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Glossary

Akaike’s information criterion (AIC). A model selection criterion to distinguish
between models with different numbers of parameters.

analysis of residuals. Part of regression diagnostics, based on examining the discrep-
ancy between the model and the observed data.

Andrews—Pregibon (AP) statistic. A diagnostic for finding influential points.
approximation. A set of techniques for replacing an unknown function by a simpler
empirical model.

a posteriori class probability p(c/x). The probability that the object described by the
vector x belongs to the class c.

a priori class probability p(c). Probability of the occurrence of the class c.

Atkinson influence statistic. A diagnostic for finding influential points.

augmented distance. In SIMCA, a distance that takes into account the residuals and
the boundaries of the model.

autocorrelation. The internal correlation between members of a series of observations
ordered in time or space.

autocorrelation function. A function of a time-dependent variable, defined for a
stationary stochastic process.

Bayes classifier. A classification rule that minimizes the conditional average risk.
Bayes rule. The theorem that computes the a posteriori probability from the a priori
probability and the conditional probability.

best linear unbiased estimator (BLUE). A linear and unbiased estimator with minimum
variance.

biased estimator. An estimator with an expected value that is different from the true
value of the estimated parameter.

calibration. A two-phase procedure. In the first phase (calibration model-building)
the curve describing the relationship between the response y and the independent
(explanatory) variable x is estimated. In the second phase (calibration), the value of
the variable x* corresponding to a measured response y* is estimated.

canonical variables of LDA. Directions of maximum information, useful for




xii  Glossary

classification in LDA.

category. Same as class.

chi-squared test for goodness-of-fit. A widely used statistic that, when associated with
discrete data, can test whether the observed frequencies deviate significantly from the
theoretical frequencies.

class model. A mathematical model of a class plus the allowed dispersion due to
errors.

class space. A space surrounding the class centre; when an object is in this space, it
fits the class model.

class-modelling analysis. The determination of the characteristics of a class.
class-modelling method. A technique that computes a class model and a class space.
class. A population of objects with similar properties.

classification analysis. The determination of the class of one or more objects.
classification loss. The experimental measure of the conditional average risk.
classification method. A technique that produces a classification rule.

classification rate. Percentage of the objects in the training set correctly classified by
a classification rule.

classification rule. A mathematical equation that assigns objects to one of several
categories.

coefficient of determination. The square of the multiple correlation coefficient.
collinearity. An approximate linear relationship among the explanatory variables.
This has a negative effect on the modelling power in regression, but does not
necessarily reduce the goodness-of-fit.

conditional average risk. For a category, the expected loss for the classification in the
category of an object of other categories.

conditional probability p(x/c). The probability that an object of the class c is described
by the vector x.

confidence interval. The interval between the upper and lower confidence limits of
the estimate of a parameter (e.g., of location or spread). The theoretical parameter
lies in this interval with selected probability.

confidence region. Region in which the vector of theoretical parameters lies, with a
selected probability.

constant potential. A PFM where the objects give the same contribution to the
computed probability density function.

Cook’s influence statistic. A diagnostic based on analysis of residuals, for detection
of influential points.

Coomans plot. A plot of the distance (or the square of distance) from their model of
the objects in two categories; also a plot with the distance of the same objects from
two class models, computed by different techniques.

correlation. A quantitative measure of the linear association between two or more
random variables.

correlation coefficient (multiple). A measure of linear association between response y
and a set of explanatory variables x;, ..., x,. When it is close to zero, the variability
of response cannot be explained by the explanatory variables. When it is close to
one, a linear relationship exists between y and x, ..., Xx,.




Glossary xiii

correlation coefficient (paired). A scaled version of the covariance between two
variables. When close to — 1 or + 1, it indicates strong correlation between variables,
but not dependence.

correlation matrix. A symmetric matrix with nondiagonal elements that are paired
correlation coefficients, and diagonal elements equal to one.

covariance. The first product moment of two variables about their mean values; the
expectancy that the values measured for two objects deviate in a similar way from
the true means.

covariance matrix. A symmetric matrix in which the values are the covariances.
critical distance. The distance of the class boundary from the centre of the category,
in a class-modelling technique.

curve-fitting. Searching for a mathematical expression relating a set of observed values
to a mathematical function or to another set of observed values.

Defrise correction. An improvement of the estimate of the Mahalanobis distance.
dependent variable. A term indicating a mathematical or statistical dependence of a
variable on one or more other variables. In regression problems, it is often called the
response variable or simply the response.

diagnostics of regression. See regression diagnostics.

digital filters. A technique for elimination of noise from a signal.

discriminant function. Difference between the discriminant scores for two categories.
discriminant scores. Scores measuring the degree of belonging of an object to a
category in LDA. ,

discriminant power. The measure of the importance of a variable in the separation
of two categories using SIMCA.

distance. (in class-modelling techniques). A measure of the fit to the mathematical
model, centre of the model.

doubt interval. A non-decision interval around the delimiter used with classification
rules.

error mean square. The expected square of the difference between the true and
estimated value of either the regression coefficients or the response variable. It is
equal to the error sum of squares divided by the number of degrees of freedom.
error sum of squares. The sum of squared differences between the observed and
predicted response. It is a measure of goodness-of-fit.

evaluation set. The objects used to validate classification rules or class models.
extended range. In SIMCA, the range used to build the model.

Gauss-Newton method. An optimization method used for minimizing a quadratic
nonlinear function.

generalized least-squares regression (GLS). A modification of ordinary least squares
to deal with heteroscedasticity and correlated errors.

generalized linear model (GLM). A statistical model that consists of a random
response variable and a set of predictor variables.

goodness-of-fit. A measure of how well a regression model accounts for the variance
of the response variable.

goodness-of-prediction. A measure of how well a regression model estimates the value
of the response variable, given a set of values for the predictor variables.




xiv  Glossary

gradient method. An optimization method which, in the calculation of the set of
parameters that minimizes a function, requires the evaluation of the derivatives of
the function as well as the function values themselves.

gradient vector. A set of the first derivatives of a function f with respect to its
parameters.

hat (projection) matrix. A matrix enabling orthogonal projection of an n-dimensional
vector into m-dimensional space spanned by vectors corresponding to the explanatory
variables.

Hermite interpolation. A special technique for interpolation of data and calculation
of the first derivatives simultaneously.

Hessian matrix. The matrix of the second derivatives of a scalar valued function f
with respect to its parameters.

heteroscedastic. Having unequal variances; the opposite of homoscedastic.
high-leverage point. See leverage point.

homoscedastic. Having equal variances; if the variance of one variable is the same
for all values of the other, the distribution is said to be homoscedastic in the first
variable.

homothetic. With the same value of the probability density function.

index-residual plot. The dependence of residuals on the index of measurements.
influence analysis. A method for detection of influential points.

influential points. Particular points that exert great influence on regression parameters
and the results of regression analysis.

instrumental variable. An independent variable singled out in estimation of regression
coefficients when the random error is correlated with the independent variables.
iteratively reweighted least squares. A technique for iterative computation of robust
estimators based on special weighting in each iteration.

Jack-knife residuals. A type of residual for detection of outliers in data.

Jacobian matrix. A matrix containing the first derivatives of a vector.

joint distribution. A simultaneous distribution of a random vector.

KNN. A distance-based non-parametric classification method.

L ,-estimator. Least absolute values estimator minimizing sum of absolute values of
residuals.

L,-estimator. Least-squares estimator minimizing sum of squares of residuals.

L -estimator. An estimator minimizing maximal absolute residuals.

LDA. Linear statistical discriminant analysis, a classification method based on the
multivariate normal distribution and the pooled covariance matrix.

least absolute residual regression. See L, -estimator.

least-squares estimator. See L,-estimator.

least-squares regression. Regression method where the model is linear in parameters
and the regression coefficients are calculated with the least-squares estimator.
leave-more-out. A validation procedure, where the evaluation set is obtained in several
steps; in each step some objects are omitted from the training set.

leave-one-out. A validation procedure, where the evaluation set is obtained in as
many steps as there are objects in the category; at each step, one object is omitted
from the training set.
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leverage. The extent of the influence of an explanatory variable on the regression
model. A measure of the leverage of a point is the corresponding diagonal element
of the hat matrix.

linear estimator. Estimator where the predicted response variables can be expressed
as a linear combination of the observed response variables.

linear regression model. A regression where the response variable is a linear function
of the regression coefficients.

LM. Learning machines, a non-parametric non-probabilistic classification method.
loss matrix. A matrix of the loss incurred when an object is assigned to a false
category.

M-estimator. A robust estimator based on the maximum likelihood estimator for a
particular error distribution.

Mabhalanobis distance. A distance weighted by the standard deviations and the
correlations of the variables.

Marginal distribution. The probability distribution for a single variable in a multi-
variate problem.

maximum likelihood estimator (MLE). An estimator maximizing the likelihood
function.

McCulloh-Meeter plot. A graphical diagnostic for discovering outliers and leverages.
mean absolute deviation. A robust scale estimator; the average of the absolute values
of deviations.

mean covariance matrix. The average of the category covariance matrices.

mean squared error. The expected squared difference between the true and estimated
value of either the regression coefficient or the response variable.

minimax strategy. If a strategy is selected from a group of admissable strategies as
being the one which, on a basis of the expected loss, has the smallest maximum loss,
this strategy is a minimax strategy.

misclassification probability. A measure of misclassification based on the a posteriori
probabilities.

model (mathematical). A mathematical description of some part of reality.

model error. Or residual is the quantity remaining after some other quantity has been
subtracted. In regression, it is the part of the response variable not described by the
regression model, i.e. the difference between the observed and the predicted value of
the response variable.

model parameter. A term used to denote an unknown quantity which may vary over
a certain set of values. The values of the parameters are estimated to get the best
possible fit for given data.

model sum-of-squares. The sum of squared differences between the estimated responses
and the average response, or between the observed variable and the predicted
response variable.

modelling power. A measure of the importance of a variable in a SIMCA model.
multicollinearity. An approximate linear relationship among the predictor variables.
It causes high variance in the least-squares estimates of the regression coefficients,
resulting in instability in the estimated values or even wrong signs.

multiple correlation. A quantitative measure of the linear relationship between several
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random variables.

multiple correlation coefficient. A measure of the linear association between the
observed response variable and the predicted response variable, or between the
observed response variable and a linear combination of the predictor variables in a
regression model.

multiple regression: (multivariate regression). A regression model where the response
is a function of more than one predictor variable.

multiple regression analysis (MRA). A regression of more than one predictor variable.
natural histogram. A histogram without class intervals; the contribution of an object
is positioned at the true value of the variable.

nonlinear least-squares regression (NLS). Techniques for estimating parameters in
nonlinear regression models.

nonlinear regression model. A regression where the response variable is a nonlinear
function of the regression coefficients.

nonlinear partial least-squares (NLPLS). An extension of the PLS regression model,
which permits response to be modelled as a nonlinear function of the latent variables.
nonparametric regression. A technique for creating an approximate relationship, based
on a weighted linear combination of responses.

normal range. In SIMCA, the range of the scores for principal components.
optimization. Finding the optimum value (minimum or maximum) of a function called
the objective function, with respect to parameters.

parameter. See model parameter.

partial least-squares. A biased regression method that relates a set of predictor
variables x to a set of response variables y. The least-squares regression is performed
on a set of uncorrelated latent variables that are standard linear combinations of the
original predictor variables.

PC. Principal (significant) components.

PFM. Potential functions method; a classification technique based on a potential
function density computed as the sum of individual contributions of each object in
the training set.

pooled covariance matrix. A weighted average of the category subgroup covariance
matrices.

predicted value. A value calculated from a statistical model. When it is calculated by
fitting an object to a parametric model, it is called the fitted value.

prediction. The process of finding the value of a variable based on a statistical model.
prediction rate. Percentage of the objects in the evaluation set correctly classified by
a classification rule.

Pregibon’s plot. A graphical diagnostic for finding outliers and leverages.
proportional sample. A sample where the number of objects in the categories is
proportional to the a priori class probability.

QDA. Quadratic discriminant analysis; a classification method based on the multi-
variate normal probability density and on the class.

recursive residual. A type of residual for detection of influential points.

regression analysis. A collection of statistical methods that are used to model the
relationships among measured or observed quantities.
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regression coefficient. The coefficient of a predictor variable or independent variable
in a regression model.

regression curve. A graphical presentation of a regression model.

regression diagnostic. A set of techniques used to detect and assess the degree of
discrepancy between the model and the observed data.

regression model. A mathematical equation describing the relationship among
explanatory and response variables.

regression parameter. See model parameter.

regression surface. In the case of multiple regression, the model is represented by a
response surface.

repeated evaluation set. A validation procedure, where the training set is created many
times, with a random extraction of objects from the sample.

residual. Error, difference between a datum and the corresponding predicted value.
residual analysis. Part of regression diagnostics.

residual mean square. The squared estimated model error, i.e. the expected squared
difference between the true and estimated value of either the regression coefficients
or the response variables.

residual plot. A scatter plot of the residuals vs. the independent variable.

residual sum of squares (RSS). The sum of the squared differences between the
observed and predicted response.

ridge regression. A biased regression based on the assumption that large regression
coefficients are likely to be caused by multicollinearity; it shrinks them toward zero
by adding a small constant to each diagonal element of the covariance matrix.
robust bounded-influence regression (GM estimator). Limits the influence of leverages
in a regression model by means of some weight function.

robust iteratively reweighted least-squares regression. Estimates of regression par-
ameters found by minimizing a weighted criterion of least squares. The weights are
calculated simultaneously with the estimates of standard deviation, in an iterative
fashion.

robust least absolute residual regression (L,-regression). Estimates of regression
parameters found by minimizing the sum of absolute residuals. This method safeguards
against outliers in the response but not against outliers in the predictors.

scatter plot. A cartesian diagram showing the joint variation of two variables (e.g. x
and y).

scedasticity: dispersion, especially as measured by variance. In a bivariate distribution,
the graph of the variance one variable vs. the variance of the other is called a scedastic
curve.

SIMCA. A class-modelling technique based on principal components.

simplex method. An optimization by a direct search method based on comparing the
values of a function at the vertices of a simplex, and moving the simplex toward the
optimum by an iterative procedure.

single evaluation set. A validation procedure in which the evaluation set is created
only once.

single regression. See univariate regression.

