3.3 Zpracování signálu (Signál Processing)

Obsah:

3.1 Úspěšné rutiny v analýze dat (Gadgets) 51
3.2 Prokládání křivkou (Curve Fitting) 89
3.3 Zpracování signálu (Signal Processing) 213
3.4 Analýza píků (Peak Analysis) 225
3.5 Manipulace s daty (Data Manipulation) 241
3.6 Šablony v analýze (Analysis Templates) 261
3.7 Thema v analýze (Analysis Themes) 272
3.8 Zpracování výběru (Batch Processing) 275 - 280

3.3.1 FFT Filter

FFT filtr provádí filtrování pomocí Fourierovy transformace frekvenční složku v datovém souboru. Existuje pět typů FFT filtru: low-pass, high-pass, band-pass, band-blok, a práh. Low-pass filtr blokuje všechny frekvenční složky nad mezním kmitočtem a umožňuje projít pouze nízkofrekvenční signál. High-pass filtry jsou pravým opakem, blokují totiž frekvenční složky pod mezní frekvencí.

A. Low-pass filtr (Dolní propust)

Tutoriál je spojen ve složce Analysis se souborem FFT Filter v rámci projektu Analysis (\Samples\Analysis.opj), který lze otevřít volbou File, Open, Sample, Analysis a pak v Project Explorer zvolte Analysis, FFT Filter.

1. Zvýrazněte **col(A)** a **col(B)** v listu vykreslete čáry grafu příkazem **Plot, Line, Line**. V tomto grafu, budeme blokovat vysokofrekvenční složky, aby nízkofrekvenční složka zobrazila celkový trend této křivky.

2. Vyberte Analysis, Signal Processing, FFT Filters, Open Dialog a otevře se dialog fft_filters. V řádku Filter Type vyberte Low Pass a nastavte omezovací frekvenci Cutoff Frequency na 0,0151405. Zaškrtněte políčko Auto Preview k zobrazení náhledu.

3. Klikněte na **OK** a vysokofrekvenční komponenta bude exportována do zdrojového listu a zdrojového grafu dle obrázku vpravo.

B. High-pass Filter

 Začněte s novým sešitem otevřít volbou File, Open a pak \Samples\Signal Processing a naimportujete soubor \Samples\Signal Processing\fftfilter2.dat.

Zvýrazněte col(A) a col(B) zvolte Plot, Line,
 Line z menu k vykreslení čáry grafu.

V tomto grafu odstraníte nízkofrekvenční složku (čili méně než 0.15HZ).

3. Vyberte Analysis, Signal Processing, FFT Filters, Open Dialog a otevře se dialog fft_filters. Vyberte horní propust High Pass za typ filtru Filter Type a nastavte omezovací frekvenci na 0.15. Zaškrtněte Auto Preview a zobrazíte náhled.

4. Klikněte na **OK** vysokofrekvenční komponenty budou exportovány do zdrojového listu.

3.3.2 IIR Filter

Lze navrhovat, analyzovat a implementovat **IIR (Infinite Impulse Response)** čili digitální filtry. **IIR filtr** podporuje čtyři metody, tj. **Butterworth, Chebyshev typu I, Chebyshev typu II**, a **eliptickou**. To poskytuje uživatelům více možností při zpracování signálu.

A. Konstrukce a použít IIR filtr

- 1. Začněte s novým listem a naimportujte soubor ze File, Import, Single ASCII, Samples, Signal Processing, EMG Recording.dat, Open, OK
- Označte sloupec B a vyberte Analysis, Signal Processing, IIR Filter, Open Dialog a otevře se dialog.
- 3. Změňte Response Type na High Pass, zvolte v Method na Butterworth, zrušte zaškrtnutí políčka Minimum pro Filter Order a nastavte ho na 4. Ve Frequency Specification nastavte mezní Cutoff Frequency(Fc) na 20, pak zaškrtněte Forward-Backward Filtering. V dialogu Signal Processing by mělo být nastavení dle obrázku vpravo a IIR filter je tím určen.
- 4. Kliknutím na **OK** se užije IIR filtr na vstupní data.
- 5. Nový sloupec bude přidán do původních dat, a to jako nový sloupec filtrovaných dat a nový list **SOS Matrix**.

