4 Statistická analýza

Obsah:

- 4.1 Testy hypotéz (Hypothesis Tests)
- 4.2 Testy hypotéz (Power and Sample Size)
- 4.3 Popisné statistiky (Descriptive Statistics)
- 4.4 Analýza rozptylu (ANOVA)
- 4.5 Neparametrické testy (Nonparametric Tests)
- 4.6 Vícerozměrná statistická analýza (Multivariate Analysis)
 - 4.6.1 Metoda hlavních komponent (Principal Component Analysis)
 - 4.6.2 Shluková analýza (Cluster Analysis)
 - 4.6.3 Diskriminační analýza (Discriminant Analysis)

4.1 Testy hypotéz (Hypothesis Tests)

Testy hypotéz jsou často používány k měření kvality výběru (vzorku) nebo ke zjištění, zda odhady daného parametru pro dva výběry jsou stejné. U parametrických metod je třeba nejprve ověřit předpoklady o rozdělení výběru, který byl vybrán ze souboru. Obvykle se vyžaduje, aby údaje byly nezávislá měření, jež vykazují normální rozdělení.

Kroky:

a) t-Test jednorozměrného výběru (One-Sample t-test)

Předpokládejme, že výrobce vyrábí vysoce kvalitní šroubové matice o průměru 21 mm. Oddělení kontroly jakosti náhodně odebralo 120 matic vyrobených matic, změřilo průměr u každé matice v mm a výsledky jsou **Diameters.dat**. Cílem je ověřit, zda střední hodnota (zde aritmetický průměr) matice je skutečně rovna 21 mm. O rozdělení naměřených průměrů je známo, že bývá normální, zatímco směrodatná odchylka souboru není známa. Budete používat **One-Sample t-test** podle následujících kroků:

1. Začněte s novým sešitem a naimportujete soubor File, Import, Single ASCII \Samples\ Statistics\Diameter.dat, Open, OK.

2. V menu **Statistics, Hypothesis Testing,** otevřete **One-Sample t-test, Open dialog.** Klik na trojúhelníkovou šipku bloku **Input** vyberte sloupec **A(X): diameter a** zadejte oboustranný test a zadejte požadovanou hodnotu 21 k testování střední hodnoty pro úroveň spolehlivosti 95%.

3. Všimněte si, že ve výchozím nastavení poskytne postup popisné statistiky sledovaného průměru a výsledky testů hypotéz. Kromě toho je možné vytvořit také histogram dat a interval spolehlivosti pro střední hodnoty.

4. Klikněte na tlačítko **OK** k dokončení analýzy a generování výsledků. Tabulka **Descriptive Statistics** ukazuje velikost vzorku, průměr, směrodatnou odchylku a směrodatnou odchylku měřené proměnné. Vzorek vykazuje 21,00459 mm, což je nepatrně větší než požadovaná nulová hypotéza 21 mm a směrodatná odchylka průměru (SEM) je 0,00156 mm.

Ŧ.	Descriptive	•			
Ц		Ν	Mean	SD	SEM
	"diameter"	100	21.005	0.0156	0.00156

Results Log Output		
Recalculate	Manual 🔽	
Input ([[diameter]diameter!1	
🖃 t-Test for Mean	\geq	
Test Mean	21	
Null Hypothesis	Mean = 21	
Alternate Hypothesis	Mean <> 21	
	○ Mean > 21	
	🔘 Mean < 21	
Significance Level	0.05	
Confidence Interval(s)		
Confidence Level(s) in %	95	
🛨 Power Analysis		
🛨 Plots		
🗆 Output		
Output Plot Data	<optional></optional>	<u> </u>
Output Results	[/input>l/new>	30

Z tabulky **t-test** je zřejmé, že statistika **t** (= 2,94337) a s ní související **p-hodnota Prob** (= 0,00404) prokazuje, že aritmetický průměr sledovaného průměru matic je odlišný od velikosti 21, a to na hladině významnosti $\alpha = 0,05$.

Interval spolehlivosti znamená, že s 95%ní statistickou jistotou tvrdíme, že skutečný průměr proměnné leží v intervalu [21,0015, 21,00769].

🖻 <u>Confidence Intervals for Mean</u> 🗾

4	Conf. Levels in %	Lower Limits	Upper Limits			
"diameter"	95	21.0015	21.00769			

F	Test Statis	tics 🔄 👱						
		t Statistic	DF	Prob≻ t				
	"diameter"	2.9437	99	0.00404				
	Null Hypothesis: Mean = 21 Atemative Hypothesis: Mean \Leftrightarrow 21 "diameter": At the 0.05 level, the population mean is significantly different from the test mean (21).							

Output:

b) Pairový t-test

 Začněte v novém sešitě a naimportujte File, Import, Single ASCII, /Samples/Statistics /abrasion_raw.dat, Open, OK. Pak zavolejte Statistics, Hypothesis Testing, Pair-sample t-Test, Open dialog.

2. V bloku **Input** nastavte sloupec **tireA** jako **1st Data Range** a sloupec **tireB** jako **2nd Data Range**, zadejte **0** na testovaný průměr **Test Mean**.

3. Ponechte ostatní defaultní nastavení. Klikněte na **OK** pro generování výsledků.

V tabulce **t-test** vidíte, že statistika t (= 2,83119) a související **p-hodnota Prob** (= 0,02536) ukazuje, že rozdíl mezi těmito dvěma středními hodnotami je statisticky významný, a je proto třeba říci, že oba typy pneumatik mají odlišnou odolnost proti otěru.

Statistics\Hypothesis Test	ing: PairSampletTest	?×
Dialog Theme		•
Description Perform a paired-sar	mple t-test for means	
Results Log Output Recalculate	Manual	
🗆 Input		
1st Data Range	[abrasionraw]abrasion_raw!A"tireA"	
2nd Data Range	[abrasionraw]abrasion_raw!B''tireB''	
🖃 t-Test for Mean		
Test Mean	0	
Null Hypothesis	Mean1 - Mean2 = 0	
Alternate Hypothesis	⊙ Mean1 - Mean2 <> 0	
	O Mean1 - Mean2 > 0	
	O Mean1 · Mean2 < U	
Significance Level	0.05	
Confidence Interval(s)		
Confidence Level(s) in %	90 95 99	
 Power Analysis		
	ОК	Cancel

Output:

c) Studentův t-test shodnosti výběrů

Lékař hodnotí účinek dvou uspávacích léků. K otestování účinnosti obou léků se vybere 20 pacientů trpících nespavostí. Polovina pacientů vzala lék **A** a druhá polovina lék **B.** Byl zaznamenán prodlužený čas spaní u každého pacienta a je v datech **time_raw.dat**. Test shodnosti, zda oba léky mají různý vliv na pacienty, se provede se dvěma výběry nezávislým t-testem:

1. Začněte s nového sešitu a importovat soubor File, Import, Single ASCII, \Samples\statistika \time_raw.dat, Open, OK.

2. Otevřete Statistics, Hypothesis Testing, Two-Sample t-Test, Open dialog, a pokračujte....

3. Vyberte "**Raw**" do **Input Data Form**, nastavte sloupec **A** a sloupec **B** jako první a druhý výběr.

4. Ostatní defaultní nastavení ponechte a klikněte na tlačítko **OK** pro generování výsledků.

	t Statistic	DF	Prob≻ t
Equal Variance Assumed	1.89811	18	0.07384
Equal Variance NOT Assumed	1.89811	17.8248	0.074
(Welch Correction)			
Null Hypothesis: mean1-mean2 = 0			

Attemative Hypothesis: mean1-mean2 <> 0

At the 0.05 level, the difference of the population means is NOT significantly different from the test difference(0).

Testování poskytuje dva testy rozdílu středních hodnot. První je založen na předpokladu, že rozptyly dvou výběrů jsou shodné a druhý nejsou shodné. V této úloze oba testy ukazují, že nebyl prokázán rozdíl účinků mezi lékem A a lékem B. (p-hodnoty jsou 0,0738 a 0,074, což je větší, než je hladina významnosti 0,05.)

Output:

d) Test shodnosti rozptylů

- 1. Pokračujte v novém sešitě **File**, **Import**, **Single** ASCII \Samples\Statistics\ time_raw.dat, **Open**, OK.
- 1. Otevřete Statistics, Hypothesis Testing, Two-Sample Test for Variance, Open dialog a pokračujte....
- 3. Vyberte "**Raw**" do řádku **Input Data Form**, a v **Input** nastavíte sloupec **A:medicine A** a sloupec **B:medicine B** jako první a druhý výběr.

4. Ponecháte ostatní defaultní nastavení a kliknete na tlačítko **OK** pro generování výsledků.

Podle **p-hodnoty Prob** = 0,77181 > 0,05 plyne, že nelze odmítnout nulovou hypotézu o rozdílnosti rozptylů.

			Statistic	:s\Hypo	thesis T	estin	g: TwoSa	m	pleTestVar			<u> </u>
		ſ	Dialog Th	eme								
z l	e		Description Perform two-sample test for variances									
			Result	s Log Ou	ıtput							
Recalculate Manual V Indexed: factor variable and response data are stored in separate columns						_						
O- Raw: each column contains response data from a level of the factor variable.												
			Input D)ata For	m		Raw		~			
			🖃 Inpu	ut ———								
l,	a		1s	t Data Ra	nge		[timeraw]time_raw!A''medicineA''					
p	ec		2r	id Data R	ange		[timeraw]time_raw!B''medicineB''					
e	te		⊛ F-te	st for Va s put	niances	Ratio						
									(OK	Car	ncel
	Des	CI	riptive	Statis	tics	-						
				N	Mean		SD		Variance]		
	"me	ed	licineA"	10	2.35	5 1	1.97611		3.905			
	"medicineB" 10 0.75		5 1	1.78901		3.20056						
Г	F Sta	- Statistics				Dark C						
		1	2201	Nume	ar. DF	De	nom. DF	Q	0 77191			
+	Null H	L.	othesis:	Variance	UVariano	o2 = 1		9	0.7710			
	Alternative Hypothesis: Variance1/Variance2 = 1 Alternative Hypothesis: Variance1/Variance2 <> 1 At the 0.05 level, the two population variances are NOT significantly different.											

Output:

4.2 Test velikosti výběru (Power and Sample Size)

Test síly a test velikosti výběru jsou užitečné pro správný návrh experimentu. Nedostatečné údaje a nedostatek síly odhadu k odmítnutí falešné nulové hypotézy může vést k chybnému závěru, stejně jako na druhé straně příliš mnoho nadbytečných dat vede ke ztrátě času a peněz. Je proto třeba určit velikost výběru před provedením experimentu. Sílu odhadu lze vypočítat pro danou velikost výběru, stejně jako lze opačně vypočítat velikost výběru pro danou sílu odhadu. Tutoriál ukáže, jak pro výpočet velikosti výběru nebo velikost síly odhadu navrhovat experimenty v různých praktických situacích.

a) PSS-Analýza velikosti a síly výběru - (PSS)One-Sample t-Test

Podstata: Sociolog chce zjistit, zda průměrná míra kojenecké úmrtnosti v USA je rovna 8. V návrhu experimentu by se neměl rozdíl lišit o více než 0,5. Z pilotních studií je známo, že směrodatná odchylka by měla být 2,1.

Otázka: Jaká bude velikost výběru při odhadu průměrné kojenecké úmrtnosti na statistické jistotě 95% ($\alpha = 0.05$) pro hodnoty síly odhadu 0,7, 0,8 a 0,9 ?

Kroky:

1. Aktivujte prázdný list, zvolte **Statistics, Power and Sample Size, (PSS)One-Sample t-test, Open dialog** a pokračujte...

2. Proveď te nastavení dle následujícího obrázku vpravo pro dialogové okno**PSS_tTest1** a klikněte na tlačítko **OK**.

Výstup: Je vygenerován výsledkový list spolu s přehledem vypočtené velikosti výběru pro hypotetické síly odhadu.

F	🗄 Sample Size(s) for Hypothetical Power(s) 🗾					
		Alpha	Power	Sample Size		
		0.05	0.7	111		
		0.05	0.8	141		
		0.05	0.9	188		
	Nu	ill Mean = 8	; Alternate	Mean = 8.5; SD = ;	2.1; 2-Sided Test	

Interpretace: Podle návrhu experimentu by sociolog měl provést analýzu výběru o 111 vzorcích pro sílu odhadu 0,7, výběr 141 vzorků pro sílu 0,8 a/nebo výběr 188 vzorků pro sílu 0,9.

Statistics\Power and Sa	ample Size: PSS_tTest1 🛛 🛛 🛛 🔀
Dialog Theme 🛛 ×	•
Description Perform power a	nd sample size analysis for one-sample t-test.
Results Log Output	
Calculate	Sample Size 🔽
🗆 Test Specification —	
Null Mean	8
Alternate Mean	8.5
Standard Deviation	2.1
Alpha	0.05
Hypothetical Power(s	0.7 0.8 0.9
Tail	2 side 🔽
🗷 Options	
Output Results	<new></new>
	OK Cancel

b) PSS-Analýza velikosti a síly dvou výběrů - (PSS)Two-Sample t-Test

Podstata: Ordinace lékaře spolupracuje se dvěma zdravotními pojišťovnami, Healthwise a Medcare. Cílem je porovnat střední dobu úhrady pohledávek (ve dnech) obou pojišťoven. Historická data ukazují, že pro pojišťovnu Healthwise je průměrná doba 32 dnů se směrodatnou odchylkou 7,5 dne. Pro pojišťovnu Medcare je průměrná doba úhrady 42 dnů se směrodatnou odchylka 3,5 dne.

Otázka: Bylo vybráno 5 požadavků z každé pojišťovny a byly zaznamenány odpovídající doby úhrady. Jaká je síla detekování rozdílu v průměrných časech úhrad mezi dvěma pojišťovnami o 5% nebo více?