SLDA. Stepwise linear discriminant analysis, a procedure for selection of features.
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smoothing. The process of removing fluctuations from an ordered series of data so
that the resulting trend is smooth, the main differences become regular, and higher
order differences small.

smoothing coefficient. A parameter that, multiplied by the standard deviation of a
variable, gives the smoothing parameter, in PFM.

smoothing parameter. A parameter determining the dispersion of the contribution of
an object to the probability density function in PFM.

spline curves. These consist of polynomial segments smoothly joined. Cubic splines
have continuous first and second derivatives at the joins (knots).

spline function. A segmented polynomial function of class C™.

steepest descent. An optimization that minimizes a function by estimating the optimal
values of parameters by a linear search method in the direction of negative gradient.
stepwise regression. A method which models the response variable as a function of
only a selected subset of the predictor variables. It is a biased regression, because it
is based on the assumption that not all predictor variables are relevant in the
regression problem.

stochastic. Implies the presence of a random variable.

stochastic process. A process that incorporates an element of randomness.

test set. Objects of unknown class; the classification of these objects is the final aim
of classification analysis.

training set. The objects used to compute classification rules or class models.
unequal covariance matrix classification (UNEQ). Modelling version of QDA.
univariate regression (single regression). A regression model where the response
variable is a function of just one explanatory variable.

variable. A symbol (x, y etc) representing an unspecified member of a class of objects,
numbers, etc.

variable, random. A quantity that varies with a given frequency distribution, so that
values occur with specific probabilities.

variable potential. A PFM method where the objects give a different contribution to
the computed probability density, according to their distance from the K nearest
neighbour.

Williams plot. A graphical diagnostic for detection of influential points.

Wilks’ lambda. A parameter measuring the separation between categories.
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Linear regression models

6.1 FORMULATION OF THE LINEAR REGRESSION MODEL

In instrumental methods of chemical analysis, the instrument’s response y (output
variable) for selected values of the input variables x is often measured. For example,
an absorbance A4 (here, the output variable y) is measured on the scale of a
spectrophotometer at

(1) a selected value of wavelength A (here, the first independent variable x; ;),

(2) a concentration of colour-forming solution ¢ (here, the second independent
variable x; ,),

(3) a value of adjusted pH of solution (here, the third independent variable x; 3),
and

(4) in kinetic measurements, at an actual time (here, the fourth independent variable

Xi4)-
This results in n observed values of y, measured at four kinds of selected values of
independent variables, m = 4, written as {y;, x;;},i=1,...,nandj=1,...,m

Y1 X111 X12 X133 Xi14
Y2 X321 Xz2 X323 Xag
Yn X1 Xn2 Xn3 Xna

In matrix notation, this is written as {y, X}. Vector y has dimensions (n x 1) and
matrix X has dimensions (n x m).

The statistical analysis is intended to find a relationship between the response
(output) variable y and the controllable (independent) variables x. The type of function
y = f(x, B) depends on the nature of both the variables y and x. There are three
possible scenarios.

(a) Variables y and x have no random errors. The function y = f(x, f) contains
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a vector of unknown parameters § of dimension (m x 1). To estimate them, at least
n = m measurements y;, i = 1, ..., n, at adjusted values x; are necessary to solve a
set of n equations of the form

yi=f(xi B) (6.1)

with regard to unknown parameters . The measured variables y; are assumed to be
measured completely precisely, without any experimental errors. The model function
f(x, B) is assumed to be correct and to correspond to data y. In the chemical
laboratory, none of these assumptions is usually fulfilled.

(b) Variable y is subject to random errors, but variables x are controllable. This
case is the classical regression model, for which the conditional mean of random
variable y at a point x is given by

E(y/x) = f(x, B) (6.2)

The method of estimation of parameters § depends on the distribution of random
variable y. The additive model of measurement errors (Chapter 1) is assumed:

yvi=f(Xi, B) + & (6.3)

where ¢; is a random variable containing the measurement errors ey ;, and the model
errors ¢r; coming from an approximate model which does not correspond to the true
theoretical model f1(x;, B). Decomposition of the total error ¢; into components &y ;

y

X
Fig. 6.1—Decomposition of the total error ¢ into two components, the measure error gy
and the model error ér.

and er; is illustrated in Fig. 6.1.
Treatment of chemical data by regression analysis involves first the choice of a
linear regression model

E5 = 3. B (64)
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which either can be an approximation of the unknown theoretical function f; (Fig.
6.1) or can be derived from a knowledge of the chemical system. In Eq. (6.4), instead
of variables x;, their functions which do not contain parameters g may be used.
Parameter estimates of model (6.4) may be determined, on the assumption that Eq.
(6.3) is valid, either by the method of maximum likelihood or the method of least-
squares.

() Variables y, x are a sample from the random vector (1,{") with m + 1
components. Regression is conditioned by the mean value (6.2) where x represents
an actual quantity from the random vector & Unlike regression models, in these
“correlation models” the regression function can be derived from a simultaneous
probability density frequency function p(y, x) and a conditional probability density
function p(y/x). The analysis of correlation models is discussed in Chapter 7.

For either correlation or for regression models, the same expressions are valid,
although they differ significantly in meaning.

In this chapter, only linear regression models [Eq. (6.4)] are considered, i.c. models
which may be written in the form

Y1 X11 X122 - - - Xim &1
Y2 X211 X22 . . . Xop B &2
_ . L. . B, 4| (6.52)
'Bm
Yn Xn1 Xn2 -+« Xpm &n

of dimensions
(nx1) (n x m) mx1) (nx1)
In matrix notation, Eq. (6.5a) takes the simple form
y=XB+¢ (6.5b)

Columns x; define geometrically the m-dimensional co-ordinate system or the
hyperplane L in n-dimensional Euclidean space E". The vector y does not have to
lie in this hyperplane L, as shown in Fig. 6.2, which is for two independent variables
(m=2).

The vector X lies in hyperplane L and parameters § may be understood as the
coefficients of proportionality of the individual components x; of the co-ordinate
system. The regression model is formed by their linear combination. Whatever
regression criterion is used for linear regression models, the model function Xb and
the theoretical model Xp will lie in an m-dimensional hyperplane L.

The least-squares method (LS) is the most frequently used method in regression
analysis. The geometry of the least-squares method is very simple. For a linear
regression (Fig. 6.2), the parameter estimates b may be found by minimization of
distance between the vector y and the hyperplane L. This is equivalent to finding the
minimal length of the residual vector

e=y-9, (6.6)
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Fig. 6.2—Geometric illustration of a linear regression model for two independent variables.

where §, = Xb is the prediction vector. In Euclidean space the length of vector & can
be expressed by

D= /<88 = /.; &7 (6.7)

The symbol {x,y> = Y x;y; means the scalar product of two vectors. The square
i=1

of vector & length is consistent with criterion U(b) of the least-squares method

D? = U(b) so that the estimates of model parameters b minimize the expression

n m 2 n
Ub) = D? = 'leiyi - '21 xijbj] = .Zl (yi — 9P,i)2 (6.8)
i= i= i=

Vectors & and §p are illustrated on Fig. 6.2. The vector §p represents a perpendicular
projection of vector y onto hyperplane L. The vector & for which a function D is
minimal lies in n — m dimensional hyperplane L! that is perpendicular to the
hyperplane L and is called the residual vector.

The residual vector & is perpendicular to all columns of matrix X and therefore all
corresponding scalar products are zero

<Xj, é) = Z xijéi = O, J= 1, caey m (69)
i=1

This set of equations may be written in matrix notation as

X"¢=0 (6.10)
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Substituting (y — Xb) for & leads to a set of linear equations in the known vector b
XTy = X™Xb (6.10a)
The estimate b which minimizes the distance D is then
b = (X™X)" X"y 6.11)

where A™! represents the inverse of matrix A.
The perpendicular projection of y into hyperplane L can be made by using
projection matrix H and may be expressed by

§» = Hy (6.12)
By substitution from Eq. (6.11), Eq. (6.12) may be rewritten as
$p = Xb = X(X"X)" !XTy (6.12a)

The projection matrix H = X(X"X) !XT has the property of projecting any vector
V into a plane L. When the vector V already lies in plane L, HV = V. However,
when vector V is perpendicular to plane L, HV = 0 where 0 is a zero vector.

The projection matrix P for perpendicular projection into a hyperplane L* that is
orthogonal to hyperplane L is

P=E-H (6.13)

where E is an n x n identity matrix. With the use of these two projection matrices
the total decomposition of vector y into two orthogonal components may be written
as

y=Hy+Py=9p + &

The geometric interpretation is that vector y is decomposed into two mutually
perpendicular vectors (Fig. 6.2).

The same expressions can be reached by an analytical minimization, i.e. by a
differentiation of Eq. (6.8) and rearrangement.

Problem 6.1. Parameter estimates of a calibration line
Apply the expressions already derived to a model of a straight calibration line

E(y/x) = B1x + B,

where y is the measured quantity and x is usually a concentration. Derive estimates
by, b, and the elements of the projection matrix H.
Solution: For this case, we have

x; 1

wx=[3 % %] 1 _ {z z]

1 1 .1 Yx n
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V2
XTy = Xy X3 ... Xp . _ in.Vi
1 1 ... 1 . Y ¥
Yn
where all sums are considered for i = 1 to n. For determination of the inversion
matrix (X"X) ™! the method based on the adjugate matrix may be used
(X™X)~! = (1/det(X"X). adj(X"X))
where
n n 2
detX"X) =n) x?— [ Y xi]
i=1 i
and

adj(X"X) ={_£ X; %:Zx;c i}

a b

Recall that for matrix A= [c d]’ detA)=axd—cxb and adjA)

= [_dc —ab] . Substitution into Eq. (6.11) leads to the vector of parameter estimates

b, which is given by

0l e AR | B

Multiplication yields estimates of the two parameters f;, f in the closed form
nz X Yi — z xiz Vi
b, = )

b — Zx?Zyi—ininyi

2 D

(6.14a)

(6.14b)

where

2
D=n) x} — [Z xi:l (6.14¢)

Equation (6.12a) allows the diagonal elements of projection matrix H to be determined
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Hy=o0x 1 {_gx,. ;:Zxxl H

Y x? + nx? —2x;) x;
- D

, j=1...,n

and for nondiagonal elements H j,

ij=%[xk 1] _;x, _ZZ,::} [);]]

anxk + Z x,‘z — (xk + XJ)Z X;
- D

, hk=1,...,n

Introduction of the arithmetic mean x = 1/n)_, X; into the expressions for H;; and
Hj gives

1 n(x; —x%)?
Ho=ut ™5
and
1 n(x; — x)(x, — x
Hlk=;+ (l l))(k )

Conclusion: With the use of simple matrix operations, estimates of the parameters of
a straight line and of the elements of the projection matrix may be calculated.

Problem 6.2. Geometric interpretation of a calibration line

Derive expressions for estimates of parameters b; and b, for a calibration straight
line and make a geometric representation. Use a perpendicular projection of vector
y into the plane defined by the columns of matrix X and also make a geometric
representation of the individual projections.

Solution: The model of a calibration straight line is expressed in matrix form by

y =b¥xc +b3J + @&

where x¢ is a centred variable with elements x¢; = x; — X representing the concen-
tration or content of component and J is an (n x 1) vector of ones. Parameters b¥ and
b% refer to the model with centred variables. The advantage of the use of a centred
variable instead of the original one is that the vectors xc and J are orthogonal and
their scalar product is equal to zero,

(edy= % xer1= 3 5= 9=0

i=1
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Fig. 6.3—Geometrical representation of a calibration straight line (when y is the only
random variable) in Euclidean space E".

(see Fig. 6.3)

The perpendicular projection P (of vector y into a plane L) is [owing to the
orthogonality of the components] equal to the sum of the projection Py (of vector y
on vector J) and the projection Py (of vector y on a vector x¢),

P.=P,+Px=>bixc+b3J=9%
(see Fig. 6.4).
Projection Py lies on vector x¢ and vector y — Py is on the perpendicular to this
vector. Then the corresponding scalar product must be zero.

y = Px,xc) =y — bfxc, Xc) = 'Zx (yi — b¥xci)xc;i =0

The estimate b¥ will then be

(x _x)2 i=1

ppt n
bt = —— =Y yw (6.14d)
z

where w; are weight coefficients. Because the vector (y — Py) is perpendicular to the
vector J, the following equality is valid

=P D= T (n-b9.1=0

and therefore the estimate b% is equal to
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Fig. 6.4—Geometrical representation of the individual projections Py, P; and Py.

M=

o1
bi=y=_2 ¥

14

1

The estimates b; and b, for a model with a non-centred variable x, and the
estimates b} and b% of a model with centred variable x are related in the following
ways.

by=bf—b 5= (1 _ xw,.>y,. (6.14¢)

where w; = [x; — x}/[D7-1(x; — X)*] are the weight coefficients of the individual
values y; when b¥ is calculated from Eq. (6.14d). Equations (6.14a) and (6.14d) or
(6.14b) and (6.14¢) are equivalent. Equations (6.14d, ¢) show that the parameter
estimates are the weighted linear combinations of all y;. The magnitudes of the weight
coefficients depend only on the location of experimental data. This important
conclusion tells us that when a value of x; is far from the mean x, the weight w; is
large, so the point (x;, y;) has great “weight”, and is more significant in the estimate
b,.

Conclusion: The estimates of straight line parameters may be found from geometric
considerations. These estimates correspond to those found by the least-squares
method.
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6.2 CONDITIONS FOR THE LEAST-SQUARES METHOD

In determinination of the statistical properties of random vectors §p, €, and b, there
are some conditions necessary for the least-squares method (LS) to be valid [1].

(1) The regression parameters f can have any value. In chemometric practice,
however, there are some restrictions on the parameters, based on physical
meaning.

(2) The regression model is linear in the parameters, and an additive model for the
measurement errors is valid [Eq. (6.5b)].

(3) The matrix of non-random controllable values of the independent variables X
has a column rank equal to m. This means that the two columns x;, x, are not
collinear (i.e. parallel) vectors. This is the same as saying that the matrix X™X
18 a symmetric regular invertible matrix with non-zero determinant. That is,
plane L is m-dimensional, and vector X.b and the parameter estimates b are
unambiguously determined.

(4) The mean value of the random errors ¢; is zero; E(g;) = 0. This is valid for all
correlation models. It may happen that E(g;) = K, i = 1, ..., n, which means
that the model does not contain an intercept term. If an intercept term is used
in such a model, it will be found that E(g}) = 0 where & = y; — §p; — K.

(5) The random errors ¢ have constant and finite variance, E(e?) = 2. The
conditional variance D(y/x) = ¢ is also constant and therefore the data are said
to be homoscedastic.

(6) The random errors ¢; are uncorrelated and therefore cov(g;, €;) = El(g;, &;) = 0.
When the errors follow the normal distribution they are also independent. (This
corresponds to independence of the measured variables y.)

(7) The random errors ¢; have a normal distribution N(0, 62). The vector y then has
a multivariate normal distribution with mean Xp and covariance matrix ¢*E
where E is the identity matrix.

When first six conditions are met, the parameter estimates b found by minimization
of a least-squares criterion are best unbiased linear estimates of the regression
parameters f [2].

The term best estimates (b) means that any linear combination of these estimates
has the smallest variance of all linear unbiased estimates. That is, the variances of
the individual estimates D(b;) are the smallest from all possible linear unbiased
estimates (Gauss—Markov theorem).

It should be noted that there exist biased estimates, the variance of which can be
smaller than the variance of estimates D(b;).

The term unbiased estimates means that E(f — b) = 0 and the mean value of an
estimate vector E(b) is equal to a vector of regression parameters B.

