2)/2 system-
atically chosen points, the coefficients of the equation
for a second-degree surface through these points are
calculated, and hence the position f, of the minimum
on that surface. For brevity, the procedure described
so far will be referred to as a “shot™. The f, obtained
from the first shot may be used as the central value
for the next shot, and so on. The co-ordinates of the
pit, the lowest point of function U, are compuled
from the coefficients of the equations describing the
approximate surface.

This pit-mapping method can also be employed
when the parameters are inhomogeneous (e.g., sta-
bility constants, molar absorptivities, concentrations,
etc.). The U surface is very often distorted and not
symmetrical. With such a cleft-like surface (a *“‘skew
pit”), or if there is a high degree of correlation
between the B; parameters, difficulties arise in the
calculations. When the steps chosen are too large and
the pit is deep and skew, the points are high up on
the wall of the “cleft”, and terms of third and higher
degree become important. On the other hand, if the
steps are too small, rounding errors in the computer
can cause rounding errors in the calculation of B
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Table 2 Shortened form of the last part of the output from DHLET, printed after
. termination of the minimization, process from Table |

7 ITERATION U =3.03919E-04

oo SKRIK (OUTPUT)

XXXXXX

'99605E 00 4.55925E 00  2.98007E-01

PARAMETERS AND THEIR STANDARD DEVIATIONS:

FIRST (PKT): 4.99605
SECOND (A): 4.55925
THIRD (C): 0.29801
I I(EXP) PK(EXP) PK(CALC)
1 00100  4.8646 4.8656
2 00400 47752 4.7719
3 00900 47019 4.7054
4 01600  4.6661 4.6602
s 02500  4.6407 4.6322
6 03600 46145 4.6188
704900  4.6084 4.6182
8 0.6400  4.6318 4.6289
9 08100  4.6484 4.6499
10 10000  4.6726 4.6804
1 12100 47179 4.7198
12 1.4400 4.7769 4.7677
13 16900  4.8213 4.8236
14 19600  4.8896 4.8873
15 2.2500 4.9522 4.9585
16 2.5600 5.0424 5.0370
17 2.8900 5.1242 5.1226
18 3.2400 5.2178 5.2152
19 3.6100 53129 5.3147
20 4.0000 5.4196 5.4210

+0.00112
+0.03784
+0.00212

RESIDUAL
—0.0010
0.0033
—0.0035
0.0059
- 0.0085
—0.0043
—0.0098
0.0029
—0.0015
—0.0078
—0.0019
0.0093
—0.0023
0.0023
—0.0963
0.0054
0.0015
0.0026
-0.0019
—0.0014

STATISTICAL ANALYSIS OF RESIDUALS:

RESIDUAL MEAN = 1.52E-06
MEAN RESIDUAL = 0.0041
STANDARD DEVIATION = 0.0050
SKEWNESS = 0.022

KURTOSIS = 2.390

PEARSON CHI SQUARE =3.20 and SHOULD BE 12.60
(FOR 6 D.F. AND 0.95 PROBABILITY LEVEL)

R-FACTOR = 0.00103

The values of parameters are varied along the main
axis of the pit instead of parallel to the original
co-ordinate axes, in the second and subsequent
refinement cycles.

For equilibrium constants and certain other types
of parameters such as concentrations, a negative
value has no physical meaning. LETAG? contains a
number of safeguards to prevent such parameters
from becoming negative during a shot, and at the
same time to check that the calculation is not carried
too far from the minimum.

If the calculated minimum f, gives negative values
for such parameters, they are set equal to zero, and
the computer searches for the minimum of the “re-
duced pit”. The block performing this operation,
MIKO, searches the calculated second-degree surface
systematically for the set f that gives the lowest value
for U while no member of f is negative.

MIKO can also be used to find the set f that gives
the lowest U value, subject to the restriction that each
member B, should have a value of either zero or not
less than its standard deviation s (§;) multiplied by a
selected factor F,.