Kroky:

1. Vypočtěte sdruženou směrodatnou odchylku dle vzorce

 $\sqrt{((5-1)^*7.5^2 + (5-1)^*3.5^2)/(5+5-2)} = 5.85235$

Všimněte si, že tato hodnota se použije jako směrodatná odchylka k pozdějším výpočtům síly.

2. Velikost vzorku z první skupiny a druhá skupiny by měla být 5+5=10.

3. Aktivujte prázdný list, zvolte **Statistics, Power and Sample Size, (PSS)Two-Sample t-test, Open dialog** a pokračujte....

4. Proveď te nastavení dle následujícího obrázku pro dialogové okno **PSS_tTest2** a klikněte na tlačítko **OK**.

Výstup: Je vygenerován výsledkový list spolu s přehledem vypočtené velikosti výběru pro hypotetickou síly odhadu.

Ξ	Po	wer(s)	for Hypothet.	ical Samp	ole Size(s) 🗾
		Alpha	Sample Size	Power	
		0.05	10	0.95054	
	Gr	oup1 Mean	= 32; Group2 Mear	i = 42; SD = 5	5.85235; 2-Sided Test

Statistics\Power and Sample	Size: PSS_tTest2 🛛 🛛 🛛 🔀						
Dialog Theme 🔹							
Description Perform power and sam	nple size analysis for two independent sample t-test.						
Results Log Output							
Calculate (Power						
Test Specification							
1st Group Mean	32						
2nd Group Mean	42						
Standard Deviation	5.8524						
Alpha	0.05						
Hypothetical Sample Size(s)	10						
Tail	2 side 💌						
🗄 Options							
Output Results	<new></new>						
	OK Cancel						

Interpretace:

Lze konstatovat, že ordinace má sílu 0.95054 : 1 (nebo 95% ní) zjištění rozdílu mezi oběma pojišťovnami, když shromažďuje 5 nároků na každou pojišťovnu. Jinými slovy, existuje šance, že se nepodaří zamítnout nulovou hypotézu o odlišnosti obou pojišťoven, protože spočtená pravděpodobnost (hladina významnosti) je rovna 4,946% (1 - 0,95054) je menší než 5%.

c) PSS-Analýza velikosti a síly párového výběru (PSS Paired Sample t-Test)

Podstata: Existují dva měřicí přístroje stejného typu k měření hloubky a-Si tenkého filmu. Zjistěte, zda existuje nějaký rozdíl v obou přístrojích, když je požadavek na experiment k měření hloubky a-Si tenké vrstvy na stejné pozici u obou přístrojů v různých produktech. Podle předchozí studie bylo zjištěno, že směrodatná odchylka rozdílu je 2 μm. Ta bude sloužit za odhad směrodatné odchylky rozdílů při plánování experimentu. Rozdíl v měření u dvou přístrojů nemůže být více než 0,5 μm, a průměrná hloubka naměřená prvním přístrojem je 5000 μm.

Otázka: Kolik vzorků musí být naměřeno na úrovni statistické jistoty 99% pro sílu 0,8, 0,9, 0,95?

Kroky:

 Podle informace plyne, že průměr u prvního přístroje je 5000 μm a průměr u druhého je 5000,5 μm.

2. Aktivujte prázdný list a v menu vyberte **Statistics, Power** and **Sample Size, (PSS)Paired t-Test** a pokračujte...

3. Dle obrázku vpravo nastavte data v okně **PSS_tTestPair** a klikněte na **OK.**

Statistics\Power and Sa	mple Size: PSS_tT	estPair 🛛 🛜 🔀
Dialog Theme		•
Description Perform power a	nd sample size analysis f	or the paired sample t-test.
Results Log Output		
Calculate	Sample Size 🛛 👻	
🗆 Test Specification —		·
1st Group Mean	5000	
2nd Group Mean	5000.5	
Std Dev of Diff	2	
Alpha	0.01	
Hypothetical Power(s)	0.8 0.9 0.95	
Tail	2 side 🔽	
🕀 Options		
Output Results	<new></new>	<u>₹</u>
		OK Cancel

Výstup:

Výsledný list ukazuje vypočítané velikosti výběr (tj. počet vzorků) pro různé síly.

	Sd	Alpha	Power	Sample Size	Power(s)				
		0.01	0.8	191					
-		0.01	0.9	242					
		0.01	0.95	289					
	Group1 Mean = 5000; Group2 Mean = 5000.5; SD = 2; 2-Sided Test								

Interpretace:

Z výsledků lze usuzovat, že technik má ke zjištění rozdílu typu užitého přístroje 80%ní šanci, pokud bude měřit 191krát hloubku a-Si tenké vrstvy filmu, 90%ní šanci, pokud bude měřit 242krát hloubku a-Si tenké vrstvy filmu a 95%ní šance, pokud bude měřit 289krát hloubku a-Si tenké vrstvy filmu.

4.3 Popisné statistiky (Descriptive Statistics)

Origin poskytuje komplexní popisnou statistiku včetně základní statistiky (průměr, medián, rozptyl, apod.), je vyčíslena frekvence a korelační koeficienty dat. Kromě silné grafické vlastnosti, statistické nástroje zde pomáhají sumarizovat a analyzovat data.

A. Nalezení informace o frekvenci skupin

Můžeme použít nástroj Discrete Frequency pro rychlé získání informací o frekvenci skupin dat.

- 1. Začněte s novým projektem. Importujte data souboru File, Import, Single ASCII, \Samples \Statistics\automobile.dat, Open, OK.
- Zvýrazněte první dva sloupce. Vyberte Statistics, Descriptive Statistics, Discrete Frequency, Open dialog a otevře se dialogové okno. Sloupec A a sloupec B jsou automaticky vybrány za vstupní data. Klikněte na OK.

B. Výpočet popisných statistik seskupených dat

Pomocí nástroje **Statistics on Columns** lze najít základní statistické údaje každé skupiny dat. **Kroky:**

1. Přepněte zpět na první list automobile a vyberte Statistics: Descriptive Statistics: Statistics on Columns se otevře dialog Statistics on Column, Open dialog.

2. Otevřete uzel **Range 1** a klikněte na **interactive button**. Dialogové okno "srolovat" a můžete nastavit rozsah dat **Data Range** jako sloupec **C** až sloupec **G** volbou sloupců **C**(**Y**) a tažením až do sloupce **G**(**Y**) v listu. Klikněte na tlačítko v dialogovém okně roletky až do obnovení dialogu. Klikněte na tlačítko **triangle button**, umístěného vedle **Grouping Range** a zvolte **B**(**Y**): **Make**.

- 3. Zde ukážeme, jak se dělá krabicový graf pro seskupená data, aby bylo možné porovnat všechny skupiny v grafu k rychlému porovnání. Proveďte proto následující kroky:
- Rozbalte Output Settings a Graph Arrangement. Vyberte Arrange Plots of Same Type in One Graph zaškrtnutím políčka.
- 2) Rozbalte **Plots** a zaškrtněte políčko **Box Charts**.

Statistics on Columns	?	×
Dialog Theme		
Description Perform Descriptive Statistics		_
Recalculate	Manual	
🖾 Input Data	Independent Columns 🖌	
🖂 Range 1		
Data Range	[automobile]automobile!C''Power'':G''E	
Grouping Range	[automobile]automobile!B''Make''	
Weighting Range		
Quantities to Compute Computation Control (Pro) Output Settings Graph Arrangement Arrange Graphs into Columns	3	
Arrange Plots of Same Type in One Graph		
Box Charts		>
	OK Cance	

4. Klikněte na **OK**, aby se výsledky ve zprávě listu.

C. Použití statistických výsledků pro další operace

Po použití dialogu **Statistics on Columns** k vypracování zprávy, bývá požadována další analýza a grafické vykreslení statistických výsledků. Například, k prezentování průměrných hodnot parametrů vozidel vyrobených v letech 1992 - 2004 (tj. koní, 0-60 mph čas, hmotnost, stav tachometru), proveď te následující kroky:

1. Ve zprávě listu, klikněte pravou myší na název tabulky **Descriptive Statistics** a vyberte **Create Copy as New Sheet** jako nový list ze zkrácené nabídky.

🛄 auto	m	obile - auton	nobile.dat				×
6, 1 🖂	St	atistics on C	olumns (1,	/31/.	201.	2 09:29:07)	^
	+ + •	Notes Input Data Descriptive	✓ Statistics	•	5		
			Buick	N to		User Comments	
			Acura GMC			Create Copy As New Sheet	-
			Chrysler Kia			Create Transposed Copy As New Sheet	-
			Suzuki			Expand Collapse	-
			Mercedes			Reset All Graphs	-
		Power	Mazda		~	Arrange Plots of Same Type in One Graph	-
			Toyota			Copy Format Paste Format	-
	au	tomobile 🖌 Di	scretFreq1	λDe		View	×

2. Je-li aktivní nový list, vyberte Worksheet, Unstack Columns.

3. V otevřeném dialogovém okně vyberte sloupce D a E jako Data to be Unstacked. Protože trojuhelníkové tlačítko podporuje pouze jednu volbu, musíte použít tlačítko interactive button.
4. Nastavte sloupec A jako Group Variables.

- 5. Zaškrtněte Include Other Columns a nastavte Other Columns na sloupec B.
- 6. Nastavte Put Grouping Info. To na Long Name. Klikněte na OK.

🔲 Data Manipulation\Workshe	et: wunstackcol			? 🔀
Dialog Theme 🛛 ×		[Н	lint	
Description UnStack grouped data in	to multiple columns			
Recalculate	Manual			
Data to be Unstacked	[automobile]Sheet2!(D''Mean'',E''Standard Deviation'')	l	I nclu (Unstac includi	le Other Columns k grouped data into multiple columns ng ungrouped data columns.
Group Columns	[automobile]Sheet2!A		Nu	m ID Data
🗆 Options			1 Te a	sti Ai i
Include Other Columns			2 Tes 3 Tes	st1 B1 2
Other Columns	[automobile]Sheet2!B		4 Te a	
Include Missing as One Group				Num A1 B1
🗆 Output Settings				1 Testi 1 2 2 Tost2 3 4
Sort Output Columns By	Group Variables 🔽			
Output Worksheet	<new></new>			
Put Grouping Info. to	Long Name			
	OK Cancel <			

7. V důsledku unstack sloupce, dostaneme střední hodnotu a směrodatnou odchylku
Power, 0 ~ 60 mph času, hmotnost, plynu najetých kilometrů a motoru na 18 různé značky vozidel.

8. Zvýrazněte celý výsledek listu. Vyberte **Plot, Multi-Curve, Stack** z hlavního menu.

9. V dialogovém okně pop-up, všechny sloupce v listu jsou automaticky nastaveny jako vstup.
Nastavte Plot Type na Scatter a klikněte na tlačítko OK.

V uvedeném obrázku jsou horní popisky osy X-Axis Tick pro přehlednost otočeny o 45 stupňů . Chcete-li to provést, dvoj-klikem na popisky ticků a otevře se dialog X-Axis. Nastavte Rotation na záložce Custom Tick Labels.

automobile	e - automob	ile.dat						_ 🗆 🛛
	A(X) 🗳	B(Y)	٥	C(yEr?	D(Y) 👶	E(yEr?	F(Y) 🙆	G(yEr?
Long Name		0~60 m	ph	0~60 mph	Engine Dis	Engine Dis	Gas Mileag	Gas Mile
1	Buick	15,526	32	3,45396	##########	##########	21,15789	6,030
2	Acura	15,842	11	4,51249	######################################	##########	21,26316	6,216
3	GMC	15,052					(
4	Chrysler			Graph1				
5	Kia	15,63	1	234	5	گ	۰.	
6	Suzuki	16,26	Ā		Salit Star	XXXXXX	S. N. S.	S. L. N
7	Volvo	15,10	¤		1 6 0.0 6 84	J. 4. 20 40 10 101	(221.U.4242	5° V
8	Mercedes	15,10		1000	Engine Dis	placement		
9	Isuzu	15,57	Ħ	T	TIT		Гт Т_т	. 1
10	Mazda	15,36	B.	¹⁵⁰⁰		Ĺ ∳ ĭ <u> </u>	∎ L T L T I	
11	Lexus	15,57	Ř.	1200 -	┦ ││┦┦╵	▛▕▎╇▝▛⊥▎	│ │	• -
12	Toyota	15,26		900 L. L		[<u> </u>		1.1
13	Saab	15,42		125	0~60 mph			<u>-</u>
14	Infiniti	15,73	5	100 - T	TTTT	[]] _T]	T T T I I I T	T-
15	Honda	16,10	Įž	75	╞╧┿┿┿╵	• • • • • •	╸╸╸	• -
16	Nissan	1	۱ŭ,		ITIII			
17	Saturn	15,84:			· · · · ·	1 - 1 - 1 - 1 - 1 - 1 - 1	т т Т	
18	Lincoln	14,73	l age	27.0	Gas Milea	<u>зен Т _ т л</u>	. T T T T T	Τ
19			<u>ië</u>	25				
20			Σ	<u></u>	┿┿ ┿╇╹	<u><u></u></u>	• • • • • •	₽ 1
21			98	^{18,0} -				1 1
22			ē.	13,5	 			
M Desco	tatsUnLois I	A Desc	<u>a</u>	6000 •	Engine Dis	placement	Ι	. 1
			ğ.	4500 - T	T T	1 1	ſĹĬŢĬĬ	
				3000	╞ <u>╞</u> <u></u> <u></u> <u></u>	* • • • • • •	╸╴┊┊┊	• <u>1</u>
			E.	1500				
			Ē	1000 - 1	بليليليل			إست
			Ę.	20,3		т	т – Т	-
			Ε	17,4	TIT	Ι - Ι Τ Τ 1	╷╷╷╷	т -1
			Ģ.	14.5	Ŷ∳ŶŶĨı	6 4 4 4 4 4 4 4	• • • • • • •	
			6	116		1 1 1 1		
				· ''' [بر ایرا بر ایرا بر آن میروند رواند روانده م		<u>ا ا ا ا ا ا ا ا ا ا</u>	
				BUR	usunan noy sinan u zeur	NCHINA CONTRA		
						A		

D. Analýza vztahu mezi různými indikátory

Můžeme použít korelační koeficient k prozkoumání vztahu mezi sloupci našich automobilových údajů. Kromě toho můžeme vykreslit maticový graf s konfidenční elipsou ke grafickému znázornění korelace

1. Přejděte do původního listu zdrojových dat. Zvýrazněte posledních pět sloupců. 2. Zvolte Statistics, Descriptive Statistics, Correlation Coefficient a otevřete nástroj Correlation Coefficient. Všimněte si, že Pearsonův korelační koeficient je zvolen defaultně. Tato metoda je vhodná pro kvantitativní data.