The term linear estimates means that they can be written as a linear combination
of measurements y with weights Q;; which depend only on the locations of variables
xj,j =1,..., m. If we write Eq. (6.11) Q = (X"X) ™ 'X" for the weight matrix, we can
then say

bj= ; Qijyi (6.15)




Sec. 6.2] Conditions for the least-squares method 11

Each estimate b; is the weighted sum of all measurements. Also, the estimates b have
an asymptotic multivariate normal distribution with covariance matrix [2, 4].

D(b) = c*(X™X)"! (6.16)

When condition (7) is valid, all estimates b have a normal distribution, even for finite
sample sizes n.

Problem 6.3. Variance of parameter estimates for calibration line

Derive the equations for calculation of the variance of estimates of parameters D(b,),
D(b,) and the covariance cov(b,, b,) for the calibration straight lines from Problem
6.1.

Solution: From Eq. (6.16) and the answer to Problem 6.1, we can write

2
no
D(b,) = 53
o2 i x?
D(bs) = —F—
and
—-6%Y x;
cov(b,, by) = ——

The correlation coefficient Ry, expressing the correlation between estimates b; and
b, is calculated from

M=

cov(by,b,)

R, = =
" /Diby). Dib,) \/

Xi

I

1

2
i

™~

n X

1

i

For small values of n and positive values of x, the coefficient R, can be near to
—1. This means that the estimate of the slope b, and the estimate of the intercept
b, inmodel y = f,x + B, are negatively correlated, and the corresponding correlation
coefficient can reach very high value.

For the variances D(b%¥) and D(b%), the equations for estimates b} and b% may be
used,

0.2

w2 =

M=

D(b?) = 3. w2D(y,) = o2

i= i=1

(x; — x)?

M=

i=1

Y Dy
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Based on Eq. (6.14¢), the expression may be written as

n (1 2
D(b,) = Z <; - ’Ewi) D(y;)

i=1

_0-2 l+g—2
B noo3 _
[ Z(xi_x)2:|
i=1

Conclusion: For a calibration straight line, the variance of the estimates of intercept
and slope, and the correlation coefficient between the parameters may be calculated
from the simple expressions derived. Estimates b; and b, for positive data x; > 0,
i=1,..., n, are always negatively correlated.

6.3. STATISTICAL PROPERTIES OF THE LEAST-SQUARES METHOD

When conditions (1) to (7) for the least-squares method are met, some statistical
properties of vectors b, §p and & may be utilized. As the projection matrix H is non-
random, for a covariance matrix of prediction, the following expression is valid

D(¥p) = ¢*H (6.17)
and for a covariance matrix of residuals the expression
D@) = 6’P = ¢*(E — H) (6.18)

Both (6.17) and (6.18) are based on important properties of projection matrices, i.e.
idempotence H = HH and symmetry H = H™.

Variances of the parameter estimates b are derived from Eq. (6.11) and given by
Eq. (6.16). The residual sum of squares RSS, denoted also by U(b), may be written
as:

RSS = U(b) = é"¢ = y'(E — H)y = y'(E — H)y = ¢"Pz
and the mean residual sum of squares sum is expressed as
E(RSS) = ¢*tr(P) = 6%(n — m) (6.19)

where tr(P) is a trace matrix P. With reference to the idempotence and symmetry of
the projection matrix P, the trace of matrix P is equal to its rank.

An unbiased estimate of the variance of errors 62 can be calculated with the use
of the variance of the residuals

AT,
g2 Ub) _ & (6.20)
n—m n—m
Problem 6.4. Estimation of the variances of prediction and residuals for a calibration
line
Derive expressions for calculation of an estimate of the prediction variance D(Pp ;)
and of an estimate of the residual variance D(¢;) for the calibration straight line from




Sec. 6.3] Statistical properties of the least-squares method 13

Problem 6.1.
Solution: From Problem 6.1 and Eq. (6.17) we know that for an estimate of the
prediction variance:

1 n(x; — x)?

D(Pp;) = 02['—1 + _—D—_:I

and from Eq. (6.18) for an estimate of the residual variance

D) = az[n ; 1 _ n(x,-I; 2)2]

Thus, the prediction variance and the residual variance are quadratic functions of
the distance from x. At the point x; = X, the prediction variance has a minimum and

D(e) (b)

(a) D(QP)

X X X X

Fig. 6.5—Dependence of (a) the residual variance D(¢;), and (b) the prediction variance
D($p ;) on the independent variable x.

the residual variance a maximum (Fig. 6.5a, b).
Conclusion: At the point X the prediction variance is minimal and the residual
variance maximal. When a point x; is far away from x, the prediction is less precise
but an estimate of the residual is more precise.

From Fig. 6.1 it is evident that a square with the length of vector y is equal to the
sum of squares of the lengths of vectors $, and &,

Y'y = 959 + &&= y'Hy + y'(E — H)y (6.21)
or in abbreviated notation
1SS = SS + RSS (6.21a)

Equations (6.21) and (6.21a) may be understood to mean that the total sum of squares
TSS may be decomposed into two components, the sum of squares SS caused by the
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regression model and the unelucidated residual sum of squares RSS. The mean value
of the sum-of-squares of a regression model is given by

E(SS) = E(y"Hy) = B™X"XB + ma? (6.22)

Instead of the quantities RSS and SS, their average values are often used. The
mean regression sum of squares is defined by

MSS = SS/m (6.23a)

and its expected value by
1

E(MSS) = ¢* + ;[lTXTXﬂ (6.23b)
The mean residual sum of squares is defined by

MRS = RSS/(n — m) (6.24a)
and its expected value by

E(MRS) = ¢> (6.24b)

If p =0, ie. all parameters of regression model are zero, then

(a) SS is independent of RSS

(b) SS = o2y2 where y2 is a random variable with the y2-distribution with m degrees
of freedom,

() RSS = o%y%_,, where y2_,, is a random variable with the y2-distribution with
(n — m) degrees of freedom.

On the basis of these three facts, the ratio
F = MSS/MRS (6.25)

has the Fisher—Snedecor F-distribution with m and (n — m) degrees of freedom.

Problem 6.5. Decomposition of the total sum of squares for the model of a
calibration line

For the calibration straight line defined in Problem 6.1 try to decompose the total
sum of squares [Eq. (6.21)].

Solution: The full expression for RSS = Y &7 is
i=1
RSS = Z é(yi—by—b1x;)= z éyi— by Z é — by Z é;x;
i=1 i=1

i=1 i=1

n
For models with an intercept, Y. é; = 0 always. The vector & is perpendicular to
n i=1
vector x so that ) é;x; = 0. Therefore, the last two terms in the sum are equal to

=
zero and !

RSS = Z éyi = Z [yi — by —bix:]y;:
i=1 i=1
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=3 y?—[sz vi+b Y x,-y,]=TSS—SS
i=1 i=1

= i=1

and the regression sum-of-squares is expressed by

n

SS:sz yi+bi Y xy
i=1

i=1

Expressing SS directly from the definition we get

n

SS=Y 98:= Y (by+byx;)* =nb3 +2b,b, Y x; + b}
i=1 i=1 i=1

i=

n
x}
=

The resulting equation can be used to express the expected value of SS. From the
elemental properties of an expected value, we have

E(b3) = B3 + D(b,)
E(b}) = B + D(b,)
and

0.2

E(b; by) = B1B; + coviby, by) = By By — —

M=

Xi

1

o

From these three expressions the expected value of the regression model sum-of-
squares is given by

E(SS) = 26 + [nﬂ% + 28182 Y xi+ B Y x,z]
i=1 i=1
This can also be derived by straight substitution into Eq. (6.22).
Conclusion: From estimates b, and b, it is possible to calculate not only RSS but
also SS.

When the model contains an intercept term we will use the linear combination of
vectors

E(y/x) = B1Xy + ... + Bue 1 Xm—1 + Bd (6.26)
where J = (1, 1,..., 1)T is the vector of all ones. On introducing centred variables

j=1...,m—1 (6.27)

xc,j = Xj - JXj,

the scalar products become {xc; J) = 0. This means also that vectors xc ; and J
are orthogonal. In Eq. (6.27) the symbol X; = 1/n Y 7 x;; means the arithmetic mean
of the jth controllable independent variable. By using centred variables the regression
model will be expressed in matrix form

y=XcB*+BrJ +¢ (6.28)




16 Linear regression models [Ch. 6

where X¢ is a matrix of dimension (n x (m — 1)) and p* is vector of dimension
(m — 1) x 1. Because of the orthogonality of the two variables in Eq. (6.28), the
estimates b* and b}, of parameters p* and % may be determined independently, from
a projection into a plane L, as defined by the columns of matrix X¢ or from projection
on a vector J (see Problem 6.2).

By projection into a plane L, we find

ch* = XC(XEXC)_ 1XEy (6.29&)

or

b* = (XEXc) ™ 'XZy (6.29b)

By using projection onto a vector J we find

Ibx = JITI)~ 1Ty (6.30a)

or
bk ="y = % Y =7y (6.30b)
i=1

With the use of Eq. (6.30), the expression for an estimate of intercept term variance
may be derived:

D(b,,) =d*J") "' = %2 (6.31)

By introducing a centred dependent variable
Ye=Y—Jy (6.32)
the regression model (6.28) is transformed into a model without an intercept term
Yc = XcBc + & (6.33)

For this model, the total sum of squared deviations from the average TSC may
be decomposed into the sum of squared deviations from the regression model and
the sum of squared residuals RSC (equal to RSS). Then

Y&¥c = $ocfec + €78 (6.34)
or
TSC = SSC + RSC (6.35)

Decomposition of the total variations from an average (y; — j) into a part explained
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[x jr y,]

X X; X
i .
Fig. 6.6—Decomposition of the total deviation from the mean (y; — ) into an explained
part (9pc; — ¥) and a part not explained by the regression model, ;.

(Prc.s — ¥) and a part not explained é; by a regression model is illustrated in Fig. 6.6
for a regression straight line.
We know that

TSC = TSS — ny? (6.36)
and also
SSC = ytHcyc = b'X™Xb — nj? (6.37)

where b is a vector of dimension (m x 1) containing an intercept term. The cosine of
the angle between vectors yc and §pc can be calculated by trigonometry (Fig. 6.7):

Ye

RSC

a
Ypc

VSSC

Fig. 6.7—Geometry of the determination of cos a.
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cosa = ﬂ—\/l
T NTSCT

The quantity cos « is numerically equal to the value of the multiple correlation
coefficient expressed for correlation models.

The square of the correlation coefficient R is called the determination coefficient
R2. For regression models a quantity R = cos « is interpreted as the measure of
relative difference between regression model M;: §p = Xb and model M,: §p = Jy.
If R tends to zero, the regression model has all parameters except the intercept term
equal to zero and model M, is valid. This means that in practical chemometric
calculations the quantity R cannot be used as a measure of linearity, even for
investigation of the quality of a regression model.

From Eq. (6.25) we can calculate the ratio

_(TSC—RSC)n—m) _ R¥n—m)
B RSC(m — 1) T (1—RHm-—1)

(6.38)

Fe (6.39)

which has the Fisher—Snedecor F-distribution with (m — 1) and (n — m) degrees of
freedom. In Eq. (6.39) the quantity R?> means an estimate of the determination
coefficient calculated from R = cos « and the use of estimates b. With the use of Fg
(6.39) the null hypothesis Hqy: fc = 0 may be tested; this is equivalent to the hypothesis
Hy: R? = 0. A test of significance of multiple correlation coefficient is the same as a
test of significance of all regression coefficients except the intercept term.

Problem 6.6. Investigation of abrasion resistance and the composition of rubber

The dependence of the abrasion resistance of rubber, y, on the content of silica filler
x; and a binding substance x, was studied. Whereas the filler increases abrasion
resistance, the binding substance also increased its resistance efficiency. Estimate
parameters f§;, i, and f8; of this proposed linear model

E(y/x) = B1x1 + B2x; + B3

and test the statistical significance of the correlation coefficient.
Data:n=11,m=3

y 83 113 92 82 100 9 98 95 80 100 92

x¥ 1 1 -1 -1 0 0 0 O 0 1.5 —15

x3 -1 1 1 —1 0 0 0 15 —15 0 0

Variables x¥ and x% are transformed from the raw variables x; and x, as follows:

x; = 6.7x¥ + 50
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X, =2x%3 + 4.

Solution: Since the data are the result of a planned experiment, the vectors J, x¥ and
x* are orthogonal. The matrix X"X is then diagonal, with the form

Yxi2 0 0 85 0 0

Ty — —
XX=1 0 Tx22 0[]0 85 0
0 0 n 0 0 1t

The vector X"y has the components

Z yixh 34
Xly=|Yyxt| = | 625
Yy 1031

The following estimates are calculated from Eq. (6.11).

b =1 = 937273

where the stars denote estimates in the transformed variables model. The regression
model in the raw variables has the form

A Xl - 50 x2 - 4
Pp = [ = ]4 + [——2 ] 7.3529 + 93.7273

= 0.597x; + 3.6765x, + 49.1708

The corresponding residuals sum of squares RSC is given by
RSC =Y (y;— Pp.)* = 3266

i=1

and the estimate of residual standard deviation (n = 11, m = 3)
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RSC
n—m

= 6.39

G =

Because of the diagonality of the matrix X™X we can say that

185 0 0 4804 0 0
Db =62| 0 185 O |=| 0 4804 0O

0 0 1/11 0 0 3712

For estimates corresponding to the raw variables, then

D(b?)

Diby) ===3

= 0.107

*
D(b,) = Dg? = 1.201

50 I 4P
D(b;) = [ﬁ] D(bY) + [ﬂ D(b%) + D(b%) = 290.47

The total sum of deviations from the mean TSC is

TSC = yZ — ny = 922.1818
i=1

Introducing this into Eq. (6.38) leads to an estimate of the coefficient of determination:

2 _ . 3266
922.1818

From Eq. (6.39), the test criterion Fy is

_(922.1818 — 326.6) x 8
R 326.6 x 8

= 0.6458

= 7.2943

The value Fy is higher then the corresponding quantile of the Fisher—Snedecor
distribution F, ¢5(2, 8) = 4.46, so at the significance level o = 0.05, the coefficient
of determination is considered to be significantly different from zero.

Conclusion: By using planned experimental data, all the columns of matrix X are
mutually orthogonal, and with use of a suitable transformation of variables, the
statistical characteristics of the linear model may be calculated.

6.3.1 Construction of confidence intervals

When parameter estimates b are determined, it is necessary to remember that b
represents the point estimates of parameters f. These estimates are random quantities
and in practice they are less important than the confidence intervals in which the true
(theoretical) value of parameter f lies with some selected probability (1 — «). As for
univariate data samples, the significance level is usually chosen with & = 0.05 or 0.01.

i

|
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These levels correspond to the 95% or the 99% confidence intervals.