Signal Processing: dfilte	r 2 🛛
Dialog Theme 🛛 ×	•
Description Create and apply an I	IR filter
Recalculate	Manual
🗄 Input Signal	[EMGRecording]"EMG Recording"!(A"Time",B"
Response Type	High Pass 👻
Method	Butterworth
Filter Order	4 Minimum
Frequency Specification	
Unit	Hz
Sample Frequency (Fs)	2000
Cutoff Frequency (Fc)	20
attenuation at the outoff fre	quency is fixed at 3 dB
Forward-Backward Filtering	
🗆 Output Results	
🗹 SOS Matrix	[<input/>] <new></new>
Zeros Poles and Gain	
State-Space Form	
Coefficients	
🗄 Output Signal	[(<input/> , <new>)</new>
A	uto Preview Preview OK Cancel 🔉

B. Porovnání výsledků s FFT Filter

1. Zvýrazněte sloupec **B** v původním listu, proveďte FFT filtrem operace **Analysis, Signal Processing, FFT Filters, Open Dialog**.

2. V otevřeném dialogu vyberte horní propust **High Pass** pro **Filter Type** a nastavte **20** na mezní frekvenci **Cutoff Frequency**.

Dialog Theme Description Perform FFT Filtering
Description Perform FFT Filtering
Recalculate Manual

3. Sloupec C v listu **EMGRecording** je filtrovaný výsledek dříve navrženým IIR filtrem, zvýrazněte nyní sloupec **B** a sloupec C a generujte spojnicový čarový graf **Line** užitím **Tools-tlačítka (Graf 1).**

4. Tlačítkem lupy zvětšte prostor nebo
Scale osy X 12.5s a 13.3s a Y osy -400 a
300.

5. Sloupec **E** v listu **EMGRecording** je filtrovaný výsledek FFT filtrem, zvýrazněte sloupec **B** a sloupec **E** a generujte spojnicový čarový graf **Line** nebo užitím **Tools-tlačítka (Graf 2).**

6. Tlačítkem lupy zvětšte prostor nebo
Scale osy X 12.5s a 13.3s a Y osy -400 a
300 a oba grafy lze použít ke vizuálnímu srovnání.

• Všimněte si, že zatímco ve výsledku FFT filtru existuje mnoho vlnek, ve výsledku filtru IIR téměř žádné vlnky nejsou.

C. Vlnky v FFT Filter

1. Označte sloupec **E** a klikněte na **Line** nebo **Toolstlačítko** vytvořit spojnicový čarový graf (**Graf 3**).

2. Aktivujte **Graph3**, zvolte **Gadget, FFT** a nastavte **X Scale** na **From 12,664 To 13,052**.

3. Klepněte na **OK** a v náhledu jsou vlnky téměř čistý 20,125 Hz sinus.

4. Nyní se budeme snažit odstranit vlnky při
20,125 Hz použitím jiného filtru High Pass při
25 Hz zvýrazněným sloupcem E analýzou
Analysis, Signal Processing, FFT Filters,
Open Dialog.

5. Ve Filter Type vyberte High Pass a nastavte Cutoff Frequency na 25, OK.

6.Výsledek je ve sloupci **G.** Označte sloupec **G** a klikněte na **Line** nebo **Tools-tlačítko** vytvořit spojnicový čarový graf (**Graf 4**).

7. Aktivujte **Graph4**, vyberte **Gadget**, **FFT** a nastavte **X Scale From 12,664 To 13,052** v náhledu.

Stále existují vlnky a jsou posunuty z 20,125 Hz až 25,157 Hz. • Všimněte si, že vlnky nemohly být odstraněny FFT filtrem v tomto souboru.