📰 automobile - automobile.dat A1 A2 3. V oddíle **Plots** zaškrtněte **Add** Scatter Matrix Power 0~60 mph Weight Gas Mileage Engine Displacem Confidence Ellipse. Políčko Scatter Plot by pak mělo být vybráno *Power automaticky. Klikněte na OK. "0~60 mph' 🧰 automobile - automobile, dat "Weight" Poznámka: Vysokou pozitivní Correlations Coefficients (9/16/2009 17:24:30 Notes korelaci mezi Engine Displacement Input Data Descriptive Statistics *Gas Pearson Correlations Power a vysokou negativní a Mileage 0~60 mph Weight Pearson Con korelaci mezi Gas Mileage a Engine 4 606E-F "Engine -0.248-0.18*0~60 mph Displacem 606E-6 8.622E-4 **Displacement** čili počtem najetých -0.18enť Pearson Cor 8.622E-4 kilometrů a zdvihovým objemem InstackCols1 0.279 -0.548A PlotData1 A Scat 'Gas Mileag 1.778E-7 -0.233*Engine Pearson Corr 0.474 motoru. Displacement 0 1.447E-5 -tailed test of significance is use

Oas Milea Engine Displ

0.279

778E-1

-0.548

-0.82

DescStatsOnCols1 & DescStatsCurves1 & Sheet1 & UnstackCol

0.89

-0.233

0.474

-0.82

.447E-5

E. 2D-čítač plošného rozdělení (Binning)

Operace **2D Freqvency Count/Binning** počítá frekvence pro data se dvěma proměnnými. V případě potřeby se sestrojí 3D-sloupcový graf a/nebo obrazový diagram k intuitivní demonstraci rozdělení datových bodů.

Kroky:

1. Vytvořte nový projekt a importujte data File, Import, Single ASCII, \Samples\Statistics\ 2D Binning 1. dat, OK.

Zvýrazněte sloupec A a sloupec B, zvolte
 Statistics, Descriptive Statistics, 2D
 Frequency Count/Binning vyvolejte dialog
 TwoDBinning a pokračujte....

A2DBinn	ing1 - 2D Bi	nning 1. dat	į
	A(X)	B(Y)	
Long Name	Х	у	
Units			
Comments			
Sparklines			
	a la facada del patraca Cl ⁱⁿ	risting and a state	
1	51	76	
2	44	64	
3	35	72	
4	14	70	
5	49	64	
6	43	59	
7	12	67	
8	55	69	
9	53	78	
10	18	75	
💶 🕨 👌 2D Bi	nning 1 /		

- 3. Zadejte následující nastavení v dialogu dle obrázku vpravo:
- 3.1 Vyberte Auto ze Recalculate.
- 3.2 V oddíle X zrušte zaškrtnutí políčka Auto pro Minimum Bin Beginning,
 Maximum Bin End a Bin Size zadejte 40, 60 a 5 do tří textových polí. Stejné parametry v oddíle Y nastavte na 50, 70, a 10 v tomto pořadí.
- 3.3 Vyberte Sum z Quantity to Compute. Zaškrtněte políčko Output Matrix. V oboru Matrix Plots zkontrolujte obě 3D Bars a Image Plot.

Statistics\Descriptive Statistics:	twoDBinning ?	
Dialog Theme 🛛 ×		►
Description Calculate frequencies on bi	variate data	
		~
Recalculate	Auto	
🛨 Input	[A2DBinning1]"2D Binning 1"!(A"x",B"y")	
□ "x"(X) [5 65]		
Specify Binning Range by	Bin Ends	
	40	
Maximum Bin End		
Step bu	Bin Size Number of Bins	н
Bin Size)
Number of Bins	4	
Periodical		
Border Options		
Output Binning Order		
□ "w"(Y) [45 86]		
Specify Binning Bange by	Bin Ends	
Minimum Bin Beginning	50	
Maximum Bin Fod)
Step bu	Bin Size Number of Bins	L
Bin Size)
Number of Bins		
Periodical		
Border Options		
Output Binning Order		
Quantity to Compute	Sum	
Uutput Worksheet	<new></new>	
Subtotal Count for Each Binned		
Output Matrix	<new></new>)
Matrix Plots		
JU Bars		
		cel

4. Klepněte na OK a budete mít následující výstupy:

List

🗰 A 2DBinning	🗰 A2DBinning1 - 2D Binning 1.dat 🛛 🔲 🗖 🔀										
	A(X) 🛍	B(Y)	ငကျ	<u> </u>							
Long Name	Bin Ends of "x"	Sum	Sum								
Bin Ends of "y"		60	70								
Comments		50 - 60	60 - 70								
1	45	3228	8596								
2	50	2929	7324								
3	55	2271	5985								
4	60	2164	4033								
5											
6											
7											
8	ing 1 入TwoDBir	n1/	<								

3D-Sloupce

Matice

🛄 Mat2	🔜 Mat 2DBin 1 : 1/1 Sum 📃 🗖 🔀								
	1	2	3	4	ê				
1	3228	2929	2271	2164					
2	8596	7324	5985	4033					
					×				
.	woDBin1/			<	<u>۔</u> ایا				

Obrázkový graf

📰 G	raph2 -	lmage	Plot					
1 62- 64-	46 .	48 .	50 ,	52	54 	56 	58 .	60
66- 68-								
70								

5. Chcete-li dát odlehlé hodnoty pro proměnnou Y do koše, klepněte na ikonu zámku v listu **TwoDBin1** a zvolte **Change Parameters**.

6. Ve větvi **Y** rozbalte uzel **Border Options,** pak zaškrtněte oba, **Include Outliers <Minimum** a **Include Outliers> = Maximum**.

7. Klikněte na OK. Dva sloupce pro odlehlé hodnoty jsou přidány do listu TwoDBin1.

🛄 A 2DBinning	🛙 A2DBinning1 - 2D Binning 1. dat									
	A(X) 🛍	В(🕏	ငကျာ	D(M)	E(Y)	^				
Long Name	Bin Ends of "X"	Sum	Sum	Sum	Sum					
Bin Ends of "y"		50	60	70	80					
Comments		< 50	50 - 60	60 - 70	>= 70	_				
1	45	225	3228	8596	13440					
2	50	315	2929	7324	13298					
3	55	135	2271	5985	11193					
4	60	135	2164	4033	9367					
5										
Outliers <minimum outliers="">=Maximum</minimum>										
↓ 2D Binn	ing 1 👌 TwoDBir	i1/								

Statistics\Descriptive Statistics: t	woDBinning	? 🗙
Dialog Theme ×		
Description Calculate frequencies on biva	riate data	
🖃 "y"(Y) [45 , 86]		- ^
Specify Binning Range by	Bin Ends 🔽	
Minimum Bin Beginning	50 At	uto
Maximum Bin End	70 At	uto
Step by	Sin Size O Numnber of Bins	
Bin Size	10 Au	uto
Number of Bins	2	
Periodical		
Border Options		
Include Outliers < Minimum		
Include Outliers >= Maximum		
Separately Count Minimum		≡
Separately Count Maximum		
Output Binning Order	Ascending	
Quantity to Compute	Sum 💌	
Column to Compute Quantity	Y	_
✓ Output Worksheet	[A2DBinning1]TwoDBin1!	•
Subtotal Count for Each Binned Y		~
<		
		ancel

Matice, 3D-Sloupcový graf a Obrázkový diagram budou aktualizovány.

📰 Mat2DBin1 :1/1 Sum										
	1	2	3	4	Ô					
1	225	315	135	135	^					
2	3228	2929	2271	2164						
3	8596	7324	5985	4033						
4	13440	13298	11193	9367						
.										

📰 Gra	ph2 - Ima	age Plo	t				$ \times$
1 4 54 56 58 60 62 64 66 68 70 72 74 74 76	5 43	50	52	54	56	33 . 6	°
805							

8. Dvojitým kliknutím na osu Y se otevře **Axes Dialog**, změňte měřítko **Scale From** na **To**, sice **45** a **90**. Klikněte na měřítko osy Z a změňte **To** na **14000**.

4.4 Analýza rozptylu (ANOVA) 4.4.1 One Way ANOVA

Existují dva druhy datových souborů v analýze rozptylu ANOVA – data indexovaná a data původní. Při provádění analýzy dat, není třeba používat celý datový soubor, Origin proto nabízí několik způsobů, jak účelně vybrat data. Například, lze použít tlačítko interaktivní **Regional Data Selector**, který vybere data, nebo lze použít dialogové okno **Column Browser**. Pomocí analýzy rozptylu se dozvíte, jak používat oba druhy dat, které mají provádět analýzy a jak vybrat data pomocí prohlížeče sloupce. ANOVA je druh parametrické metody k porovnání a rozšíření t-testu. Pokud existují více než dvě skupiny, které mají být porovnány a použití t-testu pro dvojice zde není vhodné a použije se ANOVA. Ta ale vyžaduje normalitu dat a shodné rozptyly. V opačném případě by měly být použity neparametrické metody ANOVA. Pro jednorozměrnou analýzu rozptylu **One-Way ANOVA** a použití indexovaného režimu dat jsou data organizována vždy ve dvou sloupcích: první sloupec pro faktor a druhý pro data.

Data indexovaná: První

sloupec pro faktor a druhý pro data:

👑 Book1 - nitrogen.txt 🛛 🗖 🔀								
	A(X)	B(Y)	^					
Long Name	plant	nitrogen	_					
Comments	Factor	Data						
1	PLANT3	18.15473						
2	PLANT3	12.90409						
3	PLANT2	18.61197						
4	PLANT1	17.7111						
5	PLANT4	11.81661						
6	PLANT3	11.68327						
7	PLANT2	23.43165						
8	PLANT2	14.01454	~					
Image: A nitro	gen /	<	>					

🚟 Book1 - nitrogen_raw.txt 📃 🗖							
	A(X)	B(Y)	cm	D(Y)	^		
Long Name	Plant1	Plant2	Plant3	Plant4			
Comments	Level1	Level2	Level3	Level4			
1	17.7111	18.61197	18.15473	11.81661			
2	32.15046	23.43165	12.90409	2.39438			
3	17.70871	14.01454	11.68327	1.09914			
4	28.07729	12.17685	23.52293	16.00756			
5	7.83567	4.86902	16.00594	13.85077			
6	2.06008	18.93963	3.04056	9.22245			
7	22.81923	29.92086	14.29516	14.86523	~		
Image: A nitroe	jen raw 🦯		<		>		

Data původní: data různé faktory jsou v různém sloupci.

Data indexovaná

Byl naměřen obsah dusíku v miligramech pro 4 druhy rostlin a je třeba vyšetřit, zda různé rostliny se liší v obsahu dusíku. Užije se **One-Way ANOVA** v režimu indexovaných dat pro následující příklad:

1. Začněte s novým sešitem a importovat soubor File, Import, Single ASCII, \Samples\Statistics\Nitrogen.txt, Open, OK. Ujistěte se, že jste vybrali data s koncovkou *.txt. Za prvé je třeba provést test normality pro každý sloupec dat, zda jsou data normálního rozdělení.

2. Zvýrazněte první sloupec kliknutím pravé myši a vyberte **Worksheet**, **Sort Worksheet**, **Ascending**.

3. Zvýrazněte druhý sloupec od řádku 1 do řádku 20, které patří do **PLANT1**, otevřete **Statistics**, **Descriptive Statistics**, **Normality Test**, **OK**.

4. Použijte výchozí nastavení v dialogu a klikněte na **OK**. Z **p-hodnota Prob = 0,58545**, můžeme vidět "PLANT1" a následuje normální rozdělení.

5. Podobným způsobem si můžete zvýraznit dat "PLANT2", "PLANT3" a "PLANT4" a test normality. Náš výběr dat vykazuje normální rozdělení pro všechny rostliny (čili sloupce).
6. S aktivním listem otevřete dialog Statistics, ANOVA, One-Way ANOVA, Open dialog. Nastavte Input Data jako Indexed, přiřaďte sloupce "plant" a "nitrogen" jako Factor a Data pomocí tlačítek pravostranných šipek. Klepnutím na + rozbalte uzel Means Comparison, nastavte Significance Level na 0,05 a zvolte Tukey Means Comparison Method. Zvolte Levene || z testů Tests for Equal Variance. Klikněte na OK a provede se One-Way ANOVA.

trogen.txt		>
A(X)	B(Y)	ľ
plant	nitrogen	
	MMM MAN	
PLANT1	12.25362	
PLANT1	18.62515	
PLANT1	19.41474	1
PLANT1	17.7111	
PLANT1	6.22726	
PLANT1	18.20339	
PLANT1	22.81923	
PLANT1	2.06008	
PLANT1	32.15046	
PLANT1	28.07729	
PLANT1	17.70871	
PLANT1	20.60228	
PLANT1	25.23966	
PLANT1	16.73526	
PLANT1	20.75954	
PLANT1	30.35227	
PLANT1	31.14475	
PLANT1	17.58991	
PLANT1	12.39297	
PLANT1	7.83567	
PLANT2	18.93963	
PLANT2	29.92086	
DI ANITO	1217695	
PLANTZ	12.17003	
PLANT2 PLANT2	18.61197	
	PLANT1 PLANT2 PLANT2	A(X) B(Y) plant nitrogen nitrogen nitrogen plant 12.25362 plant1 16.22726 plant1 22.81923 plant1 22.807729 plant1 22.53966 plant1 16.73526 plant1 17.58931 plant1 17.839277 plant1 17.839277 plant1 17.839297

Vysvětlení: Z tabulky testu **Homogeinity of Variance** jednorozměrné ANOVA lze vidět, že čtyři skupiny mají stejný rozptyl, protože **p-hodnota Prob** je větší než **0,05**.