Confidence intervals are constructed on the assumption that a random quantity
(n — m)é*/a* has the y2-distribution with (n — m) degrees of freedom, and a random
quantity (b — p)TX"X (b — B)/o? has a y2-distribution with m degrees of freedom. The
corrected ratio of these quantities has a Fisher distribution with m and n — m degrees
of freedom. The bounds of the 100(1 — «)% confidence region are described by

(b — B)"X"X(b — B) = mG2F, _(m,n — m) (6.40)

where F, _,(m,n — m) is the (1 — &) quantile of the Fisher—Snedecor F-distribution
with m and (n — m) degrees of freedom. Because the matrix X"X is regular, Eq. (6.40)
defines a hyperellipsoid with axes oriented in the directions of the eigenvectors V; of
the matrix (XTX) 1. The lengths of the individual half-axes are equal to p\/ 4; where
A; are eigenvalues of the matrix (X"X)™! and coefficient p is defined by

p? = mé*F,_,(m,n —m) (6.41)

Neglecting any correlation between parameter estimates, from Eq. (6.40) the
100(1 — )% simple confidence interval for parameter §; has the form

by — ty_ua(n — 6 /ey < B; < by+ ty_ynln — mé /c;; (6.42)
where c;; is the jth diagonal element of the matrix (X™X)™! and t; _4, (n — m) is the
(1 — «/2) quantile of the Student distribution with (n — m) degrees of freedom. Simple
confidence intervals are, however, too narrow for correlated estimates b. Therefore
we will define the extreme confidence intervals as the extremes on the confidence
ellipsoid given by

bj — py/cj; < Bi < b;+ pi/cj (6.43)
In some cases the confidence ellipsoid is created for g regression parameters on

the assumption that they are the last ¢ components of vector . Then, for the
100(1 — )% boundary confidence ellipsoid

(b, — B2)™D; ' (by — B;) = q6°F, _,(g,n — m) (6.44)

where the matrix D, of dimension (g x g) is formed from the matrix (X™X)™' by
leaving out the first (m — gq) columns and (m — q) rows. The symbol g, denotes the
vector of the last g components of vector B, and vector b, is defined analogously.
Similary, the confidence interval for a prediction p ; for point Xo = (Xo15---» Xom)"
can be calculated. For 100(1 — «)% confidence interval of prediction we can write [4]

Xob — ty _ga(n — m)p o < XoB < Xgb + £y _p2(n — m)Sp o (6.45)
where $3 , is the variance of prediction for which [Eq. (6.17)] the following expression
may be used

D(9p.0) = 83,0 = 6*x5(X"X) ™ '%o (6.46)

The relationships between the limits of the confidence interval of prediction (6.46)
and x, form the 100(1 — )% confidence band. The band is narrowest at the centre
of gravity of the controllable (independent) variables, xo; = X;.
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When the confidence bands for all possible values of vector X = (x,..., X,,)" are
to be calculated, the Scheffe method should be used. With probability (1 — «) the
theoretical value x*B lies in an interval

x"b + /mF, _,(m, n — mé&>x"(X"X) " !x (6.452)

Confidence bands constructed from Eq. (6.45a) are called Working—Hottelling
bands [4] and have the same properties as those constructed on the basis of Eq.
(6.45).

Problem 6.7. Validation of a new analytical method

Validate a new analytical method by comparison of results (y) with results obtained
by a classical standard method (x) for a set of parallel determinations. If both methods
lead to same results, the dependence of y on x is linear [y = f,x + ,] with zero
intercept f, =0 and unit slope f; = 1. Estimate the parameters b, and b, and
construct the 95% confidence interval of intercept and slope, and the 95% confidence
interval of prediction for a sample with x, = X.

Data: amount of reagent in mg determined by new (y) and standard (x) methods,
n=24m=2

x 402 438 476 507 568 813 833 971 1025 1187

y 489 391 426 569 703 715 976 999 1052 1023

1294 1848 2875 2954 4203 4213 4279 566.1 608.5 640.7

106.8 1629 2340 3034 3888 391.1 3693 611.6 5802 643.3

692.8 7052 7144 8814

596.6 612.6 633.5 669.8

Solution: The least-squares estimates of slope is b; = 0.868(+0.030) and intercept
b, = 14.73(+12.61) (+ standard deviations) were computed. The determination
coefficient R? = 0.974 and the estimate of standard deviation of residuals 6 = 39.54.
From Eq. (6.42)

by — t1_42(22)/D(b;) < By < by + t1_42(22)/D(b3)
whence

1473 — 2.08 x 12.61 < B, < 14.73 + 2.08 x 12.61

and
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—11.499 < B, < 40.959

Since this confidence interval includes zero, the intercept S, is not significantly
different from zero. The confidence interval for the slope is

0.868 — 2.08 x 0.0302 < B, < 0.868 + 2.08 x 0.0302
or
0.805 < B; <0930
1.05

By | ;
0.96 :

0.88

0.79

0.70 :
-20.0 -2.5 15.0 325 '50.0
B,

Fig. 6.8—Construction of the 95% confidence ellipse and the point §; = 1 and , = 0.

Because this interval does not include 1.0, the slope can not be considered to be
equal to one. Figure 6.8 demonstrates the 95% confidence ellipse for parameters f,
and §,.

For a regression straight line and xy, = X = 320.7, according to Eq. (6.46) we may
write

n

L1 (g —%?*| 62
a2 a2t Ko X))
D(§p) =$50=26 [n + D :I
Then introducing numbers into Eq. (6.45) leads to
2.08 x 39.54

NeT

2.08 x 39.54

N

14.73 + 0.868 x 320.7 — < xof < 14.73

+ 0.868 x 320.7 +

whence

276.89 < xIp < 309.89
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700.0 e (a) 3.0 (b)
S0 18
1% é
20
14 19
350.0 0.0 14579 18 23
BG]HIZ 17 512
13
0.0 £ -3.0 2
0. 500.0 x 1000.0 0.0 500.0 X1OOO.0

Fig. 6.9—(a) Construction of the 95% confidence bands and (b) dependence of residuals
é = f(x) on variable x.

Despite the small variance of prediction in the point X, the 95% confidence interval

is rather broad. Figure 6.9 shows construction of the 95% confidence bands of the
calculated regression straight line together with experimental points.
Conclusion: The confidence intervals of the intercept and the slope indicate that the
intercept of regression straight line can be considered to be equal to zero, but the
slope significantly differs from unity. Thus the results of the new analytical method
differ from those obtained by the standard method by a multiplicative constant.

6.3.2 Testing of hypotheses

Tests for significance of parameters are closely connected with the construction of
confidence intervals. To test the null hypothesis Hy: g = B, where B, is the vector
of known numbers, against the alternative H,: g # B, the test criterion based on
Eq. (6.40) may be expressed as

£ _ b= Bo'X™X(b — Bo)

mé?

(6.47)

which has approximately the Fisher—Snedecor F-distribution with m and (n — m)
degrees of freedom. If Hy, is valid. The criteria defined by Egs. (6.25) and (6.39) are
special cases of the test statistic F as defined by Eq. (6.47).

For a test of the simple hypothesis Hy: B; = B, against the alternative H,:
B; # Bj,0, the test criterion based on Eq. (6.42) is

T, = lb; = Biol (6.48)
é./c i

which has approximately the Student t-distribution with n — m degrees of freedom

when H, is valid.
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Most regression programs perform a Fisher—Snedecor test of significance of the
determination coefficient Eq. (6.39) and a Student z-test on the significance of the
individual parameters f; calculated from Eq. (6.48) with f;, = 0. The F-test also
determines simultaneous significance of all components of vector § except an absolute
member. There are four cases:

(1) The F-test is not significant and all t-tests also are not significant. Then the
model is considered to be unsuitable because it does not explain the variability
of y.

(2) The F-test and all t-tests are significant. Then the model is considered to be
suitable to express the variability of y. It does not mean, however, that the model
is correct and acceptable.

(3) The F-test is significant but one or more t-test is not significant. Then the model
is considered to be suitable, but the controllable variables x; for which the
parameters f8; are not significantly different from zero are rejected.

(4) The F-test is significant but all t-tests for parameters f indicate that all
controllable variables are insignificant. Paradoxically, this shows that although
the model as a whole is suitable, none of controllable variables is significant.
This may result from multicollinearity (Section 6.3.21).

It should be noted that a model is considered to be significant when the form of
the model is f(x, B) = XB but not f(x, ) = Jj.

Problem 6.8. Disadvantages of classical statistical analysis for linear regression
Anscombe [5] published test data for four simulated samples of size n = 11. Test the
statistical significance of parameters f, and f,, ie. Hy: f; = 0 against H,: f; #0
and Hy: B, = 0 against H,: B, # 0, and compare the results of tests with graphical
analysis of residuals.

Data: To check the efficiency of statistical algorithms for linear regression models,
the following test data samples are often used. The four data samples have the same
statistical characteristics b, = 0.5, b, = 3.0, D(b,) = 0.0139 and D(b,) = 1.2656.

Table 6.1. Test data for linear regression

Data sample A B C D
Variable x y y y x y
Point

1 10 8.04 9.14 7.46 8 6.58
2 8 6.95 8.14 6.77 8 5.76
3 13 7.58 8.74 12.74 8 771
4 9 8.81 8.77 7.11 8 8.84
5 11 833 9.26 7.81 8 8.47
6 14 9.96 8.10 8.84 8 7.04
7 6 7.24 6.13 6.08 8 5.25
8 4 4.26 3.10 5.39 19 12.50
9 12 10.84 9.13 8.15 8 5.56
10 7 4.82 7.26 6.42 8 791
1 5 5.68 474 5.73 8 6.89
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Solution: When the linear regression model is E(y/x) = B, x + f,, all four sets of data
lead to the same parameter estimates ie. b; = 0.5 and b, = 3.0, with parameter
variances D(b,) = 0.0139 and D(b,) = 1.2656, and the test criteria are T; = 2.667 and
T, = 4.241. The test criterion Fg (6.39) has the same value Fg = 17.97, the determi-
nation coefficient R? = 0.66 and the residual standard deviation & = 1.237. This leads
to the conclusion that both regression parameters 8, and B, are significantly different
from zero.

Since the quantile of the F-distribution Fg ¢5(1, 9) = 5.117 is less than the calculated
Fy, the determination coefficient differs from zero. It would seem that for all four
data samples the linear regression model fits quite well. Figures 6.10 to 6.13 show

15.0 (a) 3.0 (b)
A
y ) e
' g
7 4
0.0 SR 6
8
10
3
0.0l -3.0
0.0 7.5 x 15.0 0.0 7.5 x 15.0

Fig. 6.10—(a) Linear regression model p, = f(x) for data sample A, and (b) dependence of
residuals é = f(x) on variable x.

15.0 (a) 3.0 (b)

y ) e

2 4
12 5
7.5 0.0 7 9
11 3
8 6

0.0l -3.0

0.0 7.5 x 15.0 0.0 7.5 x 15.0

Fig. 6.11—(a) Linear regression model 9p» = f(x) for data sample B, and (b) dependence of
residuals é = f(x) on variable x.
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7.5 0.0 11,
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0.0 7.5 x 15.0 0.0 7.5 x 15.0

Fig. 6.12—(a) Linear regression model J, = f(x) for data sample C, and (b) dependence of
residuals é = f(x) on variable x.

15.0 L@ 3.0 (b)
y A
4
S
é@
7.5 0.0 8 8
1
§
7
0.0l 3.0
0.0 10.0  x 200 0.0 10.0 X 20.0

Fig. 6.13—(a) Linear regression model §, = f(x) for data sample D, and (b) dependence of
residuals é = f(x) on variable x.

that only data sample A is well characterized by a linear model. A good approximation
is also reached for sample C, where just one outlier prevents the data from
corresponding to a linear model.

It may be rather surprising to a user of linear regression analysis that the statistical
characteristics do not indicate here either the nonlinear trend of sample B (Fig. 6.11)
or the silly data of sample D (Fig. 6.13).

Conclusion: Classical regression analysis may suggest models that do not correspond
at all to the data set. Any model must be confirmed by graphical examination of
residuals.
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6.3.2.1 Testing for multicollinearity

Paradoxical cases where the F-test is significant and all t-tests are not significant
may result from strong multicollinearity among columns of matrix X. In correlation
models, this corresponds to a situation when there are high values of paired correlation
coefficients between controllable variables. Multicollinearity may be recognized by a
finding that vectors x; and x,, j # k, (which represents columns of matrix X) are
approximately parallel.

In the presence of multicollinearity, it is not possible to find the influence of the
individual controllable variables x;. Multicollinearity may exist in models which fit
experimental reality quite well. Here, RSC has a small value and the predictions p
are quite close to the experimental values y;. Multicollinearity also appears in
polynomial models and data which come from unplanned experiments. i

Multicollinearity can be removed, for example, by selecting the location of i
experimental points such that the columns of matrix X will be mutually orthogonal,
i.e. their scalar product will be zero.

<Xj, Xk> = Z xijxik = 0 forj # k
i=1

If all columns of matrix X are mutually orthogonal, the matrix XX is diagonal
and a solution of Eq. (6.11) can be expressed in the form

Z Xij Vi
b.='=1 N j=1,...,m

i~
2 X3
i=1

and the test criterion Fy is

m—1

> 13
Fo=421 __
R=""7=F

where T is an average value of all test statistics T defined by Eq. (6.48) for B,; = .
It is supposed here that S, is the intercept term.

To examine the suitability of a proposed linear model with regard to possible
multicollinearity, Scott [8] uses a test criterion My

M;= (6.49)

and the following rules for identification of multicollinearity.

(@) If M1 > 0.8 the model is not suitable because of multicollinearity, so a model
correction is necessary.
(b) If 0.33 < My < 0.8 the model is poor because of multicollinearity, so some

I 1
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model correction is recommended.
(c) If My < 0.33, the model has little problem from multicollinearity, so no model
correction is necessary.

The M criterion is useful in cases where it is necessary to discover all controllable
variables which significantly affect the variability of the dependent variable y. When
data are approximated by an empirical model, for example, by a polynomial, the M
values need not be considered.

Problem 6.9. Approximation of an absorption spectrum by a polynomial

Find a model which describes the dependence of the molar absorptivity & on wave-
length 4, & = f(4). Use a polynomial of the second degree E(e/4) = f; + B> A2+ By A%
Data:n=15m=3

g, mol~!.dm3.cm™! 3 34 43 5 6 68 8.1 9.2

A, nm 460 470 480 490 500 510 520" 530

107 116 129 136 146 153 155

540 550 560 570 580 590 600

Solution: Table 6.2 lists the numerical values of the parameter estimates b,, b, and
b; with their standard deviations and test statistics T; for B; = 0. Since the test
criterion Fy = 696 is greater than the corresponding quantile of the Fisher—Snedecor
F-distribution F, 5(2, 12) = 3.885, the proposed model is statistically significant. In
contrast, the quantile of the Student t-distribution ¢, ¢75(12) = 2.2 is greater than
both T, and T,, therefore both parameters f, and B, are insignificant. The test
criterion M1 = 0.989 (Eq. (6.49)) indicates very strong multicollinearity in the model.

Table 6.2. Parameter estimates and their statistical characteristics

j Parameter Estimate b Dby T;

1 B, —4393 19.38 —2.267
2 B2 0.1018 0.0735 1.386
3 B3 —251x10°° 6923 x 107> —0.0361

Conclusion: In polynomial models, the significance of individual terms of the equation
can not be judged from the result of the Student ¢-test alone.