The ERROR ANALYSIS unit calculates the stan-
dard deviations of the estimated parameters and

dependent variable. LETAG?® is used for calculating
the residual-square sum function for the pit found,
U, and the standard deviation of y. s (y), which is
denoted by SIGY in the output in Table 1 and is the
square root of Up, divided by the square root of the
number of degrees of freedom [(n — m) where n is the
number of data points and m the number of para-
meters]:

$(¥) =/ Uninl(n —m). (%)

For defining the standard deviations s (f;) of the
parameters, the term “D-boundary” was introduced
by Sillen'?. It is the curve or supercurve on which
U=U,,+s*(y). The “D-boundary” is sometimes
called the U contour. The standard deviation of each
parameter s (f;) has a parabolic distribution and is
calculated as the maximum difference between the
value for f; at any point on the “D-boundary” and
the value for - at the minimum,
s(B) = D;=1(Bo = Bo)ilmax- In the output of Table 1,
s(p,) is printed under the heading DARR?2 if it is
available in the minimization process, otherwise
—1.0 is printed.

The STATISTICAL TESTS unit identifies the
“best” model when more than one hypothesis is
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siduals involves examination of the differences be-
tween the experimental and calculated values of the
dependent variable, r, = Vepi— Vaer The assump-
tions necessary for the ieast-squares treatment have
already been mentioned. If the model represents the
data adequately, the residuals should possess charac-
teristics that satisfy or at least do not contradict the
basic assumptions: thus the residuals should be ran-
domly distributed about p,. Systematic departures
from randomness indicate that the model is not
satisfactory. The examination of plots of the residuals
vs. x may assist numerical and/or graphical aids in the
analysis of residuals. A study of the signs of the
residuals (+ or —) and sums of signs can also be
used.

For the analysis of residuals, graphical
presentation is extremely helpful for the following
tests: (i) detection of an outlier (an extreme residual),
(ii) detection of a trend in the residuals, (iif) detection
of sign changes, (iv) detection of an abrupt shift level
of the experiment, (v) examination of residuals for
normal distribution. A relative frequency plot should
give approximately the familiar bell-shaped curve
about a mean of zero.

For a more objective statistical analysis,” the set of
residuals can be described by its four moments (cf.
Table 2) and may be used for hypothesis testing.

(/) The first moment is the arithmetic mean of
residuals nt, , = 7, which should be equal to zero.

(ii) The second moment is the variance

n Y N2
b Tk 2 N, i
m,‘2=<z‘ TR DY r,-,n)
i=1 i=:

and its square root is the standard deviation, which
should have a value similar to the experimental error
in the dependent variable y, S (v). The same rule 1s
applied to the mean of the residuals which is calcu-
lated as the arithmetic mean of the absolute values of
the residuals. )

(iii) The third moment, the coefficient of symmetry
(skewness) gives information about the symmetry of
the residual distribution curve;

Moy= 3 = 7
i=1
is equal to zero for a Gaussian distribution.
(iv) The fourth moment, the coefficient of kurtosis,
characterizes the “peakedness” of the residual distri-
bution curve and is defined by

-

m, 4= (r; — F)L‘/”mir

"
i=1

il

For a normal Gaussian shape it has the value 3.
(v) A goodness-of-fit statistic x? (Pearson test) is
derived from the difference between the observed and
calculated probability distribution. The residuals may
be divided into eight classes, each of which should
contain 12.5% of all residuals. These classes are
defined by the limits —oo, - 1.15s, —0.675s.

951

—0.3195. 0.0, 0.3195, 06755, 115y, 4 s . Since the
residuals standard deviation s s calculated from the
residuals themselves, the talal 7 has 6 degrees of
freedom. A fit can be accepted at the appropriate
confidence level if the experimental value y° is less
than the value expected.

(i) The Hamilton R-factor 1s defined by the
expression

: / n T2
o 5 y . 20\ 3 e
R = :. i t(.} exp.i b «.alc.l) /' E_, Wl eAp.i .

e | =

This value is compared with the limiting value Ry,
calculated by saying r, = v, = Vo 15 the residual in
the ith equation calculated {rom pessimistic estimates
of the errors in all experimental quantities, by using
the error-propagation rules. To test alternative hy-
potheses, the R-factor ratio test can be upplied. If, for
example, a particular hypothesis /7, gives an R-factor
of R, and an alternative hypothesis H, gives the value
R,, then H, can be rejected at the x-signiticance level
if R,/Ry> R, ., where m is the number of para-
meters that have been refined and (1 —m) is the

‘number of degrees of freedom of the least-squares

adjustment. The value of R, ,. is found from
statistical tables.”

Table 2 gives an exampie ¢f a goodness-of-fit test
for the data from Table 3 and the minimization
process of Table 1.