📮 Homogeneity of Variance Test 🗾

	📮 Levene's Test(Absolute Deviations) 🗾										
			DF	Sum of Squares	Mean Square	F Value	Prob≻F				
Ч	Ц	Model	3	18.06843	6.02281	0.34578	0.79229				
		Error	76	1323.76846	17.41801						
	At the 0.05 level, the population variances are not significantly different.										

Z výsledku celkové analýzy rozptylu můžeme konstatovat, že nejméně dvě skupiny čtyř mít významný různé prostředky, protože **p-hodnota Prob** je menší než 0,05.

📮 Overall ANOVA

	DF	Sum of Squares	Mean Square	F Value	Prob≻F
Model	3	1996.36652	665.45551	12.86214	6.99338E-7
Error	76	3932.05317	51.73754		
Total	79	5928.41969			

Null Hypothesis: The means of all levels are equal.

Atemative Hypothesis: The means of one or more levels are different. At the 0.05 level, the population means are significantly different.

-

• Pro další výzkum, je třeba rozšířit výsledky **Means Comparison.**

👎 Means Comparisons 👘

Ę	Tukey Test 💌								
		MeanDiff	SEM	q Value	Prob	Alpha	Sig	LCL	UCL
	PLANT2 PLANT1	2.26308	2.27459	1.40706	0.75274	0.05	0	-3.71181	8.23796
	PLANT3 PLANT1	-2.46538	2.27459	1.53284	0.70039	0.05	0	-8.44027	3.5095
_ `	PLANT3 PLANT2	-4.72846	2.27459	2.93989	0.16935	0.05	0	-10.70334	1.24643
	PLANT4 PLANT1	-10.93833	2.27459	6.80085	4.38499E-5	0.05	1	-16.91322	-4.96345
	PLANT4 PLANT2	-13.20141	2.27459	8.20791	8.24355E-7	0.05	1	-19.1763	-7.22653
	PLANT4 PLANT3	-8.47295	2.27459	5.26801	0.00207	0.05	1	-14.44784	-2.49807

Sig equals 1 indicates that the means difference is significant at the 0.05 level.

•

Sig equals 0 indicates that the means difference is not significant at the 0.05 level.

ANO	VAOneWay		?×		
Dialo	g Theme ×				
Desc	ription Perform One-Way ANG	JVA			
Indexed: factor variable and response data are stored in separate columns. Raw: each column contains response data from a level of the					
	Input Data	Indexed			
	Factor	[Book1]nitrogen!A''plant''			
	Data	[Book1]nitrogen!B''nitrogen''	i		
De	scriptive Statistics				
Sig	nificance Level	0.05			
	Means Comparison		-		
	Significance Level	0.05			
	Tukey				
	Bonferroni				
	Dunn-Sidak (Pro)				
	Fisher LSD (Pro)				
	Scheffe'				
	Holm-Bonferroni (Pro)				
	Holm-Sidak (Pro)				
	Tests for Equal Variance		-		
	Significance Level	0.05			
	Levene				
	Levene ()^2				
	Brown-Forsythe				
+ <	Power Analysis		>		
		OK Ca	incel		

Zde je vidět, že má PLANT4 se liší ve srovnání s každým z ostatních tří.

Data původní

1. Vyberte File, Open a vyberte sešity \Samples Statistics Body.ogw, Open.

2. Zvolte Statistics, ANOVA, One-Way ANOVA, Open Dialog. V Input Data zvolte Raw. Zapište do Level1 name a Level2 name název Male Weight a Female Weight.

3. Nyní budeme používat **Data Browser** k zadání dat do **Data** bloku. Klikněte na trojúhelníkovou ikonku vedle **Male Weight** a zvolte **Select Columns...** k otevření dialogu **Column Browser.**

V dialogovém okně **Column Browser** zvolíte **in Current Book** ze **List Columns** listu, aby byly vidět všechny sloupce listu v aktuální knize.

Vyberte Weight v listu [Body]Male a klikněte na tlačítko Add a OK a přidejte ji do Male Weight editačního pole. Podobně, přiřadit Weight z [Body]Female do Female Weight editačního pole.

🖃 Input Data	Raw 💙	
E Factor		
Name	Factor	
Number of levels	2	
Level1 name	Male Weight	
Level2 name	Female Weight	
🗖 Data		
Male Weight		A(X) : Name
Female Weight		B(Y): Age
Descriptive Statistics		D(Y) : Height
⊞ Means Comparison ⊞ Tests for Equal Variance	(Select Columns

🔲 Column Bro	wser	a). S	elect Curre	ent Book				X
List Columns	in Curre	ent Book 🕇	•	b). Click the title				
Sheet	Index	SName	LName	cl to sort columns	Format	Size	1st Val	ue
[Body]Male	4	D	Weight	Y	T&N	22		- 38
[Body]Female	4	D	Weight	A Highlight a	T&N	18		42.2
[Body]Male	1	A	Name	c). Highlight a	T&N	22	Tom	
[Body]Female	1	A	Name	proper column	T&N	18	Kate	
[Body]Male	3	С	Height	Y	T&N	22		148
[Body]Female	3	С	Height	Y	T&N	18		146
[Body]Male	2	В	Age	Y	T&N	22		12
[Body]Female	2	В	Age	Y	T&N	18		12
<u> </u>								2
Column Selected				Add Remove	OK	Car	ncel	\$
Range F	lows			b V). Add the			
				colu	umn and C)K		

🔲 Column Bro	wser	a). Select Curi	rent Book				
List Columns	in Current	Book 🛛	b). Clic	k the title			
Sheet	Index SI	Name LName🗹	CL to som	columns	- Format	Size	1st Value
[Body]Male	4 D	Weight		Y	T&N	22	38
[Body]Female	4 D	Weight		iabliabt a	T&N	18	42.2
[Body]Male	1 A	Name	C). Th	iynnynt a r column	T&N	22	Tom
[Body]Female	1 A	Name	piope	a column	J T&N	18	Kate
[Body]Male	3 C	Height		Y	T & N	22	148
[Body]Female	3 C	Height		Y	T&N	18	146
[Body]Male	2 B	Age		Y	T & N	22	12
[Body]Female	2 B	Age		Y	T&N	18	12
<							>
Column Selected Add Remove OK Cancel							
Range R	OWS			CI	d). Add the olumn and O	ĸ	

4. Přijmout další defaultní nastavení v dialogovém okně **ANOVAOneWay** a klikněte na **OK**. Z výstupní sestavy v poznámce pod čarou lze konstatovat, že na úrovni 0,05, hmotnost souboru mezi mužem a ženou se nijak výrazně neliší.

4.5 Neparametrické testy (Nonparametric Tests)

Neparametrické testy jsou používány, když není známo, zda data vykazují normální rozdělení, nebo se potvrdilo, že data nevykazují normální rozdělení. Neparametrické testy nevyžadují předpoklad normality v následujících úlohách:

- Malá velikost vzorku,
- Kategoriální (binární) pořadové údaje,
- Normální rozdělení nelze předpokládat.

4.5.1 Testy nezávislosti jednorozměrného výběru

Jednorozměrný Wilcoxonův znaménkový test je navržen k analýze mediánu souboru relativně k zadané hodnotě. Lze si vybrat jedno- nebo dvou-stranný test. Wilcoxonův znaménkový test hypotézy H0: medián = předpokládaný medián *versus* H1: Medián nepředpokládaný.

Příklad: Inženýr kvality ve výrobní hale se zajímá, zda střední hodnota (třeba průměr) hmotnosti produktu se rovná 166. U náhodného výběru 10 výrobků se bude měřit hmotnost. Naměřená data jsou 151.5 152.4 153.2 156.3 179.1 180.2 160.5 180.8 149.2 188.0 a zadejte je do **sloupce A**. Bude následovat test normality se zjištěním, zda rozdělení dat je normální.
Kroky:

- Otevřete nový list a zadejte uvedené údaje ve Column A. Vyberte Statistics, Descriptive Statistics, Normality Test... a otevřete dialog Normality Test.
- Otevřete uzel Input Data název sloupce
 A(x) v řádku Data range.
- 3. Klikněte na **OK** a dostanete výsledky:

_						
Ē	Shi	apiro	-Wilk 🔻			
		DF	Statistic	p-value	Decision at level(5%)	
	В	10	0.83472	0.03814	Reject normality	
	B: 7	At the I	0.05 level, th	e data was	not significantly drawn fror	n a normally distributed population

Podle výsledku, **P-hodnota Prob = 0,03814,** distribuce dat není normálního rozdělení na hladině významnosti 0,05, a proto je třeba použít neparametrický test **One-Sample Wilcoxon Signed Rank test**: .

Normality Test		? 🛛				
Dialog Theme		►				
Description Perform Normality T	est					
Recalculate	Manual 💌					
🖃 Input Data						
🖂 Range 1						
Data Range	[Book2]Sheet1!A					
Grouping Range		<u>₹</u>				
🗖 Quantities to Compute						
Shapiro-Wilk						
🗄 Kolmogorov-Smirnov						
Lilliefors						
Anderson-Darling						
D'Agostino-K squared						
Chen-Shapiro						
Significance Level	0.05					
🗄 Output Settings						
🛨 Plots						
		OK Cancel				

Kroky:

- Vyberte Statistics, Nonparametric Tests, One-Sample Wilcoxon Signed Rank Test... a otevře se dialogové okno.
- 2. Nastavte sloupec A(x) jako rozsah dat Data Range.
- 3. Zadejte 166 v textovém řádku Test Median.
- 3. Klikněte na **OK** a dostanete výsledky:

Statistics\Nonparame	tric Tests: signrank1	? 🛛
Dialog Theme 🛛 ×		•
Description Perform a one	-sample Wilcoxon signed rank te	st
Results Log Output Recalculate	✓ Manual ✓	
Input	[Book2]Sheet1!A	≧ ►
Test Median	166	
Null Hypothesis	Median = 166	
Alternate Hypothesis	● Median <> 166 ● Median > 166 ● Median < 166	
Significance Level	0.05	
Output Results	[<input/>] <new></new>	1
		OK Cancel

Podle modře psaného závěru v outputu výsledků nelze zamítnout nulovou hypotézu H0 o rovnosti mediánu 166 na hladině významnosti 0,05.

4.5.2 Testy nezávislosti dvou výběrů

Existují dva neparametrické testy dvou výběrů nezávislého systému: **Mann-Whitney test** a **Two Sample Kolmogorov-Smirnov test**.

Příklad: praktické využití Mann-Whitney testu. Obroušený materiál z pneu (v mg) se měří pro dva typy pneumatik (A a B) a 8 experimentů bylo zde provedeno pro každý typ pneumatiky. Data jsou v **abrasion_indexed.dat**.

1. Importujte File, Import, Single ASCII \Samples \Statistics\ abrasion_indexed.datOpen, OK.

2. Vyberte **Statistics, Nonparametric Tests, Mann-Whitney Test,** abyste otevřeli dialogové okno.

3. Do Input Data Form zadejte Indexed.

4. Nastavte sloupec A(x) v Group Range, nastavte sloupec B(y) jako Data Range.

5. Zaškrtněte políčko Exact P Value.

Statistics\Nonparamet	ric Tests: mwtest 🛛 🕐 🔀
Dialog Theme 🔹	•
Description Preform Mann-V	√hitney test
Results Log Output	
Hecalculate	Manual
Input Data Form	Indexed
🗆 Input	
Group Range	[[abrasionindex]abrasion_indexed!A"tire"
Data Range	[asionindex]abrasion_indexed!B''abrasion'' 👔 🕨
🛛 🖂 Mann-Whitney Test	
Null Hypothesis	F(x) = G(x)
Alternate Hypothesis	⊙ F(x) <> G(y)
	\bigcirc F(x) > G(y)
	\bigcirc F(x) < G(y)
Significance Level	0.05
Exact P Value	
Output Results	[<input/>] <new></new>
	OK Cancel

6. Klikněte na **OK** pro spuštění výpočtu , což by mělo být v listu MannWhitney1.

Test Statistics

U	Z	Exact Prob≻ U	Asymp. Prob≻(U)
34.5	0.2102	0.82191	0.83351

Null Hypothesis: F(x) = G(y)

Alternative Hypothesis: $F(x) \Leftrightarrow G(y)$

At the 0.05 level, the two distributions are NOT significantly different.

U: statistiku U lze jednoduše vypočítat z hodnosti dvou skupin. Jde o číslo, vyjadřující kolikrát je skóre ve 2. skupině je větší než skóre v 1. skupině.

Z: přibližná statistika testu normality. Poskytuje vynikající přiblížení s růstem velikosti výběru.

Exact Prob: přesná hodnota **p-value**, je k dispozici pouze tehdy, když Exact P Value je v dialogu zadána. Nicméně, může to být velmi CPU-časově náročné pro nadměrné velikosti výběru.

Asymp.Prob: asymptotická hodnota p-value, vypočtená z přibližné statistiky testu normality **Z**.

4.5.3 Neparametrické testy korelace

Korelační koeficient je používán jako měřítko síly lineárního vztahu mezi dvěma proměnnými.

Existují dvě neparametrické metody výpočtu korelace mezi proměnnými :

• **Spearman:** společná náhrada Pearsonova korelačního koeficientu, Spearmaným koeficientem pokud obě proměnné závisle proměnná a nezávisle proměnná jsou pořadová čísla, nebo když jedna proměnná je pořadové číslo a druhá proměnná je spojité číslo. Lze použít Spearmanovu korelaci také kdy obě proměnné jsou spojité.