Statistical tests are rather insensitive to small deviations of the error distribution
from normality. However, in cases of strong non-normality or heteroscedasticity it is
necessary to make a correction to the number of degrees of freedom for determination
of the quantiles of the Fisher—Snedecor and Student distributions.
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6.3.2.2 Test of significance of the intercept term

In chemometrics practice, it is important to examine the significance of the intercept
term f3,, by testing the null hypothesis Hy: §,, = 0 against the alternative H,: g,, # 0.
An intercept term always exists in correlation models. In regression models the

n
intercept term ensures a zero sum of residuals ), é; = 0.

In programs for regression analysis the fo]lcl)wling difficulties exist regarding the
intercept term:

(a) The intercept term f,, always exists for centred data.

(b) Because the value y = 0 is used in its calculation, the determination coefficient
(6.38) for models without an intercept, R} will be significantly higher than R? for
models with an intercept. The residual sum of squares for a model without an
intercept, RSCg, is always higher than or equal to the residual square sum for a
model with an intercept, RSC.

Good programs allow calculation for a model with or without an intercept term,
and correctly evaluate the determination coefficient because they do not substitute
7 = 0. The difficulty can be avoided by introduction of a fictional point (X, 41, Y+ 1)
with the co-ordinates [9]:

x"+1’j=n*2j, j=1,...,m—1

Yn+1 = n*.}_]
where n* =1 + \/ n+1andx ;and y are arithmetic means calculated from the data.
With the use of this extended data set, the classical linear regression with an intercept
term leads to the same results as the regression without an intercept term for the
original set of n data points.

The influence of an intercept term on regression model may be understood by
considering the location of point (X, 1, ¥,+1) With regard to other points. When this
point is an outlier, the model without an intercept term is not suitable. The significance
of an intercept term may be evaluated by use of Jack-knife residuals (6.97). If the
point (X,+1, Y,+1) is far from other points, the data are not in a suitable range to
allow testing for presence of an intercept term. The significance of an intercept term
may be also examined by the test statistic T; (6.48), with f,; = 0.

Problem 6.10. A Lambert—Beer Law calibration line

Estimate the parameters of the calibration line for the Lambert—Beer law for the
dependence of a measured absorbance 4 on the concentration ¢; of p-nitroaniline.
Does the straight line pass through the origin?

Data:n=6,m=2,d=1.000cm

¢, 10°.mol.dm ™3 198 258 342 443 551 6.58

A 0.293 0.374 0.500 0.642 0.804 0.963

Solution: If the Lambert—Beer law holds, the straight line A = gydc, where gy is the
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molar absorptivity, d is the cell length and ¢ the molar concentration, passes through
the origin. We will add the fictional point with co-ordinates 4, ; = (1 + 7)4 = 2.172
and ¢,.; =(1 + 7)c = 14.88. For this extended data set the model found was
= (0.146 + 0.0003)c + (2.703 + 0.206) x 10~°. The test statistics T; = 490 and
T, = 0.013 show that the straight line goes through the origin.
To check whether it is correct to neglect the intercept term, the extended data set

3.0 (a) 2.0 (b)
A e !
6
3
1.5 0.0 s 7
2
4
0 -2.0
0.0 7.5 c 15.0 0.0 8.0 c 16.0

Fig. 6.14—Test of significance of the intercept term in a Lambert-Beer law calibration: (a)
the line for 4 = ec and the fictional point, and (b) the dependence of the residuals é on
variable c.
is plotted in Fig. 6.14. It is obvious that the point (x,. {, y,+1) does not differ from
the others, and the Jack-knife residual (Eq. 6.97) é,,.,; = 0.037 also indicates that
the intercept is insignificant.

Preoblem 6.11. Estimates of the parameters of a calibration line that passes through
the origin

Demonstrate a procedure for parameter estimation in the case of a calibration
straight line which must pass through the origin.

Solution: The regression model E(y/x) = fx is shown in Fig. 6.15. The vector §, is
the perpendicular projection of vector y on vector x. The estimate b, may be
calculated by the simple expression from Problem 6.1, but we use here an analytical
derivation of the least-squares criterion U(B) = Y 7—; (y; — B1x:)%

oU(p) _
By

and rewriting

—22 (yi — Bixi)x; =0

M=

X,
bl = = n z Vi
Z X i=1
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N

Yp X

Fig. 6.15—Geometrical illustration of the regression model y = §;x, and the projection of
vector y on vector X.

The variance of this estimate is calculated from

0.2

Diby) = 3. v#D(3) = 5
1= xi

The residual sum of squares RSC is given by

n

RSC= ¥ y2—by ¥ xun
i=1 i=1
and the theoretical sum of squares SS is

SS=blz xiyi=bfz xiz
i i=1

i=1

For the determination coefficient R? it holds

n n n
S yE—b Y xiyi biY yixi— ny?
{ =1 i=1

R*=1-— . =

]
-

y} —ny?

=
<=
-~
I
=3
)
™M=

1

i=1 i
The projection matrix H contains elements

x? XX

HJ.].: 4 and Hﬂ‘=—nl—, hk=1,...,n

n
Y x? Y x?
i=1 i=1

From Eq. (6.17) we have
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2.2
6Xj

2
i

D(,OP,i) =

X,

M=

1

and the confidence interval for a model of regression straight line is calculated from
Eq. (6.45)

A

6.x
Xoby — t1_gpa(n — 1)——— < xo;

The end-points of the two confidence intervals are straight lines going through an
origin, whereas for a general model of a regression straight line they are parabolic
curves.

6.3.2.3 Simultaneous test of a composite hypothesis

The likelihood ratio test (Section 8.6.2) may be used for testing general parametric
hypotheses. In a case where the null hypothesis Hy: g, = 0 is to be tested against
the alternative H,: B, # 0, where B, represents the last g elements of the vector B,
the regression model is expressed in the divided form

y = [X, XZJ.[I‘;;J +e=X,By +X,B, +¢

where X, is the matrix of dimension [n x (m — g)] containing those controllable
variables with regression coefficients that are not included in a test vector $,.
Similarly, X, is the matrix of dimension (n x g) containing those controllable variables
with regression coefficients that are included in a test vector ,.

When the hypothesis H, is valid, it is evident that

yP,l = X;b,
where
b, = (XIX,) " 'X]y
and the corresponding residual sum of squares RSC, is
RSCy =(y — $»,1)"(y — $o.1)
When the hypothesis H, is valid, we have
e = Xb

where
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b= (X"X)" X"y

and the corresponding residual sum of squares RSC is
RSC =(y — $»)"(y — 9»)

The difference (RSC, — RSC) corresponds to an increase in the residual sum of
squares caused by validity of the null hypothesis Hy. The test criterion has the form

_ (RSC, — RSC)(n —m)

Fy RSCq

which if the H, hypothesis is valid, has the Fisher—Snedecor F-distribution with ¢
and (n — m) degrees of freedom.

A mistake often made in the application of linear regression in chemical laboratories
is a false approach to a choice of test criteria. Instead of the test criterion F, the
individual test statistics T; from Eq. (6.48) are calculated, and on their basis, the
significance of a composite hypothesis Hy: B, = B, o against Hy: B, # B 0, is tested.
Here B, o is the vector of known parameters.

For tests of composite hypotheses, the test statistic F; should be used, where RSC
is the residual sum of squares for the model

¥p.i = Xiby + X382,

where b, is the estimate of parameters f; on the assumption that the restriction
B, = B, is valid.

Problem 6.12. Simultaneous test of a composite hypothesis for a Lambert—Beer law
model

For the data from Problem 6.10, test the composite null hypothesis Hy: B, =0,
B, = 0.148 against H,: B, # 0, B; # 0.148. The false approach would be two separate
tests of two null hypotheses, Hy: f, = 0 and Hy: f; = 0.148.

Solution: On substitution into Eq. (6.48), we obtain

_|1461 x 107* — 0] _

L= 0.00398 = 0037
_10.1459 — 0.148]

T, = 0000908 = 2314

Because T; and T, are less than the quantile of the Student t-distribution,
to.975(4) = 2.7764, both tests lead to a conclusion that Hy: S, = 0, 8, = 0.148 should
be accepted. This conclusion is, however, false.

The more rigorous approach uses a simultaneous test of the composite hypothesis
Hy: B, =0 and f§; = 0.148.

The procedure starts with a calculation of RSC =5.12 x 1077 for estimates
b, = 0.1459 and b, = 1.461 x 10~*. Then, RSC, = 53476 x 10~* for parameters
Bs.0 =0 and B, o = 0.148 is calculated. From Eq. (6.50), the test criterion F; is
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(5347 x 1074 —512 x 107%) x 4

512x10°5x 2 = 18.89

Fy

Because the quantile of Fisher—Snedecor F-distribution is F, ¢5(2, 4) = 6.944, the null
hypothesis Hy: f, = 0 and $; = 0.148 cannot be accepted. The result of this F-test

0.160

B
0.155

0.150

0.145

0.140
-0.02 -0.01 0.0 0.01, 0.02
B,

Fig. 6.16—The 95% confidence interval for the parameters §, and B,. The point 8, =0,
B, = 0.148 is marked by a cross.

is not in agreement with conclusion of the previous t-tests. Figure 6.16 shows the
95% confidence ellipse of parameters ; and B,, and the point B1.0=10.148 and
B2,0 = 0 marked by a cross. This point lies outside the 95% confidence interval of
the two parameters.

Conclusion: It may be concluded that a simultaneous test of the composite hypothesis
cannot be replaced by tests of two separate hypotheses. Thus, testing of individual
parameters in a vector i, can lead to quite false conclusions.

Problem 6.13. Validation of a new analytical method by a simultaneous test of a
composite hypothesis

Try to test a composite hypothesis Hy: 8, =0 and §, = 1 in Problem 6.7 against
the alternative H,: 8, # 0 and §; # 1.

Data: from Problem 6.7

Solution: From the results of Problem 6.7, we have RSC = 3440, and when we set
Bi,0=1and B, , =0, we obtain RSC, = 8221. On substitution into Eq. (6.50), we
find

(8220 — 3440) x 22

3440 x 2 =15.28

Fy

which is greater than the quantile of the Fisher—Snedecor F-distribution
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Fo 05(2, 22) = 3.44, so the null hypothesis H, cannot be accepted. This conclusion is
also in agreement with the partial ¢-tests and confidence intervals of the two

700.0 (@ 3.0 (b)
o ° 18
o
y ° (o) A
e 20
14 19
A 18
350.0 0.0t 264512
o llql 17 2
13 #
0.0 -3.0 a
0.0 500.0 x 1000.0 0.0 500.0 x 1000.0

Fig. 6.17—(a) Linear regression model of validation of a new analytical method fp = x, and
(b) dependence of the residuals on x.

parameters. Figure 6.17 shows the regression straight line §p = x, with experimental
points and a graphical analysis of residuals.

Conclusion: A simultaneous test of the composite hypothesis (Hy: §, =0and §; = 1)
confirmed that a new analytical method is not in agreement with the results of a
standard one.

6.3.2.4 Test of agreement of two linear models
The test of a composite hypothesis just described may be re-arranged to allow for
testing of agreement of parameters in two linear models

Yi=XB +& (6.51a)
Y2 =X,B, + 5 (6,51b)

where X, is a matrix of dimension (n; x m), y, is a vector of dimension (1, x 1), X,
is a matrix of dimension (n, x m), and y, is a vector of dimension (n, x 1). RSC; is
the residual sum of squares corresponding to model (6.51a), RSC, is the residual sum
of squares corresponding to model (6.51b) and RSC is the residual sum of squares
corresponding to the composite model:

)= R )<+ |2]

We use the Chow test of the null hypothesis Hy: f; = B, against the alternative H,:

B # B,, based on the test criterion

F.. _ (RSC — RSC; — RSC;)(n — 2m)
¢ (RSC, + RSC;) x m

(6.53)
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where n =n, + n,. If the variances of the two samples are the same (07 = 03,
homoscedasticity), the test criterion F¢ has the Fisher—Snedecor F-distribution with
m and (n — 2m) degrees of freedom.

When the variances of the two samples are not the same (o2 # o3, heteroscedas-
ticity), the Fisher—Snedecor F-distribution may be used with m and r degrees of
freedom where

_ [0y — m)o? + (1, — m3 P
(n, — m)at + (n, — m)os

(6.54)

r
A more accurate version of this equation is given in [6].

Problem 6.14. Comparison of measurement results from two laboratories
Determination of the free energy AG of the vapour of boron oxide as a function of
temperature T was carried out in two laboratories [11]. Compare the results and
test whether the values measured in the two laboratories can be considered to be the
same.

Data:n=6 m =2,

—AG, kcal/mol
T K LabA Lab B
1409 349 349
1441 34.6 33.8
1457 31.9 334
1492 331 324
1569 30.1 30.3
1610 29.3 29.1

Solution: If a linear regression model is valid for both data samples, the models are
E(AG/T) = By AT+ B34

E(AG/T) = B, T+ B2n

We will test the null hypothesis Hy: B, = Py against the alternative H,: B, # Bg,
Where pA = (ﬂl,A’ ﬂZ,A)T and ﬂB = (ﬂl’B’ ﬂZ,B)T' We use the ChOW test:

Laboratory A: by.a = —0.02768(+0.00525)
bya = T73.73(1£7.865)
¢ =0916
RSC, = 3.358

Laboratory B: by s = —0.02776(40.000157)
by g = 73.82(1+0.235)
¢ =0.0274

RSCy = 0.002992
Laboratory A + B: by 4+5 = —0.02772(+0.00235)
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by asn = 73.77(%3.521)
6’A+B = 0.58
RSC,.p = 3.364

The standard deviations of the parameters are given in brackets. Substitution into
Eq. (6.53) for RSC = RSCy4 1+, RSC{ = RSC, and RSC, = RSCy, leads to

. (3364 —3.358 — 0.002992)(12 — 4)
¢ (3.358 + 0.002992) x 2

Because the variances of the samples differ, we calculate the degrees of freedom r
from Eq. (6.54).

_[4 x 09162 + 4 x 0.0274%]?
T 4 x0916* + 4 x 0.0274*

The quantile of the Fisher—Snedecor F-distribution F, ¢5(2, 4) = 6.94 is greater than

= 0.0036

=4.007= 4

36.0 (a) 3.0 (b)
A
—-AG | e
31.0 0.01s .+ .,
26.0 -3.0 ’
1400 1525 7 1650 1400 1525 7 1650

Fig. 6.18—(a) Regression straight line for data (—AG, T) for two laboratories. Data for
laboratory A (denoted by circle) have more spread; (b) dependence of residuals: lab A
(denoted by circle) and lab B (denoted by star).

Fc, so Hy: Ba = Bg is accepted. Figure 6.18 shows a graphical interpretation of the
laboratory measurements. The data from lab A show much more spread.
Conclusion: On the basis of a Chow test, it may be concluded that results from the
two laboratories can be considered to be the same. The data from lab A are less
precise.