The DATA SIMULATION unit caleulates a simu-
lated curve by the addition of gencrated random
errors to the caleulated nrecise curve. To test the
reliability of a written program and the vaiidity of the
parameters estimated {rom a piven type of experi-
mental curve, simutated daia i often usad inttially,

The user supplies values for the parameters, their
standard deviations if available, the values of para-
metric weights if the conditioning of a particular
parameter in the model is bad, and the values of the
standard deviation of the deperdent variable s, (),
denoted oy SINST. A sct of # values of ihe indepen-
dent variable v shouid alsc be given. The program
then calculates precise values of “theoretical points™
along the exact curve v = f{x: ff. Paiii £.). Fach
theoretical point is then converted into a simulated
“experimental” one by the addition of a Gaussian
error generated by a random-number generator. The
four statistical moments, Pearson y? test and Ham-
ilton R-factor test are then applied to the “‘experi-
mental” curve points. in order to check whether the
errors are normally distributed.

The weight for each curve point, w;, is caiculated
for m parameters

ﬂ &= (ﬁh/{z- 2 ;fm)‘

a vector of their standard deviations

Sy =Is(B L s(B). . s(fn)i

and u vector of their parametric weights

# () = Do (B)ow (B ow (Bl
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Table 3. Simulation of pK,~1 curve points for pre-selected values of parameters, their standard deviations,
their weights and errors s,,, (pK,) for the dissociation HL™ = L*" + H*. Statistical analysis of the set of
errors generated tests whether a distribution is Gaussian [z = —1, (z — 1)? - 2% =3}

PRESELECTED VALUES:
INSTRUMENTAL ERROR = 0.0050

STANDARD
PARAMETER DEVIATION  WEIGHT
5.000 0.020 0.010
4.500 0.300 0.980
0.300 0.010 0.010

xxxxxx DATA xxxxxx

NUMBER OF POINTS =20

THE CONSTANT A =0.5115

THE CONSTANT B =0.3291 3
THE CHARGE OF IONS (Z — 1)%42 —Z%2 =3

SIMULATION OF PK-1 CURVE

I I(EXP) PK(ACCUR) ERROR PK(LOADED) WEIGHT
1 0.0100 4.869341 —0.004709 4.864632 8.371428
2 0.0400 4.775226 —0.000053 4.775172 2.681057
3 0.0900 4.708259 —0.006368 4.701891 1.488267
4  0.1600 4.662537 0.003544 4.666080 1.023263
5 0.2500 4.634170 0.006563 4.640733 0.786365
6  0.3600 4.620485 —0.005943 4.614542 0.646007
7 0.4900 4.619591 —-0.011206 4.608385 0.554365
8  0.6400 4.630105 0.001697 4.631802 0.490324
9 0.8100 4.650997 —0.002646 4.648351 0.443288
10 1.0000 4.681484 —0.008908 4.672576 0.407440
1 1.2100 4.720958 —0.003016 4.717941 0.379244
12 1.4400 4.768940 0.007988 4.776928 0.356556
13 1.6900 4.825051 —0.00378¢ 4.821265 ©0.337922
14 1.9600 4.888982 0.000621 4.889603 0.322366
15 2.2500 4.960482 —0.008307 4.952174 0.309191
16 2.5600 5.039344 0.003041 5.042385 0.297890
17 2.8900 5.125397 —0.001236 5.124161 0.288112
18 3.2400 5.218496 —0.000682 5217814 0.279560
19 3.6100 5.318518 —0.005667 5.312851 0.272021
20 4.0000 5.425362 —0.005801 5.419560 0.265330

STATISTICAL ANALYSIS OF GENERATED ERRORS:

ERROR MEAN = —~2.24E-03
MEAN ERROR = 0.0046
STANDARD DEVIATION = 0.0055
SKEWNESS = —0.869

KURTOSIS = 2.145

PEARSON CHI SQUARE = 6.40 AND SHOULD BE 12.60 (FOR 6 D.F.