• **Kendall:** Používá se pro ordinální proměnné k posuzování shody mezi hodnotiteli.

Kroky:

1. Importujte File, Import, Single ASCII \Samples \Statistics\ abrasion_raw.dat, Open, OK.

2 . Zvýrazněte sloupec sloupec **B**. Vyberte **Statistics**, **Descriptive Statistics**, **Correlation Coefficient** k otevření dialogu **corrcoef**.

3. Zaškrtněte Spearman a zrušte zaškrtnutí Pearson.

4. Klikněte na tlačítko **OK** pro provedení výpočtu a generování výsledků v listu **CorrCoef1**.

Z hodnoty **Spearman Corr.**, lze dojít k závěru, že oděr mezi pneumatikami A a B spolu silně souvisí.

tireA tireB							
"tiro.A"	Spearman Corr.	1	0.90476				
ureA	Sig.		0.00201				
"tiro D"	Spearman Corr.	0.90476	1				
ureo	Sig.	0.00201					
2-tailed te	ed						

Book1											×
1 - 0	orrolati		fining	-+-	(2.2.20)		12.00.2	0			-
116	Notes		l	ns	(3.3.20	14	12.00.3	(9)		p.	
	X-Eu	nction	Correlat	ions	Coeffici	ente					
114	Userl	Vame	mime03	52	o o o o o inici.	onne	-				
		Time	3.3.2014	4 12	:00:39		_				
l 🗖	Input [Data	-								
			D	ata			Rang	e			
	tireA	[Book	1]abrasio	n_r	aw!A"tireA	"	[1*:8*]				
	tireB	[Book	1]abrasio	n_r	aw!B"tireE	3"	[1*:8*]				
I P	Descri	iptive	Statistic	s	-						
		N	Mean		SD		Sum	Min	Max		
	"tireA"	8	6145	13	866,49709	9	49160	4870	8650		
	"tireB"	8	5825	10	97,4646	1	46600	4900	7930		
P	Pearso	on Co	orrelation	IS	-						
					tireA		tire	B			
	"tireA"	Pea	arson Cor	r.		1	0,	99006			
∟	-	-	Sig	g.	0.000		2,438	92E-6			-
٦	"tireB"	Pea	arson Cor	r.	0,990	06		1			-
	2 toiled to		SIG	g.	2,436926	0					
	2-tailed to	ESL OT SI	gnincance is	use							
밑	Spean	man (Jorrelati	ons	5 💌	_	tine D				
		Con			tireA	1	ureB 0.0047	6			
	"tireA"	ope	annan C	Sia		-	0,0020	1			
15	-	Spe	arman C	orr	0.9047	6	0,0020	1			
	"tireB"		5	Sig.	0,0020	1		-			
	2-tailed te	est of sig	gnificance is	use	d						
	Kenda	II Cor	relations	5	-						
IT			renation re		tireA	t	ireB				
		Ken	dall Corr.		1	0,	78571				
L	TIREA		Sig		-	0,	00649				
	"tireB"	Ken	dall Corr.	. 0	,78571		1				
	ureb		Sig.	. 0	,00649						
	2-tailed te	est of sig	gnificance is	use	d						
											-
λ s	catterMat	rix1 λ	CorrCoe	f1 /				•	III	•	1
an -											

4.5.4 Párový Wilcoxonův znaménkový test

Budeme porovnávat dva mediány pneumatik A a pneumatiky B z předešlého příkladu.

Kroky:

- 1. Importujte File, Import, Single ASCII \Samples \Statistics\ abrasion_raw.dat, Open, OK.
- 2 . Vyberte Statistics, Nonparametric Tests, Paired Sample Wilcoxon Signed Rank Tests
- 3. Zvolte Column A jako 1st Range Data a Column B jako 2nd Range Data.
- 4. Klikněte na tlačítko **OK** pro provedení výpočtu a generování výsledků.
- 5. Můžeme konstatovat, že dva mediány jsou výrazně odlišné. Je zřejmé, že medián skupiny A je větší než medián skupiny B.

Statistics\Nonparame	tric Tests: signrank2	? 🛛
Dialog Theme		►
Description Preform paired	d sample Wilcoxon signed rank test	
Results Log Output Recalculate	Manual	
🗆 Input		
1st Data Range	[abrasionraw1]abrasion_raw!A"tireA"	
2nd Data Range	[abrasionraw1]abrasion_raw!B"tireB"	
Null Hypothesis	F(x) = G(x)	
Alternate Hypothesis	 ● F(x) <> G(y) ● F(x) > G(y) ● F(x) < G(y) 	
Significance Level	0.05	
Output Result	[[abrasionraw1]SignedRankPair1!	1
	ОК	Cancel

	tiro A"	N 0	4070	0 4980		eula 57(JIdii 0.3		0650	
	ureA	0	4070	4900		5/1	00	10007.5	8000	
	tireB"	8	4900	4950	542		5420 6687.5		7930	
Ranks 💌										
						Ν	M	ean Rank	Sum	Ra
	"tiro D" "tiro A"			ositive Ranks 2				1.5		
	TIREB-TIREA N			ative Ran	ks	6	5.5			
Te	est St	atisti	ics	-						
	W	1	Z E	Exact Prob> W			As	symp. Prob	0> W	
	33	2.0	329	0.03906			0.04206			
Nu	ill Hypo	thesis:	F(x) = G()	0						
Alt	Alternative Hypothesis: $F(x) \Leftrightarrow G(y)$									

4.5.5 Test nezávislosti vícenásobných výběrů

Příklad: Je sledována spotřeba benzinu mpg u 4 aut. Některé experimenty jsou opakovány. K vyhodnocení počtu najetých kilometrů u čtyř aut na 1 galon benzinu a testu zda je tento počet stejný pro všechny auta, a které auto je nejúčinnější se použije Kruskal-Wallisův test rozptylu.

1. Vytvořte nový sešit v původu, zkopírujte ukázková data.

2. Vyberte Statistics, Nonparametric Tests, Kruskal-Wallis ANOVA,

3. Zadejte Raw jako Input Data Form.

4. Klepnutím na **trojúhelníkové tlačítko** vedle **Input** vyberte **All Columns** v menu.

5. Klikněte na **OK** ke generování výsledků, které jsou uloženy v listu **KWANOVA1.**

GMC/mpg	Infinity/mpg	Saab/mpg	Kia/mpg
26.1	32.2	24.5	28.4
28.4	34.3	23.5	34.2
24.3	29.5	26.4	29.5
26.2	35.6	27.1	32.2
27.8	32.5	29.9	
30.6	30.2		
28.1			

StatisticsWonparam	etric Tests: kwanova	? 🛛
Dialog Theme 🛛 🛛		•
Description Perform Krus	kal-Wallis ANOVA	
Results Log Output		
Recalculate	Manual 🔽	
Input Data Form	Raw 🖌	
Input	[Book1]Sheet1!1:end	1
Significance Level	0.05	
Output Results	[<input/>] <new></new>	≧ ►
	ОК	Cancel

Z **p-hodnoty Prob** můžeme konstatovat, že počet najetých kilometrů ze čtyř aut je významně odlišný.

Ranks 🗾							
	Ν	Mean Rank	Sum Rank				
"GMC/mpg"	- 7	7.7857	54.5				
"Infinity/mpg"	6	17.833	107				
"Saab/mpg"	5	6.2	31				
"Kia/mpg"	4	15.125	60.5				

Z hodnosti tabulky můžeme konstatovat, že auto **Infinity** je nejúčinnější vůz.

4.5.5 Test vícenásobných výběrů

Ophthalmolog vyšetřuje, zda léčba He-Ne laserem je použitelná také u dětí. Data obsahují 2 skupiny dětí ve věku 6-10 let a 11-16 let. Každý datový výběr obsahuje studii rozdílu pouhým okem 5ti osob a vždy po 3 období léčby. Výsledky jsou **eyesight.dat.** Vzhledem k malé velikosti vzorku byly použity neparametrické statistiky v analýze:

1. Importovat File, Import, Single ASCII, z \Samples\Statistics\eyesight.dat, Open, OK.

2. Vyberte Statistics, Nonparametric Tests, Friedman ANOVA.

3. Vyberte Column A za Data Range, Column C za Factor Range a Column D za Subject Range.

4. Klikněte na **OK** pro generování výsledků.

P-hodnota 0.0067379 je menší než 0,05. Soubor se proto značně liší, což naznačuje, že léčba je účinná pro věkovou skupinu 6-10.

Statistics\Nonparam	etric Tests: friedman 🛛 🛛 🛛 🔀
Dialog Theme 🔹	
Description Perform a Frie	edman ANOVA
Results Log Output	
Hecalculate	Manual
Input Data Form	Indexed 🗸
🗆 Input	
Data Range	[eyesight]eyesight!A''6 to 10''
Factor Range	[eyesight]eyesight!C"therapy period"
Subject Range	[eyesight]eyesight!D"person"
Significance Level	0.05
Output Results	[<input/>] <new></new>
	OK Cancel

Podobným způsobem vyberte **Column B** za **Data Range** a zbytek nastavení bude stejný jako předešle.

Na výsledek je vidět, že **p-hodnota Prob** 0,02599 je menší než 0,05 nebo 0,10. Lze také konstatovat, že zrak na 11-16 roků starých dětí je lepší po 3 obdobích léčby.

Z hodnot Chi-Square je zřejmé, že léčba laserem He-Ne funguje lépe u 6-10 roků starých dětí. Starší děti musí být více zapojeny v terapii, aby se jejich zrak zlepšil.

StatisticsWonparam	etric Tests: friedman	? ×
Dialog Theme 🛛 🛛		
Description Perform a Fri	edman ANOVA	
Results Log Output Recalculate	Manual 🖌	
Input Data Form	Indexed 🔽	
🗆 Input		_
Data Range	[eyesight]eyesight!B	₹)
Factor Range	[eyesight]eyesight!C"therapy period"	≧ ►
Subject Range	[eyesight]eyesight!D"person"	D
Significance Level	0.05	
Output Results	[<input/>] <new></new>	≧ ►
	ОК	Cancel

Test Statistics
 Chi-Square DF Prob>Chi-Square
 7.3 2 0.025991
 Null Hypothesis:The samples come from the same population
 Atemative Hypothesis:The samples come from different populations
 At the 0.05 level, the populations are significantly different

4.6 Vícerozměrná statistická analýza (Multivariate Analysis)

4.6.1 Metoda hlavních komponent (Principal Component Analysis)

Analýza hlavních komponent je užitečná pro snížení rozměrů a interpretaci velkých vícerozměrných datových souborů o lineární struktuře a pro objevování dosud netušených skrytých vztahů. Začnete s daty spotřeby bílkovin v pětadvaceti zemích Evropy v 9 druzích potravin. Použití Principal Component Analysis budete zkoumat vztah mezi zdroji bílkovin a těmito evropskými zeměmi.

Kroky:

- 1. Otevřít nový projekt a importovat File, Import, Single ASCII, \Samples\Statistics\Protein Consumption in Europe.dat, Open, OK.
- 2. Vyberte celý list a pak Statistics: Multivariate Analysis: Principal Component Analysis.
- 3. Přijměte výchozí nastavení v otevřeném dialogovém okně a klepněte na OK.
- 4. Vyberte list PCA1.

5. Ve **Eigenvalues of the Correlation Matrix** lze vidět, že první čtyři hlavní komponenty vysvětlují 86% rozptylu a zbývající komponenty přispívají do něho 5% nebo méně. Budeme proto sledovat první čtyři hlavní komponenty.

6. Scree plot je užitečnou vizuální pomůckou k určení vhodného počtu hlavních komponent. Počet složek závisí na zlomovém bodě, ve kterém jsou zbývající vlastní čísla relativně malá a o stejné velikosti. Tento bod není sice příliš zřetelný, ale přesto lze říci, že čtvrtý bod je zlomový bod.

Eigenvalues of the Correlation Matrix 💌

	Eigenvalue	Percentage of Variance	Cumulative
1	4.00644	44.52%	44.52%
2	1.635	18.17%	62.68%
3	1.12792	12.53%	75.22%
4	0.95466	10.61%	85.82%
5	0.46384	5.15%	90.98%
	0.32513	3.61%	94.59%
	0.27161	3.02%	97.61%
	0.11629	1.29%	98.90%
	0.099 <mark>1</mark> 1	1.10%	100.00%

7. Klikněte na ikonu zámku ve výsledcích stromu a zvolte **Change Parameters** v menu. Nastavení počtu složek k extrahování **Number of Components to Extract** na **4**. Nezavírejte dialogové okno, v dalších krocích budeme načítat diagramy komponent.

StatisticsWultivariate Analysis:	pca 🛛 🛛 🛛 🤇
Dialog Theme	•
Description Perform Principal Component	Analysis
Recalculate	Manual
Variables	Protein Consumption in Europe" 👔 🕨
E Settings Analyze	Correlation Matrix Covariance Matrix
Number of Components to Extract	4
Standardize Scores	
Exclude Missing Values	 Listwise Pairwise
🗄 Descriptive Statistics	
🕀 Quantities to Compute	
E Plots	
土 Uutput Settings	
	OK Cancel

Požadavek metody hlavních komponent

Ve větvi **Plots** si uživatel může vybrat, zda chce vytvořit sutinový graf nebo diagram hlavních komponent.

• Sutinový graf (Scree Plot): Sutinový graf je užitečná vizuální pomůcka pro určení vhodného počtu hlavních komponent.

• Komponentní grafy (Component Plots): Vyberte Select Principal Components to Plot, kde lze zadat, který pár hlavních komponent se vynese do grafu.

Komponentní grafy zahrnují:

1. Graf komponentních vah (Loading Plot): jde o graf vztahu mezi původními proměnnými a dimenzemi podprostoru. Používá se k interpretaci vztahů mezi proměnnými.

2. Graf komponentího skore (Score Plot): jde o graf projekce původních dat do subprostoru. Používá se k interpretaci vztahů mezi pozorováními.