Problem 6.15. Comparison of two calibration straight lines

Two insulin samples, A and B, are compared according to their ability to decrease
the level of blood sugar. The sample A was injected into 11 randomly chosen rats
and sample B into 9 rats. The decrease of blood sugar level was determined. Compare
the efficiency of the two insulin samples.

Data: Insulin A: x is the amount in ul of insulin A, and y is a decrease in sugar level
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in blood, ny = 11, m, = 2,

x 120 160 200 240 280 320 360 400 440 480 500

y 17 26 30 27 45 47 48 63 60 69 69

Insulin B: the same for insulin B, ng =9, my =2

x 169 200 240 280 320 360 400 440 480

y 9 18 17 25 39 45 47 57 61

Solution: If the two insulin types have the same effect, the two regression straight
lines will not be significantly different. To test the agreement between the lines we
use the test criterion F (6.53). The statistical characteristics are:

Insulin A: Pa = 1.808(+3.504) + 0.1369(+0.0103)x
RSC, = 159.6
& =4211

Insulin B: 95 = —18.67(%3.535) + 0.1688(+0.0105)x
RSCy = 74.25
& =326

Insulin A + B: 5.5 = —6.397(+4.45) + 0.1481(+0.0132)x
RSC, .5 = 8211

Then from Eq. (6.53) we find:

_ (8211 — 159.6 — 74.25)(20 — 4)

Fe= (159.6 + 74.25) x 2 = 467.73

which is a greater value than the quantile of the Fischer—Snedecor F-distribution
Fy.95(2, 16) = 3.63, so that the null hypothesis Hy is rejected. From Fig. 6.19 it is
evident that, although the straight lines have similar slopes, they differ in intercept.
Conclusion: The insulin samples have significantly different activity.

6.3.2.5 Acceptance test for a proposed linear model
Utts [7] has introduced a test of acceptance of a proposed linear regression model
f(x, B) = XB, based on a ratio of the residual sum of squares.

If the regression model f(x, B) is non-linear there exists a group of points n; to
which a linear model will fit, as shown in Fig. 6.20.

Let us denote by RSC, the residual sum of squares corresponding to a linear
regression of n; points, and by RSC the residual sum of squares corresponding to a
linear regression of all n points. Utts criterion for model acceptance is formulated as
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Fig. 6.19—(a) Regression straight line for insulin data A and B and (b) dependence of
residuals é on variable x. O—sample A, *-sample B.

y

Fig. 6.20—Principle of the Utts test.

F o (RSC — RSC,) x (ny — m)
L RSC, x (n—ny)

(6.55)

which for the hypothesis Hq: “the linear regression model is valid” has the Fisher—
Snedecor F-distribution with (n — n,) and (n, — m) degrees of freedom. Utts recom-
mends choosing n; & n/2 and selecting the points that give the smallest values of the
diagonal elements H; = x7(XTX)~ !x; of the projection matrix H. Such selected points
lie close to the centre of gravity of the controllable independent variables. If the
calculated F, is smaller than the corresponding quantile of F-distribution, the linear
regression model can be accepted.

Another group of tests of acceptance of a proposed regression model [7] is based
on an application of extended regression model. The proposed linear model is usually

L
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extended to include higher powers of the independent variables and eventually also
their interactions. If original linear model was correct, the parameters for higher
members of the new model will be statistically insignificant.

For a model of a regression straight line, the assumption of linearity may be
checked by a test of significance of parameter f, in an extended model

E(y/x) = B1x + B2x* + B3 (6.55a)

Here, the t-test could be used, but as any multicollinearity would change the results
of the t-test, the Fisher—Snedecor F-test is applied. Let RSCq, be the residual sum of
squares for a quadratic model and RSC, the residual sum of squares for a linear
model. The test criterion of linearity will have the form

_ (RSC, — RSCo)(n — 3)

RSCq x 1 (6.6

Fy

If the null hypothesis Hy: 8, = 0is valid, the F; criterion has the Fisher—Snedecor
F-distribution with 1 and (n — 3) degrees of freedom. The statistic \/ F; has the
Student distribution with (n — 3) degrees of freedom.

Instead of the various test criteria for testing linearity, the statistical characteristics
for comparison of different models may also be used. One of these is the mean
quadratic error of prediction defined by:

M=

(i — "‘:T'-"(i))2

MEP = _1__n_ (6.57a)

where by;, is the estimate of regression parameters when all points except the ith one
were used and x; is ith row of matrix X. The statistic MEP uses a prediction §p;
from an estimate constructed without including the ith point. Another mathematical
expression for MEP is:

42

n &
MEP = —_—t 6.57
,'=Zl (1 - H,~,-)2n ( > b)

For large sample sizes n the element H;; tends to zero (H; ~ 0) and then

MEP = RSC/n (6.57¢)

If MEP is used instead of RSC in the equation for the determination coefficient
(6.38), the resulting statistic RZ is called the predicted determination coefficient

n x MEP (6.58)

=l
S yt—nxy

Another statistical characteristic has quite general use and is derived from
information theory and entropy [12] and known as the Akaike information criterion,
AlIC
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AIC=n ln<£§£) + 2m (6.59)

The most suitable model is the one which gives the lowest value of the Akaike
information criterion.

Problem 6.16. Selection from three polynomial models

For the data from Problem 6.9, do a regression analysis, and test whether the data
sample should be fitted by a polynomial of the third or fifth degree.

Data: Problem 6.9

Solution: Table 6.3 lists the statistical characteristics MEP, R2, R? and AIC for the
hypotheses that the regression model is expressed by a polynomial of the second,
third and fifth degree.

Table 6.3. Selection of best model according to the
statistics MEP, R, R* and AIC

Polynomial

degree MEP R2 R? AIC
2 03502 09905  0.9915 —21.65
3 0.0283 09992  0.9992 —56.02
5 0.0613 09985  0.9997 —55.04

Because of the good precision of the experimental data, the statistics MEP and R3
do not indicate that the polynomial of third degree is the most suitable. Only statistic
AIC indicates that the best model is the polynomial of third degree:

o = 860.2(+85.17) — 5.057(+0.485)x
+ 0.00977(+0.00092)x2 — 6.146 x 107 5(+5.78 x 10~ ")x>

and estimates of all three parameters are statistically significant. In the case of the
polynomial of fifth degree, all the parameter estimates except B; are statistically
insignificant, as a consequence of multicollinearity.

Figure 6.21 shows the curve fitting of the data by a polynomial of the second degree
and Fig. 6.22 by a polynomial of the third degree. The numerical statistics R? and
R3 are not able to distinguish between these two polynomials, but the graphical analy-
sis of residuals is a more efficient tool for deciding among several plausible models.
Conclusion: There are cases when statistical characteristics fail, and graphical
examination of residuals gives more satisfactory results for model specification.

Problem 6.17. Examination of linearity of four samples of test data

Examine the linearity of the four data samples from Problem 6.8. These four samples
have the same values of statistical characteristics, but only sample A may be
considered as an acceptable straight line.

Data: Problem 6.8

Solution: To test the linearity of the data, the linear model E(y/x) = f;x + f, is
compared with the quadratic model E(y/x) = f,x + B,x* + B3. The table on p. 43
lists the statistical characteristics RSC, MEP, R%, AIC, T, for a test of Hy: B, =0
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Fig. 6.21—(a) Curve fitting of data from Problem 6.9 by a polynomial of the second degree,
and (b) graphical examination of residuals.
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Fig. 6.22—(a) Curve fitting of data from Problem 6.9 by a polynomial of the third degree,
and (b) graphical examination of residuals.

in the quadratic model and F . Nonlinearity is clearly indicated by F; and by AIC.
MEP and R? show that there is an improvement of fit with the use of quadratic
model for sample B, which exhibits a nonlinear curve.

Proposed linear model Proposed quadratic model Tests
RSC MEP R: AIC RSC MEP R AIC T, F
A 1376 1.871 0.708 6.46 129 1.955 0976 31.74 0.72* 0.53*
B 1376 2204 0642 646 223x107° 311 x107¢ 1 —114 2219 49 x10!
C 13.76 2147 0.653 6.46 13.0 3.107 0.961 31.82 0.68* 0.467*
D 13.76 9 x 10°° 0.767 6.46 13.8 9x10°° - 3243 4 0*
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Conclusion: For examination of linearity, the F test criterion for comparing the
linear with the quadratic model seems to be the most reliable. Other statistical
characteristics, i.e. AIC, MEP and R, can be used, but the rejection of the nonlinearity
assumption does not lead to automatic acceptance of the linear model (see samples
C and D).

There are many criteria for examination of linearity in regression models. Suitability
of a proposed model can be easily checked if information about the measurement
variance or the errors variance, ¢, is available. When a proposed model is correct,
RSC will be approximately equal to (n — m)o?. When the model is incorrect, the
residual sum of squares RSC can be decomposed into the sum of squares SSE
corresponding to “pure” errors and the sum of squares SSL corresponding to the
poor choice of model, the so-called lack of fit:

RSC = SSE + SSL (6.59a)

To estimate a variance o2 that is independent of a proposed linear regression
model, the method of repeated measurements can be used. At M different values of

vector X;, i = 1, ..., M, there are always n; repeated measurements y;;, i=1,..., M,
j=1,..., n;. The regression model is then expressed by
yu = Z ﬂkxik + sija j= 1» e I (660)
k=1

M
This model represents a linear regression model for n = Y, n; measurements. The

i=1
matrix X has dimension (n x m) and the vector y has dimension (n x 1). On
substitution into Eq. (6.11) the estimate b is obtained and the residual sum of squares
is:

RSC=y'y — b Xy = ) & (6.61)
i=1

An independent estimate of the sum of squares due to pure errors SSE is calculated
from

SSE= S 3 0y — 5 (662)

i=1j=1

where 7; = [Z ¥ij]/n; is the arithmetric mean of repeated y;; values for a given x;.

The sum of squares corresponding to the lack of fit is SSL= RSC — SSE. The
independent estimate of variance is here SSE/(n — M) and the mean value of SSLis
SSL/(M — m). The test criterion

(RSC — SSE)(n — M)

Fy= (6.63)

SSE(M — m)

has, for a correct model, the Fisher—Snedecor F-distribution with (M —m) and
(n — M) degrees of freedom. When Fn(F;_,(M — m,n — M), the proposed model is
correct and the sum of squares SSLis not significantly different from zero. The
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quantity SSE/(n — M) represents an unbiased estimate of the variance 62, whether
the proposed model is correct or not.

Problem 6.18. Examination of a kinetic model of recombination of the Bromocresol
Green anion

The kinetic cosntant has been determined for the recombination reaction of the anion
of Bromocresol Green (BCG) with a proton in a solution of glycerol and water [13].
For different concentrations x of BCG the reciprocal values of the relaxation times
Vij» i =1, ..., n were measured. The kinetic model

Yij = _kD+kR X xi+8ij

is proposed, where kp, is the kinetic constant of recombination, and kg is the kinetic
constant of dissociation. Determine the two kinetic constants and examine the
proposed model.

Data:n=24,n,=2,i=1,.. M M=12, m=2

x;[10"®moldm™3] 798 896 1037 1208 1681 2422 295
iz [10 sec™ 1] 044 036 037 043 079 08 1.04
Via [106 sec™ 1] 035 040 046 051 059 09 1.04

36.75 3769 6532 8732 1455
1.04 1.22 2.06 2.32 3.70
0.94 1.27 1.73 2.08 3.66

Solution: With the use of the least-squares method, the estimates kp = 0.232 (+0.033)
and kg = 0.0238 (+0.0006) were obtained (standard deviations in brackets). The
determination coefficient R?> = 0.987 and the test criterion Fp = 1616 (Eq. (6.39))
prove that the linear model is valid.

The residual sum of squares RSC = 0.285, the residual standard deviation
6 = 0.1139 and an independent estimate of sum of squares corresponding to pure
errors SSE (6.62) is for M = 12 and n; = 2 equal to SSE = 0.1274. The independent
estimate of the residual standard deviation is then 6; = \/0.1274/(24 — 12) = 0.103.
On substituting into Eq. (6.63), we find the test criterion is

_ (0.285 — 0.1274)(24 — 12)

0.1274(12 — 2) = 1484

Fy

As the quantile Fg45(10, 12) = 2.75 is greater than Fy, the proposed kinetic
model is correct and the residual sum of squares corresponding to lack of fit,
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Fig. 6.23—(a) Degree of fit of straight line for proposed kinetic model, and (b) graphical
examination of residuals.

SSL = 0.285 — 0.1274 = 0.1575 may be considered as insignificant. Figure 6.23 shows
the regression model with the 95% confidence interval.
Conclusion: When replicate results are available, it is relatively easy to test the validity
of a regression model.

When replicate measurements for all i are not available, the data may be divided
into groups of approximately the same x values [14].

6.3.3 Comparison of regression lines
Often in chemometrics we need to compare M proposed regression models

Vij=Baj+ Bixijte; j=L....M (6.64)
i=1,...,nj ’

for M groups of experimental data [(x;;, y;;), i=1,....,n),j=1 ..., M. Typical
examples are Lambert—Beer law calibration lines, i.e. the dependence of absorbance
on concentration at M different wavelengths. We want to know:

(a) if the regression lines have the same intercept;

(b) if the regression lines have the same slope;

(c) if the regression lines are identical.

The first step of the statistical analysis is always estimation of the parameters b, ;,
b,; and 67 for each set of data, individually, by the least-squares method.

The second step involves examination of homoscedasticity, ie. constancy of
variance 67, because testing hypotheses (a), (b) and (c) requires constant and identical
variance in all groups.

The Bartlett test for homoscedasticity is a commonly used test. In this test, we
compare M independent variance estimates &ﬁ, j=1, ..., M, with v; degrees of
freedom. The null hypothesis Hy: 63 = 62, j =1, ..., M, is tested. For models of a
regression straight line, the degrees of freedom are v; = n; — 2. We define:

i
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M
V=3 v; (6.65a)
j=1
M
Y. v % 6]
A2 _ J=1
62 = 7 (6.65Db)
and
M
Z vj—l _ V—l
_ i=1
L=1+ M =3 (6.66)

The test criterion of the Bartlett test of homoscedasticity is given by

M
Vx1ngd — Y v; x Iné?

_ j=1
B= 5 (6.67)

which, if the null hypothesis is valid, has the y2-distribution with (M — 1) degrees of
freedom. If B < y? _,(M — 1) [where y?_,(M — 1) is the 100(1 — «)% quantile of the
%2 distribution], the null hypothesis is accepted and the estimate of constant variance
o2 is called the pooled variance 62 (Eq. 6.65b). The Bartlett test, is, however, sensitive
to deviations of the residuals from normality.

To compare two groups of points, M = 2, the identity of two variances Hy: 67 = 03
may be tested by the test criterion

max(63, 63
2= #% (6.68)
min(67, 63)
which, if the null hypothesis is valid, has the Fisher—Snedecor F-distribution with
(n; —2) and (n, — 2) degrees of freedom when 67 > 63. Generally, the degrees of
freedom used in calculation of 62, i = 1, 2 are also used here.