AND 0.95 PROBABILITY LEVEL)
R-FACTOR =0.00113

according to the general scheme

yi,Ozf(xi;IqlvﬂZ""~[‘m) (6)

vo=fixiB+s(B)Pr. ... Bl (7.1)

Via=L1xs B, By +5(Bo)s -5 Bl 1.2

yi.rn:yfixi;ﬁl’ ﬁ2s’°',ﬂm+s(ﬂmn {7"1)

P=1 / Y (Yiy— i) (8)
i=1

W, = Z P,'W(ﬁ,*)i%,j — Yiol 9

j=1

The value of the parametric weight w (f;) serves to
increase the sensitivity of the jth parameter in the
model. When all the parameters are well-conditioned
in a model. their parametric weights are equal.
.Table 3 demonstrates a data simulation for the

program DHLET. The parametric values are f§; = 5.0
(=pKD), B, =4.5(=d), B, = 0.3 (=C). The standard
deviations of the parameters can be set at any desired
values; in this case the values were s(f5,)=0.02,
s(f,)=10.3, s(B:)=0.01. The statistical weight for
each parameter can also be set to a suitable value to
improve the sensitivity of the parameter in the
model. Therefore w(f,)=0.01, w(f,)=098 and
w(f,)=0.01. As the ion-size parameter d is ill-
conditioned in the model and its estimate is not so
precise as the estimate of the other two parameters,
its parametric weight was set at a vaiue- 98 times the
parametric weights for the thermodynamic constant
and salting-out coefficient. Statistical weights for each
point on the pK,~/ curve are caicuiated according to
the scheme above.

The QUTPUT unit displays the estimated results i
various graphical ways: deconvolution of the experi-
mental absorbance curve into the absorbance curves
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for individual species, distribution diagrams for all
the complex species in equilibrium, curves of molar
absorptivities of requested species, curve fitting,
fitness tests, efc. are possible.

The ADDITIONAL SUBROUTINES unit con-
tains various mathematical subprograms, format-free
reading subroutines, subroutines of matrix calculus,
elc.

CONSTRUCTION OF AN ABLET
PROGRAM

An ABLET program is constructed from (1) three
specific units formulated by the user for the particular
mathematical model of the equilibrium study and (2)
six permanent units which are the same for all
ABLET family programs.

Units formulated by the user

The MASTER unit contains the MAIN PRO-
GRAM which reads in some of the organization
data, keys, termination criteria, etc. SINST is set such
that either synthetic data (SINST >0) or experi-
mental data (SINST = — 1.0) are treated. The present
version of ABLET allows up to N = 50 curve points
and M =8 unknown parameters. Enlargement of
arrays for M in siagle precision may lead to in-
stability in the least-squares algorithm LETAG, and
is at the risk of the user. An array for the parametric
vector XK (M), parametric standard deviations
SIGXK (M) and parametric weights WEI(M) should
be declared. Variable arrays are transferred by
COMMON/FUNC/. This contains a vector for the
independent variable XEXP(50), a vector for the
dependent variable YEXP(50), a vector for the gener-
ated random error ERR (50), a vector for the calcu-
lated variable YCAL(50) and a vector of weight for
each curve point W(50). The input channel number
NI is transferred by COMMON/KANAL/ and four
numerical constants for printer-plotting subroutine

PLOTT and seven keys are transferred by
COMMON/PLOT/ and COMMON/ISW/.
MAIN

DIMENSION XK(8),SIGXK(8),WEL(8)

COMMON/FUNC/XEXP(50),YEXP(50),ERR(50),

YCAL(50),W(50)/KANAL/NI

COMMON/PLOT/MY ,MX,NLS,NCL,DUMMY
(1930)/ISW/ISSW(7)

STOP

END

The INPUT unit should contain a version of
SUBROUTINE DATA(JOU.NB) written for the
particular equilibrium probiem. The subroutine reads
the experimental data and does some preliminary
calculations. It has two arguments: IOU is an output

channel number and NB the number of curve poinis.
All variables are transferred by labelled COMMON
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blocks. The preloninary calculations must  be

specified by the user.

SUBROUTINE DATA{IOU.NB)
COMMON/FUNC/XEXP(50).Y EXP(50),ERR(50}),
YCAL(50),W(50)/KANAL/NI

CALL READI(NB,I)

RETURN
END

The RESIDUAL-SQUARE SUM unit should
contain a subroutine UBBE(U ,NK,XK,NB) which
uses the parametric vector XK(M) and the indepen-
dent variable vector XEXP(N) to calculate a de-
pendent variable vector YCAL(N) and then the sum
of squared residuals

Y. W(D*[YEXP() — YCAL()}.

i=1
The arguments for UBBE are NB, the number of
curve points; NK, the number of parameters; XK, the
parametric vector; and U, the residual-square sum

function. Other variables are transferred by a labelled
COMMON.