• **Dvojný graf (BiPlot):** ukazuje, jak na komponentní váhy, tak i na komponentní skore dvou vybraných komponent.

Statistics\Multivariate Analysis: pca	8	X
Dialog Theme		•
Description Perform Principal Component Analysis		_
Variables	urope"!A"Country":J"Fruits & Vegetables" 📑 🕨	*
🗆 Settings		
Analyze	Orrelation Matrix	
	Covariance Matrix	
Number of Components to Extract	2	
Standardize Scores		
Exclude Missing Values	Listwise	
Description Statistics		
Simple Descriptive Statistics		
Correlation Matrix		
Auantities to Compute		
Eigenvalues		
Eigenvectors		
Scores	V	Ε
Plots		
Scree Plot		
Component Plot		
Select Principal Components to Plot		
Principal Component for X Axis	1 •	
Principal Component for Y Axis	2 •	
Loading Plot		
Score Plot		
Biplot		
🗆 Output Settings		
PCA Report	[Book1]PCA1!	
Score Data	[Book1]"Score Data1"!	-
•		•
	OK Can	cel

- 1. V dialogu předcházejících kroků otevřete větev Plots. Ujistěte se, že jsou vybrány Scree Plot, Loading Plot a Biplot.
- 2. První dvě složky jsou obvykle zodpovědné za velkou se vynáší hlavních Principal hlavní kor komponent

Vysvětlení v

1. Z korelační vysoce kor než 0,3. Ai vhodným r

za velkou část rozptylu. To je důvod, proč se vynáší graf v prostoru prvních dvou hlavních komponent. Vyberte Select						ne oč ou ct	Variables	ive Statistic: es to Compu	s ie		Protein Consum	ption in Euro	pe" 👔 🕨	
Pı	Principal Components to Plot, nastavte 1.					1.	Scree P	lot						
hl	avní kompo	nentu	na osu	X a 2	2. hlav	ni 📗		ponent Plot	10	L. DL.				
ko	omponentu n	a osu Y	. Klikně	éte na (OK.			Select Princip	ai Components	: to Plot				
							Principal U	omponent for	X Axis					
		- --- -						Principal C	Component for	Y Axis	2 💙			
světlení výsledků:						Loading Plot 🗹								
· 1	voralační ma	tion in	widat a	o nron	nănná		Score Plot							
ı r		lice je	videl, Z	e pron		JSOU	Biplot 🗹							
vy	soce korelo	vané. N	Mnoho l	nodnot	je vět	ších	🕀 Output S	ettings						
ne	ž 0,3. Analý	za hlav	ních ko	mpone	ent je p	roto								
vł	nodným násti	rojem k	x odstrar	nění ko	lineari	ty.						ОК	Cancel	
Ę	Correlation Matrix	-										OK		
		Red Meat	White Meat	Eggs	Milk	Fish	Cereals	Starch	Nuts	Fruits	& Vegetables			
	Red Meat	1	0.153	0.58561	0.50293	0.06096	-0.49988	0.13543	-0.34945		-0.07422			
	White Meat	0.153	1	0.62041	0.28148	-0.23401	-0.4138	0.31377	-0.63496		-0.06132			
	Eggs	0.58561	0.62041	1	0.57553	0.06557	-0.71244	0.45223	-0.55978		-0.04552			
Ч	Milk	0.50293	0.28148	0.57553	1	0.13788	-0.59274	0.22241	-0.62109		-0.40836			
	FISH	0.00090	-0.23401	0.00557	0.13788	-0.62422	-0.52423	0.40385	-0.14/15		0.20014			
	Starch	0.43568	0.4130	0.71244	0.03274	0.02423	-0.53326	-0.55520	-0.47431		0.04000			
	Nuts	-0.34945	-0.63496	-0.55978	-0.62109	-0.14715	0.651	-0.47431	1		0.37497			
	Fruits & Vegetables	-0.07422	-0.06132	-0.04552	-0.40836	0.26614	0.04655	0.08441	0.37497		1			

Statistics/Multivariate Analysis: pca

Description Perform Principal Component Analysis

Manual

Dialog Theme

Recalculate

?×

►

2. Hlavní komponenty jsou definovány jako lineární kombinace původních proměnných. Tabulka **Extracted Eigenvectors** poskytuje koeficienty pro definiční rovnice hlavních komponent.

무.	Extracted Eigenvectors							
		Coefficients of PC1	Coefficients of PC2	Coefficients of PC3	Coefficients of PC4			
	Red Meat	0.30261	-0.05625	-0.29758	0.64648			
	White Meat	0.31056	-0.23685	0.6239	-0.03699			
	Eggs	0.42668	-0.03534	0.18153	0.31316			
L	Milk	0.37773	-0.18459	-0.38566	-0.00332			
	Fish	0.13565	0.64682	-0.32127	-0.21596			
	Cereals	-0.43774	-0.23349	0.09592	-0.0062			
	Starch	0.29725	0.35283	0.24298	-0.33668			
	Nuts	-0.42033	0.14331	-0.05439	0.33029			
	Fruits & Vegetables	-0.11042	0.53619	0.40756	0.46206			

PC1 = 0.30261 * RedMeat + 0.31056 * WhiteMeat + 0.42668 * Eggs + 0.37773 * Milk + 0.13565 * Fish - 0.43774 * Cereals + 0.29725 * Starch - 0.42033 * Nuts - 0.11042 * FruitsVegetables

PC2 = - 0.05625 * *RedMeat* - 0.23685 * *WhiteMeat* - 0.03534 * *Eggs* - 0.18459*Milk* + 0.64682 * *Fish* - 0.23349 * *Cereals* + 0.35283 * *Starch* + 0.14331 * *Nuts* + 0.53619 * *FruitsVegetables*

PC3 = - 0.29758 * *RedMeat* + 0.6239 * *WhiteMeat* + 0.18153 * *Eggs* - 0.38566 * *Milk* - 0.32127 * *Fish* + 0.09592 * *Cereals* + 0.24298 * *Starch* - 0.05439 * *Nuts* + 0.40756 * *FruitsVegetables*

PC4 = 0.64648 * RedMeat - 0.03699 * WhiteMeat + 0.31316Eggs - 0.00332 * Milk - 0.21596 * Fish - 0.0062 * Cereals - 0.33668 * Starch + 0.33029 * Nuts + 0.46206 * FruitsVegetables

3. Loading Plot odhaluje vztahy mezi proměnnými v prostoru prvních dvou hlavních komponent. V grafu komponentních vah lze vidět, že Red Meat, Eggs, Milk, a White Meat mají podobné velké zátěže pro PC1. Fish, Fruits&Vegetables mají podobné velké zátěže pro PC2.

4. Biplot ukazuje zatížení a skóre dvou vybraných komponent současně. To odhaluje vztah mezi pozorováními a proměnnými v prostoru prvních dvou PC. (Poznámka: Dvoj-klik na graf se tento otevře a upraví.)
4. Biplot ukazuje zatížení a skóre dvou vybraných komponent současně. To odhaluje vztah mezi pozorováními a pozorováními a proměnnými v prostoru prvních dvou PC. (Poznámka: Dvoj-klik na graf se tento otevře a upraví.)

5. Pomocí **Data Reader** se otevře okno **Data Info** a lze zkoumat graf podrobněji. Je vidět, že ve Spain a Portugal se zdroj bílkovin liší od ostatních evropských zemí. Spain a Portugal spoléhají na ovoce a zeleninu, zatímco východoevropské země jako Albania, Bulgaria, Yugoslavia, a Romania raději obiloviny a ořechy.

For Help, press F1

-- AU : ON Dark Colors & Light Grids 1: [Book1] "PCA Plot Data1"!Col("Eigenvalues") [1:9] 1: [Graph1] 1: 1 Radian

| i /, .·, /, 💼 🖾, 🗐 😖 🐵, 👊 🚳 📮 🛷, I 🖉, 🖉, 🕮, 🖬 🚔 📜 🖾 🖉 I 🖤 📫 📫 📮

-- AU : ON Dark Colors & Light Grids 1: [Book1] "PCA Plot Data1"!Col("Principal Component 2") [1:9] 1: [Graph2] 1! Radian

-- AU : ON Dark Colors & Light Grids 1: [Book1]"Score Data1"!Col("Principal Component 2")[1:25] 1: [Graph5]1!1 Radian

4.6.2 Shluková analýza (Cluster Analysis)

Na příkladu analýzy shluků průměrných teplot v amerických městech více než 3-leté periody se demonstruje analýza shluků. Výchozím bodem je hierarchická shluková analýza s náhodně vybranými daty s cílem nalézt nejlepší metodu pro shlukování. Analýza K-průměrů (K-Means) je rychlý způsob shlukování se provádí pro celé datové soubory.

Hierarchická analýza shluků Kroky:

- Začněte s novým projektem (sešitem). Naimportujte data souboru File, Import, Single ASCII, \Samples\Graphing\US Mean Temperature.dat, Open, OK.
- 2. Zvýrazněte sloupce **D** až **O**.
- 3. Vyberte Statistics, Multivariate Analysis, Hierarchical Cluster Analysis a pokračujte....
- Klepnutím na trojúhelníkové tlačítko vedle proměnných Variables a pak klepněte na Select Columns...

Statistics\Multivariate	Analysis: hcluster 🛛 🛛 💽	<
Dialog Theme		,]
Description Perform Hierarch	nical Cluster Analysis	
Recalculate	Manual	
Variables Observation Labels	a]"US Mean Temperature"!4:15	A(X) : City B(Y) : Longitude C(Y) : Latitude
Cluster	Observations Variables	D(Y) : January E(Y) : February F(Y) : March
Cluster Method	Group average	G(Y) : April H(Y) : May I(Y) : June
Standardize Variables	None	J(Y) : July K(Y) : August L(Y) : September
 		M(Y) : October N(Y) : November O(Y) : December P(Y) : Annual
		All Columns
	OK Cancel	Reset Select from Worksheet
		Select Columns
	Ŀ	2

5. V dolním panelu dialogu Column
Browser klikněte na tlačítko ... tlačítko.
Nastavte rozsah dat od 1 do 100.
Klikněte na OK a OK.

Statistics\Multivariate A	nalysis: holuster 🛛 🛛 🛛
Dialog Theme 🛛 🛛	►
Description Perform Hierarchi	ical Cluster Analysis
Recalculate	Manual
Variables	[USMeanTempera]"US Mean T 👔 🕨
Observation Labels	<optional></optional>
🖃 Settings	
Cluster	 Observations Variables
Cluster Method	Furthest neighbour
Distance Type	Euclidean 💌
Standardize Variables	None
Number of Clusters	1
 Quantities Plot Output Settings 	
	OK Cancel

Column Browser										×
ist Columns in Current Sheet	*	Ex	clude							
Sheet	Ir	ndex	SName	LName	Comments	Format	Size	1st Value	Param	^
[USMeanTempera]"US Mean Temperature		1	A	City		T&N	228	EUREKA, CA.		
[USMeanTempera]"US Mean Temperature		2	в	Longitude		T&N	228	-124.1	1	
[USMeanTempera]"US Mean Temperature		3	С	Latitude		T&N	228	40.8	3	
[USMeanTempera]"US Mean Temperature		4	D	January		T&N	228	47.9	Э	
[USMeanTempera]"US Mean Temperature	"	1.0				T&N	228	48.9	Э	
[USMeanTempera]"US Mean Temperature	"	Ran	ge			T&N	228	49.2	2	
[USMeanTempera]"US Mean Temperature	" Г					T&N	228	50.7	7	
[USMeanTempera]"US Mean Temperature		Entire	Columr	n(s) 🔲		T&N	228	53.6	5	
[USMeanTempera]"US Mean Temperature		From		1		T&N	228	56.3	3	_
[USMeanTempera]"US Mean Temperature		TIOM				T&N	228	58.1	1	
[USMeanTempera]"US Mean Temperature		To		100		T&N	228	58.7	7	
[USMeanTempera]"US Mean Temperature		*Input	integer sh	nould between	[1:228]	T8N	228	57.4	1	<u>~</u>
<									>	
Column Selected				ОК	Cancel	Remove		OK Cano	el 💈	*
Range		R	ows							
[USMeanTempera]"US Mean Temperatu	ure"!D:	0 [1	:end]							
		Co Ior di	ol(D)~Co wer pan alog, Se	ol(O) is aut nel. Click et range as	omatically ac butoon to op 1 ~ 100	dded in t Ien Range	he e			

6. V dialogovém okně **Statistics\Multivariate Analysis:** hcluster zaškrtněte v uzlu **Settings** v řádku **Cluster** na **Observations** a v řádku **Number of Clusters** na **1**. V řádku **Cluster Method** vyberte **Furthest Neighbour** dle obrázku vlevo a pak klikněte dole na **OK**. 7. Přejděte na list **Cluster 1**. Na výsledném dendrogramu vidíme data shlukovaná do 5 shluků.

8. Klikněte na ikonu zámku v dendrogramu nebo výsledný strom a potom klikněte na **Change Parameters**.

9. Nastavte **Number of Clusters** na 5 a pak zaškrtněte políčko **Cluster Center** v uzlu **Quantities**. Klik na **OK**.

10. Ve výsledném dendrogramu lze jasně vidět, jak se pozorování seskupila do shluků. (Poznámka: dvoj-klikem lze otevřít a upravit dendrogram.)

11. Vzhledem k velkému počtu pozorování, se popisky osy překrývají v tomto dendrogramu. Použijte proto **Scale In** (lupu) v Tools-nástroji a vyberte si oblast, kterou chcete zvětšit.

Analýza metodou shlukování K-průměrů

1. Klikněte pravou myší na **Cluster Center** a vyberte v roletce **Create Copy as New Sheet**. Budete používat nově vytvořený **Sheet2** jako **Initial Cluster Center**.

2. Vraťte se na list se zdrojovými daty (US Mean Temperature) a označte col(D) až col(O).
Vyberte Statistics, Multivariate Analysis, K-Means Cluster Analysis, Open dialog a pokračujte v okně kmeans.