6.3.3.1 Test for homogeneity of intercepts

When the null hypothesis Hy: f,; = f25 = ... = By; = ... = Bay = Bac is valid, the
pooled estimate of the overall intercept 8, as a weighted combination of the estimates
of the individual intercepts b,; may be obtained from

M

Y. Waj X by;
i=1

b2c =

M (6.69)
2 Waj
i=1

where the jth weight coefficient wy; corresponding to the estimate of the jth straight
line is given by
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Z (xij —
Wej = —— (6.70)
5

Mh

1

i
For testing the estimate of errors, variance o2 is calculated from the variance of
individual parameter estimates b,; around their weighted average b,. and from a
combination of the variability of all points around the regression line inside the
invididual data groups. The test criterion is
M
Z wg j(b2j — bae)* /(M — 1)
= (6.71)

> 3 e —2M)
j=1li=

where n = Z n;. When the null hypothesis Hy, is valid the test criterion F; has the

Flsher—Snedecor distribution with (M — 1) and (n — 2M) degrees of freedom. The
residuals ¢;; are calculated for the individual regression lines. We can write

¥ 3 ep= 3 RsC,
j=1i=1 j=1
where RSC; is the residual sum of squares for the jth group.

When F; < F, _,(M — 1, n — 2M), then all straight lines have, at significance level
o, the same intercept; and its estimate is given by Eq. (6.69). The variance of this
intercept is calculated from

%
n—2M

=
<

A2
R ‘
D(by) = 5 — ==

Y. Waj
j=1

The intercept estimate has an asymptotically normal distribution and represents
an unbiased estimate of parameter f,..

Mz
!

T

1

(6.72)

™Mk

ij
1

J

6.3.3.2 Test for homogeneity of slopes
The test of homogeneity of slopes is known as a test of parallelism of regression
straight lines. If the null hypothesis Hy: f1; = f1,=...=f1;=... = fipm = By 18
valid, the pooled estimate of overall (common) slope f,. as a weighted combination
of individual slope estimates b,; may be calculated from

M

, ws;b1;

b 1c = =

L (6.73)
X, Wsi

where
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nj
Wei= 3 (xi;— x)? (6.74)
i=1
As in the test for homogeneity of intercepts, a test criterion may be derived

M
Z wsj(byj — by /(M — 1)
Fg =11 e (6.75)
Y Y &/n—2M)
j=1i=1
which, when the null hypothesis is valid, has the Fisher—Snedecor F-distribution with
(M — 1) and (n — 2M) degrees of freedom. When Fg < F; _,(M — 1, n — 2M), all the
regression straight lines can, at significance level o, be considered as parallel. The
best estimate of overall slope is b, ., from Eq. (6.73), and its variance estimate may
be calculated from

f Z é3/(n — 2M)
Db, ) ===

M (6.76)
Ws;
j=1
When the null hypothesis H, is valid, the slope estimate b;., has a normal
distribution and represents an unbiased estimate of parameter ..

6.3.3.3 Test for coincidence of regression lines

The test for coincidence of regression lines Hy: B,; = B,¢, B1j, B1csj=1,...,Misa
combination of the two previous tests F; and Fg (Sections 6.3.3.1 and 6.3.3.2). The
test compares two residual sums of squares, RSCy with RSC.. RSCg was obtained
after fitting all M groups of data by a single common straight line with estimates b,k
and byx %Pd RSC is calculated from the individual groups of data separately,
RSCc = Y, RSC;. The test criterion is

j=1
F. - (RSCx — RSCe)/2M — 2)
AT RSCc/(n — 2M)

When the null hypothesis Hy, is valid, the test criterion F, has the Fisher—Snedecor
F-distribution with (2M —2) and (n—2M) degrees of freedom. When
Fo < F,_,[2M —2), (n — 2M)], then all regression straight lines may be considered
as identical, with slope b;x and intercept b,x. Individual groups of data are then
collected into a single common sample of size n. When the null hypothesis is not
accepted, it is usually possible to find subgroups of data which are homogeneous
enough.

(6.77)

Problem 6.19. Comparison of three methods for determination of gold

The classical method for determination of gold in jewellery alloys is rather tedious
and time-consuming. Three variants of the X-ray fluorescence (XRF) method for gold
have been proposed. Ten samples were measured by the classical method (values x)
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and the new methods (values y,, y, and y;). Test whether the results from the three
variants differ from one another and if these results are in agreement with those
measured by the classical method.

Data: M =4, n; = 10

i X V1 Y2 Y3
1 590 638 722 643
2 590 626 711 631
3590 640 699 643
4 593 589 635 592
5 627 602 648 605 ;
6 648 629 708 634
7 723 700 687 700
8 752 714 767 714 '
9 752 787 852 791
10 752 807 785  80.6

Solution: The parameter estimates b,;, b, ;, RSC; and the residual standard deviations
for all three variants of determination of gold are listed in Table 6.4. All three variants
have the same sample size n; = 10 and have a common x-axis. Therefore the weights
wg; and wg; are independent of the j value, so that:

10% (x; — %)?

=0.1124

=

=
<

I

- -
=

xi

1

and

10
ws;= Y (x; — %)* = 497.59
i=1

J

Before testing the agreement of residuals, the variances must be examined. On ‘
introducing numbers into Egs. (6.64)—(6.67), we find V = 24, 62 = 15.804, L= 1.0556
and B = 4.9087. As the quantile x3 45(2) = 5.99 is greater than B, the null hypothesis

about homoscedasticity is accepted. The variance for the second X-ray fluorescence
method is significantly greater than for the first and third one.

R Ot s A

Table 6.4. Regression analysis of gold determination
by three X-ray fluorescence methods.

Variant j b, by; RSC; d;
1 1087  1.01 9298  3.409
2 31.55 0.61 192.8 491
3 2.74 0.989 9344 3418

1+2+3 1179 0.871 540.4 4.393

:
E
£
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To test the homogeneity of intercepts, the pooled estimate of the intercept in Eq.
(6.69), b,. = 11.79, is calculated, and

3
RSC; = 379.22
j=1

=
The test criterion F; is calculated from Eq. (6.71):

_ 65.9692/2
"~ 379.22/24

Since the quantile F ¢5(2, 24) = 3.4 is greater than Fj, the three intercepts can be
considered to be identical and equal to the estimate b,, = 11.792 with variance
D(b,.) = 35.151 (Eq. (6.72)).

If the three methods are not systematically biased, the null hypothesis Hy: ,. = 0
should be valid. From Eq. (6.48), T, = 1.989 is smaller than the quantile £, ,5(8) = 2.3,
so the null hypothesis Hy is accepted, and all three variants do not lead to
systematically biased results.

To test the homogeneity of the slopes, the pooled estimate of the slope is calculated
(6.73), by, = 0.870, and from Eq. (6.75) the test criterion Fg = 1.596, which is a lower
value than the quantile F ¢5(2, 24) = 3.4. Therefore all slopes can be considered to
be identical and equal to b,. = 0.870 with variance [Eq. (6.76)] D(b,.) = 0.0079.

When all three variants of the XRF method (y,, y,, y3) give the same results as
the standard method (x), the null hypothesis Hq: ;. = 1 should be valid. From Eq.
(6.48), T, = 1.459, which is smaller than the quantile ¢, ¢;5(8) = 2.3, so the null
hypothesis is accepted and all results y,, y,, y; are identical with x.

In the test for identity of the three regression lines by Eq. (6.77), the test criterion

(5404 — 379.22)/4 555
AT 379.22/24 -

is smaller than the quantile F ¢5(4, 24) = 2.776, so all three XRF methods can be
considered to be identical.

To test the homoscedasticity of the three variants, three repetitive measurements
at x = 59.0 and x = 75.2 are used. Table 6.5 lists independent estimates of variance,
calculated from these repetitive measurements.

Fy = 2.088

Table 6.5. Variance estimates calculated from repeated measurements, and the
F-test criterion [Eq. (6.65)]

~2

. 5‘% &% (473 &2 62
Variant  (\_590)  (x=752) (othx) Fa=-1  F;="1
& 6%

1 0.573 2763 1.668 4.882 697

2 1323 20,06 10692 15.163 159

3 0.480 2.564 1,522 5341 767

The null hypothesis Hy: 6% = o2 is tested by the Fisher—Snedecor F-test, and Table
6.5 lists the F, values. The second null hypothesis Hy: 6% = of says that any jth
variance is the same as the variance of all measurements. When F, values are
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compared with the quantile F, ¢5(2, 2) = 19, the null hypothesis H,, (i.e. an assumption
about homoscedasticity) is accepted. When F; values are compared with the quantile
Fo 95(24,4) = 5.77, it may be concluded that the residual variances of the first and
the third variants are higher than the variance of measurement. The conclusion is
here affected by the fact that the replicate measurements were carried out only for
two different levels of x.

Conclusion: Examination of three XRF variants proved that they do not differ
significantly and lead to the same results as the standard method. The first variant
seems to be the most precise one.

6.4 NUMERICAL PROBLEMS IN THE COMPUTER CALCULATION OF
LINEAR REGRESSION

The determination of parameter estimates of a linear model [Eq. (6.11)] seems to be
a simple task. When subprograms for matrix operations are available in a package
of algorithms, the formal solution of Eq. (6.11) is quite easy. Some difficulties arise
when the matrix X"X appears to be singular, from the point of view of the machine
precision and the algorithm. In some cases, especially with polynomial models, the
parameter estimates may be without physical meaning. The regression curve goes
quite close to experimental points but oscillates among them (for polynomials of
higher degree) or is systematically shifted.

The reasons for numerical difficulties in the computer evaluation of parameter
estimates b are as follows:

(1) Neglect of the limited precision of computer in building the matrix XTX.

(2) Inconvenient procedures for matrix inversion or solving the set of linear
equations.

(3) Multicollinearity leading to the ill-conditioning of matrix X"X.

(4) Linear dependence of some columns of matrix X'X, leading to its non-
invertability because of a singularity.

Good linear-regression programs overcome these difficulties and always give
correct solutions. Among the most effective programs are algorithms which do not
build matrix X"X but instead solve the overdetermined set of n linear equations of
munknownsy = X.b. For example, the algorithm SVD (Singular value decomposition
[16]) works even on computer with poor data precision.

Problem 6.20. Examination of the quality of a regression algorithm (LS)

Many test examples are available for examining the quality and effectiveness of linear
regression algorithms. An example suitable for numerical control of quality of
regression programs comes from the linear model E(y/x) = f;x; + B2x,. Calculate
the estimates b, and b, by the least-squares method.

Data: The numerical constant ¢ in algorithms examination is selected such that the
condition & < 10~@* 172 js fulfilled, where d is the number of valid digits used in the
actual computer.

SS—

B

If
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! y Xy X3
1 1 1
2 ¢ € 0
3 26 0 £

Solution: (@) The analytical approach:

1+ ¢&? 1
Y _
XX—[ 1 1+52]

3+¢°
Ty —
xy‘[3+282]

According to Problem 6.1 the inversion matrix is determined as

- 1 1+ -1
XTX 1 _
(X°X) (1+82)2—1[—1 l+82]
and on substituting into Eq. (6.11), the estimates of the parameters are found to be
_ B+ +e?) 3427
T+ -1 1+ -1
__—G+ )  (1+e)3+2? )
2T+ -1 (1+eH-1

The estimates b; and b, do not depend on the magnitude of ¢, and moreover
RSC =0.

(b) The numerical approach, by computer: If the condition & < 10~“*1/2 i valid,

then 1 + &2 = 1. All elements of the matrix X"X will be ones, and its inversion will
be impossible because det(XTX) = 0. If the computer works with a precision of 11
digits, the choice of ¢ = 10~ will cause the computation to fail.

Conclusion: Because of limited precision of computers and possible ill-conditioning
of the normal equations XX, even simple tasks may cause numerical difficulties.

To make statistical analysis easier, most programs work with matrix X™X. To
avoid difficulties with large differences its centred or normalized version is used. The
variables are expressed as deviations from the arithmetic mean:

Xcij = Xij = X;

and

Yei=Yi— )

The resulting centred variables then form the elements of the matrix X¢ or the
vector yc. Centring all variables results in the intercept term cancelling out.
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The matrix (XEXc) ™! is a submatrix of (XTX)™!, so that after its inversion all
elements of matrix (X™X) ! may be calculated. These elements are necessary for the
statistical analysis. Then

T
XTX -1 _ [CO c _ ]
XX maxo)
If we define the averages vector Xp = (X, ..., X, _1)’, W€ may write
Co = ; - CTXP

and
¢ = (— xJXIX,) !

With normalized variables, the standard deviations 6(x;) and 6(y) are used. If we
introduce normalized variables

Zoo—— Xci
Yb(x)/n—1
Yci

4= _— =
6()/n—1

the matrix R = Z'Z is formally identical with the correlation matrix of controllable
variables and the vector r = ZTq formally contains the correlation coefficients of all
controllable variables with the response variable. In correlation models there are
real correlation coefficients. In the least-squares method, the parameter estimates
by = R !r are found, for which

by, = b, S
ey

The advantage of normalized variables is that the elements of matrix R are the
numbers in the interval from —1 to +1. A disadvantage is the possible distortion
of the calculated matrix R, e.g. by use of the “for pocket-calculator” modified
expression:

n n

Y x? —nx*  instead of Y (x; — %)

i=1 i=1
With the modified expression, the final result is the difference between two large
numbers, with a result close to zero. The limited precision of computer or calculator
can result in a sum of squares of residuals from the mean with a value that is zero
or even negative.

From many techniques of numerical solution of the least-squares problem, we

select here the following two cases:

(a) the method of orthogonal functions, which is simple and convenient for polynomial

g




Sec. 6.4] Numerical problems in the computer calculation of linear regression 55

models; and
(b) the method of rational ranks, used in the program CHEMSTAT. Another
algorithm is described by Lawson and Hanson [18].

6.4.1 The method of orthogonal functions
Orthogonal functions are frequently used because they result in considerable
simplification of the statistical analysis. For the linear regression model

B = 3 00 (6.78)

where f;(x) are any functions of the input variables x which do not contain regression
parameters. Equation (6.11) is used to estimate the parameters f. For this case, Eq.
(6.11) contains the matrix F of dimension (n x m) with elements f;(x;),j=1,..., m,
i=1,...,n, instead of matrix X. For further analysis it is convenient for the matrix
FTF to be diagonal. Therefore the scalar products of all pairs of columns of F must
be equal to zero. For F'F to be diagonal,

n e 0 for k #j
ZADXAO) Y px) por k= 679)
i=1

From Eq. (6.79) it follows that the diagonality of F'F may be achieved

(a) by the adjustment of values x; for a given function f, i = 1, ..., n. This is the
case in designed experiments;

(b) by the special choice of functions f; for given locations x;, i = 1, ..., n. That
is, the construction of orthogonal functions g;(x) from the original ones f;(x;).