SUBROUTINE UBBE(U,NK,XK.NB)
DIMENSION XK(NK)
COMMON/FUNC/XEXP(50),Y EXP(50),ERR(50),
YCAL(50),W(50)

U=0.0

DO 1 I=1NB

YCAL() =...

| U = U + W(D*(YEXP(i) — YCAL(I))%2
RETURN

END

Permanent parts of the ABLET program

The MINIMIZATION unit contains SUB-
ROUTINE LETAG(IOU,NAUT,NK,NB, XK. UMIN,
ISSW,DARK2,DATA,UBBE,SKRIK),” which per-
forms a search for parameters XK and their standard
deviations SIGXK. The LETAG subroutine is di-
vided into independent logical blocks, use of which is
controlled by the value of IRUR. Its arguments are
107J, the output channel number; NK, the number of
parameters; NB, the number of curve points; ISSW,
the vector of keys; subroutines DATA, UBBE and
SKRIK; NAUT, a key; XK, a parametric vector;
DARK?2, a vector of parametric standard deviations
calculated in LETAG; and UMIN, the minimum of
U achieved.

The STATISTICAL TEST unit contains SUB-
ROUTINE STATS(IOU,NK,NB,X.Y,EPS) which is
adapted from the program MINIQUAD."

The DATA SIMULATION unit contains three
subprograms, SIMUL, NORAND and FUNCTION
RANDOL. In the SUBROUTINE SIMUL



954

(X,YC,YM,NB,ISTART) X is the vector of the
independent variable; YC the vector of dependent
variable calculated precisely; YM the vector of de-
pendent variable loaded with an error. generated by
YM(I) = YC(I) + SINST+EPS(I) where EPS(I) is the
. random error generated by subroutine NORAND;*
SINST is the standard deviation of the depend-
ent variable; ISTART is a starting value for gener-
ation of random numbers. SUBROUTINE
NORAND(D1,D2,IS) is the routine™ for generation
of random numbers and calls internal FUNCTION
RANDOL(IS).

The OUTPUT unit contains SUBROUTINE
SKRIK(NB,NK,IOU,IRUR,XK,SIGXK) and out-
puts the estimated parameters and their standard
deviations, a statistical analysis of residuals, and a
printer-plot of the curve-fitting done by subroutine
PLOTT.®

The ADDITIONAL SUBROUTINES unit con-
tains seven subroutines;: WEIGHT, PLOTT, READI,
READR, INVERT, PINUS and MULLE. SUB-
ROUTINE WEIGHT(UBBE,NB,XK,SIGXK,WEI)
calculates weights for simulated curve points.
SUBROUTINE PLOTT(XX,YY,NDATANDMAX,
ISYMBL,NF,XLINE,MX,YLINE,MY,NLS,NCL,
MM,LL,AREA,YSCALE) makes a line-printer
plot.*® SUBROUTINE READI(,N) and SUB-
ROUTINE READR(A,N) are used for format-free
input. I is the identifier of the variable or array to
contain N integers, and A is the identifier of the
variable or array to contain N reals. The input
channel is defined by COMMON/KANAL/NI, e.g.,
NI = 5. As separator between two numbers, blank(s)

or comma(s) may be used, or any symbol(s) which.

cannot be interpreted as numbers by READI or
READR (e.g., 1E7 is interpreted by READR as
1.0 x 107 but by READI as two different integers 1
and 7). When r numbers of the same value are to be
read in, the form r* number may be used, e.g., 5.52,
5.52, 5.52 may be written as 3%5.52. The form 5xb,
where b is one blank, causes READI or READR to
skip the next readings, leave the corresponding vari-
ables_at their previous values.

Three internal subroutines of LETAG are SUB-
ROUTINE INVERT for matrix inversion,” SUB-
ROUTINE PINUS for multiplication of a vector by
a matrix,2 and SUBROUTINE MULLE for multi-
plication of a matrix by a matrix.?

CONCLUSION

Many problems in a wide variety of fields of
analysis can be reduced to the problem of finding a
correct mathematical model and its unknown para-
meters by minimizing the difference between experi-
mental and calculated data. ABLET is a system of
subprograms to solve such problems. Since in prin-

MiLaN MELOUN and JoseF CERMAK

ciple ABLET is designed to handle any function'
y =f(x; f) it is quite general, and it may suit the
needs of quite different users, not only in the study
of solution equilibria.

A listing of the ABLET system and data input
instructions are available on request.
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