3. V uzlu **Options** zaškrtněte políčko **Specify Initial Cluster Centers.** Klikněte na interaktivní červeno-černé tlačítko vedle **Initial Cluster Center**. Dialogové okno naroluje.

4. Přejděte na záložku listu **Sheet2** přejděte na řádky s **Sheet2** a označte řádky od **Col(D)** až **Col(O)**. Klikněte na interaktivní červeno-černé tlačítko vedle **Initial Cluster Center** k obnovení dialogu.

5. Otevřte uzel **Plot** a **Group Graph.** Klikněte na interaktivní tlačítko vedle **X Range**. Dialogové okno se naroluje. Vraťte se zpět do zdrojového listu **US Mean Temperature** a zvýrazněte **Col(B):longtitude**. Klikněte na tlačítko v dialogovém okně roll up až do obnovení.

6. Kliknutím na trojúhelníkové tlačítko vedle **Y Range**, a pak vyberte **C(Y), Latitude**. Klikněte na **OK**.

Statistics\Multivariate Analysis	: kmeans	? 🔀
Dialog Theme ×		
Description Perform K-Means clusterin	g	
Recalculate	Manual 💌	
Variables	nTempera]"US Mean Temperature"!4:	15 搔 🕨
🗆 Options		IUSMeanTemperal"US Mean
Number of Clusters	5	Temperature"!4:15
Specify Initial Cluster Centers		
Initial Cluster Centers	[USMeanTempera]Sheet2!4:15	
Maximum Number of Iterations	10	II I CA As an Tanan and 10 has to 1
🗆 Quantities		2:15
Initial Cluster Centers		
ANOVA		
Cluster Membership		
Distance from Cluster		
🖃 Plot	([USMeanTempera]"US Mean
Group Graph		Temperature"!B"Longitude"
Select Variables for Plot	t	
XRange	a]"US Mean Temperature"!B"Longitud	1e" 👔 🕨
Y Range	era]"US Mean Temperature"!C"Latitud	le" 🚡 🕨
🕀 Output Settings		
		USMeanTempera]"US Mean
<		Temperature"!C"Latitude"

7. Aktivujte list **K-Means1**. Všimněte si, že data byla seskupena do 5 skupin podle zeměpisných šířkách měst.

4.6.3 Diskriminační analýza (Discriminant Analysis)

Sada 150 Fisherových kosatců Iris dataset představuje vícerozměrný výběr dat Sira Ronalda Aylmera Fishera z roku 1936. Tento výběr dat je často používán k ilustračním účelům v mnoha klasifikačních algoritmech. Skládá se z 50 kytiček z každého ze tří druhů kosatců (Iris setosa, Iris virginica a Iris versicolor). Čtyři naměřené hodnoty, a to délka a šířka kališního lístku a délka a šířka okvětního lístku v centimetrech tvoří zdrojovou matici dat pro každý vzorek kosatce. Lze použít diskriminační analýzu k identifikaci botanického druhu kosatce na základě těchto čtyř měr.

Cíl úlohy: Užije se náhodný vzorek 120 řádků dat k vytvoření modelu diskriminační analýzy (**trénovací** čili **analyzovaná data**), a poté zbývajících 30 řádků za účelem ověření přesnosti modelu (**testovací data**).

Kosatce (Iris)

Wild Iris - Iris setos a

Iris Versicolor

Iris Virginica

Kosatce (Iris)

Iris Setosa

Iris Versicolor

Iris Versicolor

Iris Virginica

Iris Virginica

Iris Virginica

A. Načtení analyzovaných (trénovacích) dat:

1. Otevřete nový projekt a naimportujte data **File, Import,**

Import Wizard, kliknutím na ... pak soubor \Samples\Statistics \Fisher´s Iris Data.dat, Add File(s), OK, Finish.

2. Zvýrazněte sloupce A až D a zvolte Statistics, Multivariate Analysis, Discriminant Analysis, Open Dialog otevře dialog diskriminační analýzy. Sloupce A až D jsou automaticky přidány jako Training Data (trénovací nebo analyzovaná data). Klikněte na triangle button vedle Group for Training Data a vyberte E(Y): Species v otevřené roletce.

StatisticsWultivariate Analysis: dis	crim (?×	
Dialog Theme 🛛 ×		•	1
Description Discriminant Analysis and Canon	ical Discriminant Analysis		1
		~	1
Recalculate	Manual 😽	ī	
Group for Training Data	her'strisDj"Fisher's tris Data"!E "Species"	\mathcal{V}	A(X) : Sepal Length
Training Data	[[Fisher'sIrisD]"Fisher's Iris Data"!1:4	1	B(Y) : Sepal Width
Predict Membership for Test Data		1	C(Y) : Petal Length
			D(Y) : Petal Width
Prior Probabilities	• Equal	~	E(Y): Species
	O Proportional to group size		All Columns
Discriminant Function	💽 Linear		
	🔘 Quadratic		Reset
Canonical Discriminant Analysis			Select from Worksheet
Cross Validation			Select Columns
🗄 Statistics			
🖂 Quantities		-	
Discriminant Function Coefficients			
🛨 Canonical Discriminant Analysis			
Classification Results	_		
Posterior Probabilities			
Squared Mahalanobis Distance		_	
Atypicality Index			
Classification Summary			
🖻 Plots		-	
Classification Summary Plot		~	
<		>]
		ncel	1
			,

3. Otevřete dále uzel Quantities, a pak zaškrtněte políčko Discriminant
Function Coefficients. Zaškrtněte políčko Canonical coefficients v oddíle
Canonical Discriminant Analysis.
Přijměte všechna ostatní defaultní nastavení a klikněte na OK.

Dialog Theme Description Discriminant Analysis and Canonical Discriminant Analysis Prior Probabilities Prior Probabilities Discriminant Function Canonical Discriminant Analysis Cross Validation Statistics Quantities Discriminant Function Coefficients Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Coefficients Canonical Coefficients Canonical Scores Atypicality Index Classification Summary Plots Classification Summary Muture Muture Discriminant Funct Canonical Score Plot Muture Discriminant Plot Classification Summary Muture Discriminant Plot Canonical Score Plot Muture Discriminate Discrimitate Discrimitate Discrimitate Dis	Statistics\Multivariate Analysis: dis	crim	? 🗡
Description Discriminant Analysis and Canonical Discriminant Analysis Prior Probabilities Equal Proportional to group size Discriminant Function Quadratic Canonical Discriminant Analysis Cross Validation Statistics Quantities Discriminant Function Coefficients Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Coefficients Canonical Coefficients Canonical Structure Matrix Canonical Coefficients Canonical Scores Classification Results Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot Dutput Settings 	Dialog Theme 🔹		
Prior Probabilities ● Equal ● Proportional to group size Discriminant Function ● Linear ● Quadratic Canonical Discriminant Analysis ♥ ■ Quadratic Canonical Discriminant Analysis ♥ ■ Quadratic Canonical Discriminant Analysis ■ Quantities ■ Quantities ■ Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Structure Matrix ■ Canonical Coefficients ♥ □ Classification Results ■ Posterior Probabilities ♥ ■ Classification Summary ♥ ■ Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot ♥ ● Output Settings	Description Discriminant Analysis and Canor	ical Discriminant Analysis	
Proportional to group size Discriminant Function Quadratic Canonical Discriminant Analysis Cross Validation Statistics Quantities Discriminant Function Coefficients Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Structure Matrix Canonical Structure Matrix Canonical Structure Matrix Canonical Scores Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Fit Plot Classification Fit Plot Canonical Score Plot Ø Dutput Settings	Prior Probabilities	● Equal	>
Discriminant Function		O Proportional to group size	
Quadratic Canonical Discriminant Analysis Cross Validation Statistics Quantities Discriminant Function Coefficients ♥ Canonical Discriminant Analysis Canonical Structure Matrix Canonical Coefficients ♥ Canonical Coefficients ♥ Canonical Scores ♥ Classification Results Posterior Probabilities ♥ Squared Mahalanobis Distance Atypicality Index Classification Summary ♥ Plots Classification Summary Plot Classification Fit Plot Classification Summary Plots Classification Summary Classification Summary	Discriminant Function	⊙ Linear	
Canonical Discriminant Analysis Cross Validation Cross Validation Cross Validation Cross Validation Canonical Discriminant Analysis Canonical Discriminant Analysis Canonical Structure Matrix Canonical Structure Matrix Canonical Scores Canonical Scores Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot Classification Fit Plot Canonical Score Plot Classification Summary Classification Summa		O Quadratic	
Cross Validation	Canonical Discriminant Analysis		
Statistics Quantities Discriminant Function Coefficients Canonical Discriminant Analysis Canonical Structure Matrix Canonical Structure Matrix Canonical Coefficients Canonical Scores Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot Other Settings	Cross Validation		
□ Guantities □ Discriminant Function Coefficients □ Canonical Discriminant Analysis □ Canonical Structure Matrix □ Canonical Coefficients □ Classification Results □ Posterior Probabilities ○ Squared Mahalanobis Distance △ Atypicality Index □ Classification Summary ♥ □ Plots □ Classification Summary □ Plots □ Classification Fit Plot □ Classification Fit Plot □ Classification Summary Plot □ Classification Summary Plot □ Classification Fit Plot □ © Output Settings			
Canonical Discriminant Analysis Canonical Structure Matrix Canonical Coefficients Canonical Scores Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary ♥ Plots Classification Summary Plot Classification Fit Plot Classification Fit Plot Classification Fit Plot Classification Fit Plot Classification Summary Plot Classification Fit Plot Classification Summary ♥ ① Ottput Settings	Li Quantities		_
Canonical Dischiminant Analysis Canonical Structure Matrix Canonical Coefficients Canonical Scores Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Summary Plot Classification Fit Plot Classification Fit Plot Canonical Score Plot ♥ Output Settings			
Canonical Coefficients Canonical Scores Canonical Scores Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot OK Cancel	Canonical Discriminant Analysis		
Canonical Coenteents Canonical Scores Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot OK Cancel	Canonical Structure Math		
Classification Results Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot ♥ Output Settings OK Cancel	Canonical Scores		
Posterior Probabilities Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Classification Fit Plot Canonical Score Plot ♥ OK Cancel			
Squared Mahalanobis Distance Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot Output Settings OK Cancel	Posterior Probabilities		
Atypicality Index Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot Output Settings OK Cancel	Squared Mahalanobis Distance		=
Classification Summary Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot	Atupicalitu Index		
Plots Classification Summary Plot Classification Fit Plot Canonical Score Plot ① ① Utput Settings	Classification Summary		
Classification Summary Plot Classification Fit Plot Canonical Score Plot Comput Settings OK Cancel			
Classification Fit Plot Canonical Score Plot	Classification Summary Plot		
Canonical Score Plot	Classification Fit Plot		
Output Settings OK Cancel	Canonical Score Plot		
< <p>OK Cancel</p>	🕀 Output Settings		
< <p>OK Cancel</p>			
Cancel			~
OK Cancel	<	Ш	
		ОК	Cancel
Interpretace výsledků trénovacích dat:

1. Přejděte dole na list **Discrim1.** Oddíl výstupu zvaný **Canonical Discriminant Analysis** přináší odhady parametrů Fisherovy lineární diskriminační funkce pro data (trénovací neboli analyzovaná data).

2. Použitím orámovaných hodnot v tabulce Unstandardized Canonical Coefficient lze postavit kanonické diskriminační funkce D1 a D2.

닏	Unstandardized Canonical Coefficients 🗾									
		Canonical	Variable 1	Canonical	Variable 2					
	Constant		-2.10511		-6.66147					
L	Sepal Length		-0.82938		0.0241					
	Sepal Width		-1.53447		2.16452					
	Petal Length		2.20121		-0.93192					
	Petal Width		2.81046		2.83919					

D1 = -2.10511 - 0.82938 * SL - 1.53447 * SW + 2.20121 * PL+2.81046 * PWD2 = -6.66147 + 0.0241 * SL + 2.16452 * SW - 0.93192 * PL+2.83919*PWkde SL = Sepal Length, SW = Sepal Width, PL = Petal Length, PW = Petal Width

2. Kliknutím na uzel **Eigenvalues** výstupové tabulky se odkryjí vlastní čísla, která odhalí důležité kanonické diskriminační funkce. První funkce vysvětluje 99,12% rozptylu a druhá vysvětluje zbývajících **0,88%**.

=	Eig	envalues	•		
		Eigenvalue	Percentage of Variance	Cumulative	Canonical Correlation
-	1	32.19193	99.12%	99.12%	0.98482
	2	0.28539	0.88%	100.00%	0.4712

3. Kliknutím na uzel **Wilk´s Lambda Test** výstupové tabulky se otevřou hodnoty testu **Wilk´s Lambda**, která ukazují, že obě diskriminační funkce výrazně vysvětlují účast v diskriminační třídě, protože obě hodnoty ve sloupci **Sig** jsou menší než **0.05**. Obě hodnoty by proto měly být zahrnuty do výsledků diskriminační analýzy.

- T	Wilks'	Lambda Test	-									
		Wilks' Lambda	Chi-square	df	Sig.							
	1 to 2	0.02344	546.1153	8	8.87078E-113							
	2 to 2	0.77797	36.52966	3	5.78605E-8							
	At the 0	At the 0.05 level, the dimensionality is significantly 2.										

Klasifikace neznámých kosatců:

1. Aby bylo možné klasifikovat neznámé kosatce, vyčíslí se skóre čili souřadnice každého kosatce z odhadů parametrů Fisherovy lineární diskriminační funkce (**Coefficients of Linear Discriminant Function**), a poté každého kosatce zařadí do své třídy (Setosa, Versicolor, Virginica).

닌	Coemcients of Linear Discriminant Function								
		setosa	versicolor	virginica					
	Constant	-86.30847	-72.85261	-104.36832					
L	Sepal Length	23.54417	15.69821	12.44585					
	Sepal Width	23.58787	7.07251	3.68528					
	Petal Length	-16.43064	5.21145	12.76654					
	Petal Width	-17.39841	6.43423	21.07911					

2. Přepněte na list **Training Results**. Na příkladu sedmého kosatce je ukázáno, jak lze vypočítat souřadnicové skóre v každé ze tří tříd pomoci odhadů parametrů **Coefficient of Linear Discriminant Function** (výše).

🗮 Fisher'sIrisD - Fisher's Iris Data. dat											
	A(Y) 🛍	B(Y) 🔒	C(Y) 🔒	D(Y) 🔒	E(Y) 🖨	F(Y) 🏛	^				
Long Name	Sepal Length	Sepal Width	Petal Length	Petal Width	From Group	Allocated to Group					
Units							=				
Comments			Source Data								
UserParam1											
1	5.1	3.5	1.4	0.2	The 7th ek	convotion					
2	4.9	3	1.4	0.	ine / In or	ated to					
3	4.7	3.2	1.3	0.	is alloc	aleu lu					
4	4.6	3.1	1.5	0.	group s	elusa.					
5	5	3.6	1.4	0.2	setosa	setos					
6	5.4	3.9	1.7	0.4	setosa	seto <mark>v</mark> a					
7	4.6	3.4	1.4	0.3	setosa	setósa					
8	5	3.4	1.5	0.2	setosa	setosa					
9	4.4	2.9	1.4	0.2	setosa	setosa					
10	4.9	3.1	1.5	0.1	setosa	setosa					
11	5.4	3.7	1.5	0.2	setosa	setosa					
12	4.8	3.4	1.6	0.2	setosa	setosa					
13	4.8	3	1.4	0.1	setosa	setosa					
14	4.3	3	1.1	0.1	setosa	setosa					
15	5.8	4	1.2	0.2	setosa	setosa					
16	5.7	4.4	1.5	0.4	setosa	setosa	~				
Image: A state of the state	r's Iris Data 🖌 D)iscrim1) Tra	ining Result 1	Canonical	Sc < 💷						

Score(setosa) = - 86.30847 + 23.54417 * 4.6 + 23.58787 * 3.4 - 16.43064 * 1.4 - 17.39841 * 0.3 = 73.971051

Score(*versicolor*) = - 72.85261 + 15.69821 * 4.6 + 7.07251 * 3.4 + 5.21145 * 1.4 + 6.43423 * 0.3 = **32.631989**

Score(virginica) = - 104.36832 + 12.44585 * 4.6 + 3.68528 * 3.4 + 12.76654 * 1.4 + 21.07911 * 0.3 = - **10.390569**

3. Z ukázkových výpočtů pro sedmý kosatec je vidět, že skóre setosy *Score(setosa)* = 73,971051 dosahuje největší hodnoty ze tří tříd (**73.971051 setosa, 32.631989 versicolor, 10.390569** virginica) čili sedmý kosatec by měl být zařazen do skupiny **setosa**.

Kosatce (Iris)

Wild Iris - Iris setos a

Iris Versicolor

Iris Virginica

Kosatce (Iris)

Iris Setosa

Iris Versicolor

Iris Versicolor

Iris Virginica

Iris Virginica

Iris Virginica

4. Classification Summary for Training Data v listu Discrim1 ukazuje, že zařazení neznámých kosatců do skupiny setosa je 100%ně správné. Pro versicolor jsou pouze 2 kosatce chybně zařazeny jako virginica. Pro virginica je pouze 1 kosatec chybně zařazen. Chybovost je pouze 2.0%. Nalezený model je proto dobrý.

Validace modelu:

Classification Summary of Training Data vyhodnocuje kosatce via Fisherovy diskriminační funkce, sestavenou z týchž dat. "Chybovost" však bývá větší, když se klasifikují neznámá data, která nebyla užita k sestavení odhadu diskriminační funkce. Existují dva způsoby, jak to napravit:

• Cross-validace:

V křížové validaci je každý tréninkový údaj o kosatci považován za testovací data, zda má být vyloučen z tréninkových dat nebo posouzen, do které skupiny by měl být zařazen a tak se ověří, zda provedená klasifikace je správná nebo ne.

• Podskupina validace:

Obvykle se náhodně rozdělí množina kosatců do dvou podskupin, z nichž první se použije pro odhad diskriminačního modelu (trénovací výběr) a druhý je k testování spolehlivosti výsledků (testovací výběr).

Příprava dat pro analýzu

Data lze třídit v náhodném pořadí. Použije se prvních 120 řádků kosatců jako **trénovací data** a posledních 30 kosatců jako **testovací data.**

1. Vraťte se zpět na záložku listu Fisher´s Iris Data.

2. Přidejte nový sloupec Column, Add New Column a vyplňte ho normálně generovanými náhodnými čísly postupem Column, Fill Column with, Normal Random Numbers.
 3. Označte nově přidaný a naplněný sloupec. Klikněte na něj pravou myší a vyberte Sort Worksheet, Ascending a hodnoty jsou seřazeny dle velikosti od záporných do kladných..

Průběh diskriminační analýzy

1. Vyberte a označte sloupce A až D.

2. Zvolte **Statistics, Multivariate Analysis, Discriminant Analysis, Open Dialog**.

3. Nastavte prvních 120 řádků sloupců A až D za trénovací data postupem: klikněte na trojúhelníkové tlačítko vedle Training Data a zvolte Select Columns v otevřené roletce a pokračujte v okně Column Browser.

Statistics\Multivariate Analysis: dis	crim 🤶	×
Dialog Theme		
Description Discriminant Analysis and Canon	ical Discriminant Analysis	
Recalculate	Manual 💙	
🗖 Input Data		
Group for Training Data		
Training Data	[Fisher'sIrisD]"Fisher's Iris Data"!1:4	A(X) : Sepal Length
Predict Membership for Test Data		B(Y) : Sepal Width
🖂 Settings		C(Y) : Petal Length
Prior Probabilities	 Equal 	D(Y) : Petal Width
	O Proportional to group size	E(Y): Species
Discriminant Function	Linear Quadratic	F(Y)
Canonical Discriminant Analysis		All Columns
Cross Validation		
		Reset
Quantities		Select from Worksheet
Discriminant Function Coefficients		Select Columns
🖃 Canonical Discriminant Analysis		1
Canonical Structure Matrix		
Canonical Coefficients		
Canonical Scores		
Classification Results	_	
Posterior Probabilities		
Squared Mahalanobis Distance		
Atypicality Index		~
Please select data from a column for <u>c</u>	proup of Training Data.	
	OK Canc	

4. V dialog Column Browser klikněte na tlačítko ... umístěné vpravo dole na dolním panelu.
Vypněte zaškrtnutí v řádku Entire Column(s) a zadejte From na 1 a To na 120. Klikněte na OK a OK.

Column Brows	er							(? ×
List Columns in	Current Shee	et	•	Exclude					
Sheet		Index	SName	LName	Comments	Format	Size	1st Value	Param
[Fisher'sIrisD]''Fisher's	: Iris Data''	1	A	Sepal Length		T&N	150	5.7	7
[Fisher'sIrisD]''Fisher's	: Iris Data''	2	В	Sepal Width		T&N	150	4.4	1
[Fisher'sIrisD]"Fisher's	: Iris Data''	3	С	Petal Length		T&N	150	1.5	5
[Fisher'sIrisD]''Fisher's	: Iris Data''	4	D	Petal Width		T&N	150	0.4	t l
[Fisher'sIrisD]"Fisher's		-	-			T&N	150	setosa	
[Fisher'sIrisD]"Fisher's	ir 🔜 Rang	ge		<u> </u>	4	T&N	150	-2.75751	
<	Entire From To *Input i	Column) nteger sh	(s) 1 120 puld betw	een [1:150]	C th Ra as	lick the e data ange dia 5 1~120	butt range alog, s and c	ton next to open et range lick OK.	
	_			Lancel					
Range		F	lows						
[Fisher'strisD]"Fish	er's Iris Data''	'!A:D [[1	:end]						

5. Chcete-li nastavit prvních 120 řádků **Col(E)** pro **Group for Training Data**, klikněte na tlačítko trojúhelníku vedle **Group for Training Data** a vyberte v roletce **E(Y): Species**. Poté klikněte na toto tlačítko trojúhelníku znovu, zvolte **Select Columns** a nastavte rozsah 1 až 120 ve sloupcovém prohlížeči. Klikněte na **OK** a **OK**.

6. V bloku Input Data zaškrtněte políčko
Predict Membership of Test Data. Klikněte na interaktivní mramorované tlačítko Test Data.
Dialog se zbalí. Vyberte sloupce A až D v listu.
Klikněte na tlačítko roletky až do obnovení dialogu. Poté klikněte na tlačítko trojúhelníku otevřít Column Browser a vyberte Select

Columns. Klikněte na ••• tlačítko v dolním panelu, a nastavit v rozmezí od **121** do **150**. Klikněte na **OK** a **OK**.

7. Otevřete uzel **Settings**, a pak zaškrtněte políčko **Cross Validation** vyberte. Klikněte dole na **OK**.

Cross-validation:

Přejděte na list **Discrim2**. Tabulka **Crossvalidation Summary for Training Data** poskytuje predikovanou chybu klasifikováním každého kosatce a zároveň jej vyloučí z dalšího modelového výpočtu. Přesto je tato metoda stále optimističtější než validace podskupiny.

Validace podskupiny:

1. Classification Summary for Test Data poskytuje informace, jak jsou testovací data jsou klasifikována.

2. Na listu **Fisher's Iris Data** okopírujte posledních 30 řádků (121 až 150) jenom ze sloupce **Col(E) Species**.

3. Na listu **Test Result** přidejte jeden sloupec **Col(I)**. Vložte zkopírované hodnoty do nového sloupce.

Ŧ	Cross-validation Summary for Training Data 📃										
Classification Count 🖃											
					Predicted Group						
				set	osa	virgi	nica	versic	olor	Т	otal
		S P	tosa		44		0		0		44
			1004	100.0)0%	0.00	%	0.00%		100.	00%
	ᄂ	virai	nica		0		36		2		38
		virgi	mca	0.00%		94.7	4%	5.26%		100.	00%
L		versicolor			0		2		36		38
				0.009	6	5.26	%	94.749	6	100.	00%
		-	Fotal		44		38		38		120
			TULAT		′%	31.6	7%	31.679	6	100.	00%
	F	Error I	Rate		-						
			set	tosa	virgi	nica	vers	sicolor	То	otal	
		Prior	0.3	3333	0.33	3333	0.	33333			
	Rate 0.00%				5.269	%	5.26	%	3.51	%	
	E	ror rate	for Cr	oss-va	alidatio	n of tr	aining	data is	3.519	ж.	

F	Classification	Summary for	Test Data
---	----------------	-------------	-----------

	setosa	virginica	versicolor	Total
Count	6	12	12	30
Percent	20.00%	40.00%	40.00%	100.00%

4. Přidejte nový sloupec **Col(J)** do listu, klikněte na něj pravou myší a zvolte nastavení **Set Column Values**. V otevřeném dialogu zadejte **Compare(col(e),col(i))** v dialogu a klikněte na **OK**.

5. Žádná z 30 hodnot není 0, což znamená, že chybovost testování dat je 0. Nalezený diskriminační model je dobrý.

Nastavení priorní pravděpodobnosti

Diskriminační analýza předpokládá, že priorní pravděpodobnost příslušnosti ve skupině kosatců je identifikovatelná. Pokud se totiž velikosti skupin kosatců liší, priorní pravděpodobnosti se také liší. V tomto případě lze použít **Proportional to group size** pro priorní pravděpodobnost.

🔲 Set Values - [Fisher'sIrisD]"Test Result1"!C 🔳 🗖 🔀
Formula wcol(1) Col(A) F(x) Variables
Row (i): From <auto> Io <auto></auto></auto>
K< << >> >> Col(J) =
Compare(col(e),col(i))
Recalculate Manual 🗸 🛛 🕋 Apply Cancel OK 🛛 😆

무	Error I				
		setosa	virginica	versicolor	Total
	Prior	0.33333	0.33333	0.33333	
	Rate	0.00%	2.63%	5.26%	2.63%

Error rate for classification of training data is 2.63%.

1. Přejděte na list **Discrim2**, **Prior** řádek tabulky **Error Rate** v **Classification Summary for Training Data** indikuje priorní pravděpodobnost pro příslušnost ve skupině. Předpokládá se, že kosatec má stejnou pravděpodobnost, že bude v jedné ze tří skupin. Nastavení priorní pravděpodobnosti v závislosti na velikosti skupiny může zlepšit celkovou klasifikaci kosatců.

 Klikněte na tlačítko zámku v grafu a klikněte na Change Parameter. Vyberte Proportional to group size pro políčko Prior Probabilities. Klikněte na OK.

3. Chyba klasifikace je 2,50%, což je lepší než 2,63% u míry chyb se stejnými priorními pravděpodobnostmi.

Statistics\Multivariate Analysis: disc	crim ? 💽					
Dialog Theme						
Description Discriminant Analysis and Canonical Discriminant Analysis						
Recalculate	Manual					
🖂 Input Data						
Group for Training Data	sD]"Fisher's Iris Data"!E"Species"[1:120] 탈 🕨					
Training Data	IA''Sepal Length''[1]:D''Petal Width''[120]					
Predict Membership for Test Data						
Test Data	Sepal Length"[121]:D"Petal Width"[150]					
Settings						
Prior Probabilities	Equal Proportional to group size					
Discriminant Function	 ● Linear ○ Quadratic 					
Canonical Discriminant Analysis						
Cross Validation						

Prior Probabilities = Poportional to group

=	Error Rate 📃							
		setosa	virginica	versicolor	Total			
	Prior	0.36667	0.31667	0.31667				
	Rate	0.00%	2.63%	5.26%	2.50%			

Prior Probabilities = Equal

-	Error Rate 🔄						
		setosa	virginica	versicolor	Total		
	Prior	0.33333	0.33333	0.33333			
	Rate	0.00%	2.63%	5.26%	2.63%		