Orthogonal functions are generated by use of the recurrent relation

g =fix+ Y Q;8.(x) (6.80)

L=j-1

The coefficients Q;;, may be found from the conditions of orthogonality. A set of j
linear equations is formed, and each equation contains just one unknown Q;, for
which:

_‘i fi(xi) x gr(x;)
QjL= i=1 (6.81)
glz,(xi)

M=

i=1

With the orthogonal functions g;(x) generated from the original ones f;(x) by Eqgs.
(6.80) and (6.81), the linear regression model may be expressed in the form

m

E(y/x) = 3, ¢;g;(x) (6.82)

j=1

Since g;(x) are orthogonal, the estimates of parameters c; may be obtained by straight
substitution into
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i gj(xi) X Vi

="t ————  j=1...m (6.83)
Z g}(xi)
i=1
The variances of the parameter estimates are given by
2
D)= (6.84)
_Z gi(x;)

Thus, when the orthogonal functions are known, the data evaluation for a linear
regression requires only substitution into simple expressions.

Problem 6.21. Examination of the quality of the orthogonal functions method
Estimate parameters f; and f, in Problem 6.20 by the method of orthogonal
functions.

Data: from Problem 6.20

Solution: The original functions are f,(x) = x,, f,(x) = x,. On substituting into Eq.
(6.80) we get

8g1(x) = x4

82(x) =x3 + Q1

g1(x) = x5 + Q1%

g2(x) = x3 + Q2181(%) = x5 + Q21X

For functions g,(x) and g,(x) to be orthogonal for the given values x;,i=1, ...,
n, their scalar product must be equal to zero, that is

Zn:l 81(x:)ga(x;) = i X1i(X2; + Q21%1;) =0

i=1

From this equation, the term Q,, is given by

- Z X1iX2i

2
X1i

Q21 =

M=

i=1

For the data in the problem

Z xlix2,-=1+0+0=1
i=1

x}i=1+¢

M=

1

i

and therefore

I
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-1

=11

Then, on substituting into Eq. (6.83), we have

n

Z X1iYi

¢, = i=1 _3+82
1= n -
2 1+ ¢?
X1i
i; !
and
y Xai — X1;/(1 + €3] x y;
c_,.g[’ ifll + 9] y_4+6ez+2£“_2
, = =

- 26
Doy — xp /(1 + 692 2H3e+e

M=|"

i=1

The regression model of type (6.82) then has the form
3+¢?
E(y/x) = 1_{_—828'1()6) + 2g,(x)

After substituting for g;(x) and g,(x), we obtain

3+ ¢ X,
E(y/x) = m?xl + 2<x2 - l-l-—82> = lxl + 2x2
Thus, the estimates of the parameters are b; = 1 and b, = 2.
Conclusion: The method of orthogonal functions can find estimates of parameters
for linear models. The quality of the parameter estimates achieved by computer is
determined by the precision of calculation of the individual orthogonal functions.

This example demonstrates that the application of orthogonal functions is quite
simple. The errors caused by limited computer precision accumulate according to
Eq. (6.80) and increase with the number of orthogonal functions m. The use of
orthogonal functions is nearly equivalent to the use of adequate methods for the
matrix inversion.

The advantage of orthogonal functions is that when some functions g.(x) are
omitted, the coefficients c; for the remaining functions g;(x) will be unchanged. The
method may be used to search for the optimum combination of polynomial terms
(degrees of polynomial model). The disadvantage of orthogonal functions is the rather
complicated manipulation. It is useful to know that all types of orthogonal polynomials
may be expressed by three-term recurrent expressions [19].

6.4.2 The method of rational ranks

To detect ill-conditioning of X'X or the R, the matrices are decomposed into
eigenvalues and eigenvectors. Since the matrix R is symmetrical it may be expressed
by eigenvalues 4, < 4, <... < 4, and corresponding eigenvectors P;, j=1,..., m,
in the form of the sum
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R= -i PP 685)
i=
The inverse matrix R™! may be expressed in the form
R = il A 'PPT (6.86)
i=
With the use of Eq. (6.86) Eq. (6.11) can be rewritten in the form
by= Y [4'PPTIr (687)
i=o

The covariance matrix of normalized estimates by may be rewritten in form
D(by) = 6% Y, A7 'P;PT (6.88)
j=o

In the case of the least-squares in Eqs. (6.86) and (6.88) the parameter w is set to
o = 1. From both equations it follows that when the eigenvalues 4; are small, the
estimates by and their variances are rather high. According to the magnitude of the
eigenvalues A;, regression problems can be divided into three groups:

(1) All eigenvalues are significantly higher than zero. The use of the least-squares
method does not cause any problems.

(2} Some eigenvalues are close to zero. This is a typical example of multicollinearity
when some common methods fail.

(3) Some eigenvalues are equal to zero. Then the matrix X"X or R is singular and
cannot be inverted.

The only way of avoiding difficulties with groups (2) and (3) is the use of the
method of rational ranks. Here, the terms (or parts of them) with small values of
eigenvalues 4; are neglected [20]. The criterion for omitting terms corresponding to
small eigenvalues has the form

2
J
where P is the chosen precision (usually 10~ °). The value @ determines the lower

limit from which, in Egs. (6.87) and (6.88), the summation is carried out.
Let us define

abs =P (6.89)

W

Aj
=1
m

4
=1

Jj

J

and

ry

Il
M=

PN

~
I
—
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When the condition

w
—=>P
E
is valid ie. the value w is not an integer, the summation is made from w — 1 and

the eigenvalue 4,_, is “weighted” by the factor

_ W—EP

u Aw

(6.90)

Therefore, the length of estimates |by|| with their variances may be continuously
decreased as a function of increasing precision P. However, it is followed by an
increase of the estimate bias and a decrease in the multiple correlation coefficient.
The bias of estimates is here caused by neglecting terms in Egs. (6.87) and (6.88) at
> 1.

It has been proposed [20] that the squared bias

hi(by) = [B — E(b)]?

achieved by the method of rational ranks is equal to

Wby) = ﬂa[ ) P,-P}} B (691)

The optimum magnitude of P may be determined by finding a minimum of the mean
quadratic error of prediction MEP, Eq. (6.57). In program VLR the user chooses the
value of precision P, or it takes the default value P = 10732,

Problem 6.22. Examination of the method of rational ranks

Determine the parameter estimates b, and b, for the data from problem 6.20 by the
method of rational ranks, with P =35 x 1072 and ¢ = 1074,

Data: from Problem 6.20

Solution: By decomposition of matrix X"X into eigenvalues and eigenvectors it is
found that

Ay = &2
and
Jy=2+¢°
and that
P = (—,/05,,/05)
Pl = (,/05, —,/05)
Because

by 10-8 _
- —50x10°°
T +4, 2+2x10°°8 X
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o = 1 and in Eq. (6.87) only the second term is used. Because the decomposition of
the matrix X'X (and not of R) was made the parameter estimates from Eq. (6.87) are
calculated

SR VR oA

B [1.5(2 +e)/2 + 32)] B 1.5]

TSR+ N2+ Y| LS
The fact was used here that X"y = [3 + &> 3 + 2¢*]". The parameter estimates
found differ from the true values f; = 1 and f, = 2, but the residual sum of squares
RSC = 0.5¢2 = 5 x 107 ? is rather small. By using the classical least-squares method,
and a computer working with precision of 7 valid digits the problem is not at all
solved. It is evident that, even with smaller values of ¢, these biased estimates remain
the same, and “numerical underflowing” may occur when &2 is smaller than the
computer precision.
Conclusion: The method of rational ranks enables biased parameter estimates to be
found, and for singular or ill-conditioned matrices X"X are more suitable than
estimates found by the least-squares method, which are always unbiased.

For the ill-conditioned matrix X™X, the biased parameter estimates are shorter
and smaller than least-squares estimates. They are “more precise” because they have
smaller parameter variances. Moreover, these estimates exist even for a singular XX
matrix, when the least-squares method always fails.

Problem 6.23. Approximation of a convex increasing function by a polynomial

Many problems in chemometrics concern approximation of instrumental data of

convex (or concave) increasing (or decreasing) values by a polynomial of any degree,

so that the polynomial represents the shape of a data curve. Use the method of

rational ranks for approximation of convex incregsing data. For approximation,

choose a polynomial of the sixth degree E(y/x) = Y. b;x’ + b,. Calculate the value
j=1

of the dependent variable y, at the origin i.e. parameter estimate .

Data: n =10

X 25 35 45 55 65 75 85 95 105 115
y 150 160 170 190 210 230 270 310 370 450

Solution: Table 6.6 lists parameter estimates found by the classical least-squares
method (LS), with P = 10"3°, and by the method of rational ranks (RV), with
P = 3.5 x 10~* for which the statistic MEP was smallest.

Figure 6.24a shows the regression model, with the 95% confidence interval for the
LS method and Fig. 6.24b the regression model for the RV method, for P = 3.5 x 10™%.
From the figures and Table 6.6 it is evident that the parameter estimates for the LS
method do not match the data very well.
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Table 6.6. The parameter estimates for different P values

Method 14 MEP b, by b, bs
LS 1073 160.8 195.5 —-592 0258 —49 x 1073
RV 35x 1074 8.59 134.7 035  0.0092 32x 1073
b4 b5 b6

533 x 1073 —-29x1077 698 x 10710
—-53x1078 39 x107° 45 x 107!

500.0 500.0
y y
300.0 300.0
100.0 100.0 —=
0.0 60.0 x 120.0 0.0 60.0 . 1200

Fig. 6.24—The curve fitting of the model proposed, with the 95% confidence interval and
the experimental data: (a) by the LS method (P = 10739, and (b) by the RV method
(P=35x107%.

The estimate of parameter f, is larger than the value of y,, so the proposed model
equation has a minimum between the origin and the point (x;, y,). The confidence
intervals are rather broad, and do not permit prediction of y outside the measurement
interval.

The estimates determined by the rational ranks method are biased. The parameter

b, is, however, smaller than y, and the confidence intervals show some possibility of
prediction, even outside the measurement interval. As the polynomial degree was
known and had physical meaning, no corrections based on the statistical analysis
will be attempted.
Conclusion: The method of rational ranks allows us to find parameter estimates
which give a curve shape corresponding to the data trend, with no extra extremes
or inflections. With classical LS, such problems can be solved only with the
introduction of some restrictions on parameters. Moreover, it is found that, for
practical purposes, the biased estimates are not unsatisfactory.
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6.5 REGRESSION DIAGNOSTICS

In linear and nonlinear regression analysis, the method of least-squares is often used.
This method, however, does not ensure that the model is fully acceptable from
statistical and physical point of view. A source of problems may be found in
components of a regression triplet [data, model and method of estimation]. The
least-squares method provides accurate estimates only when all assumptions about
data and about a regression model are fulfilled. When some assumptions are not
fulfilled, the least-squares method is inconvenient. Regression diagnostics represent
the procedures for identification of

(a) the data quality for a proposed model,
(b) the model quality for a given set of data, and
(c) fulfilment of all least-squares assumptions.

In the literature [21] the term regression diagnostics refers to methods for
identification of influential points and multicollinearity. Atkinson [22] also includes
as part of regression diagnostics, methods for proposing an actual regression model,
perhaps with use of transformation of variable(s). Weisberg [23] includes as regression
diagnostics

(1) the examination of all assumptions for parameter estimation,
(2) the statistical analysis of parameters, i.e. testing of the model
(3) the identification of influential points, i.e. critical examination of data.

In this book we understand by regression diagnostics

(1) methods of exploratory data analysis of individual variables (Chapter 2),

(2) methods for analysis of influential points and

(3) methods for identification of violations of the conditions for least-squares
(Section 6.2).

The main difference between the use of regression diagnostics and classical statistical
tests is that there is no necessity for an alternative hypothesis, but all types of
deviations from an ideal regression triplet are discovered. Our concept of exploratory
regression analysis is based on the fact that “the computer user knows more about
the data than the computer”. The personal computer serves us as an efficient tool
for interactive diagnosis of data, model, and estimation method. The procedure of
model building with the help of a personal computer involves interactive co-operation
between the user and the computer program. Therefore, formal models that do not
have physical meaning should not be proposed and analysed.

6.5.1 Exploratory regression analysis
Methods of exploratory data analysis have been described in Chapter 2. In exploratory
regression analysis we will use these methods for (a) determination of statistical
peculiarities of individual variables or residuals, (b) examination of assumptions
regarding the distribution of variables and residuals.

In some cases, simply plotting the measured variable y; against an index i may
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uncover a latent variable, often related to time or order of measurement [25].

The first view into the relationship between individual variables comes from an
x—y scatter plot of y against x. Some information about multicollinearity can be
obtained by plotting pairs of controllable variables, x; against x;, j # k. An
approximately linear dependence indicates strong multicollinearity. However, a plot
of the response y against variable x;, j = 1, ..., m, may suggest nonlinearity of a
model which is, in fact, of linear nature.

Problem 6.24. Danger of false conclusions from inappropriate application of the
scatter plot

Draw the scatter plot of response y against variable x, and y against x, for a linear
regression model y; = 10 — 6x; + 0.5x,;,i = 1,..., 10. Choose values of independent
variable x,; = i — 5 and x,; = x?,. Draw conclusions from these two plots.

46.20 | (a) 46.20 (b)
1 1
y y
2 2
3 3
18.98 18.98 .
5 S
8 8
,
8 8
—8.25 . v _g2s - 2
—4.40 055  x, 5.50 0.0 1375, 27.50

Fig. 6.25—The scatter plots for (a) response y as a function of variable x,, and (b) response
y as a function of x,.

Solution: Figure 6.25 shows two scatter plots indicating quite strong nonlinearity.
This could lead to a hypothesis that y is a nonlinear function of variables x; and x,.
The apparent nonlinear nature is caused by a particular choice of controllable values
X,; and by quite strong multicollinearity between the independent variables x, and x,.
Conclusion: For multivariate cases, scatter plots of y against x; often are not helpful
in identification of the regression model type.

Data normality is examined by the quantile—quantile (Q—Q) plot (Chapter 2). The
principle methods of exploratory regression analysis include the determination of
data range, data variability and the presence of outliers. All the graphical diagnostic
tools described in Chapter 2 may be applied here. The EDA techniques allow
identification of situations where

(1) the range of measured data is too restricted,
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(2) the proposed model is false because there are some latent variables,

(3) multicollinearity exists,

(4) data do not have the normal distribution when the controllable variables are
random numbers.

6.5.2 Examination of data quality

Data quality has a strong influence on any proposed regression model. Examination
of data quality involves detection of the influential points (IP), which cause many
problems in regression analysis by shifting the parameter estimates or increasing the
variance of the parameters. Influential points may be classified into three groups:

(a) Gross errors, caused by outliers in the measured variable or by the leverage
points (extremes in the controllable variables).

{(b) Golden points are special chosen points which have been very precisely measured
to extend the prediction capability of model.

(c) Latently influential points are the consequence of a poor regression model.

Influential points may instead be classified according to data location:

(a) Outliers differ from the other points in value on the y-axis;
(b) Leverage points differ from the other points in values on the x-axis or in a
combination of these quantities (in the case of multicollinearity).

There are also points, however, which are outliers and leverage points together.
Outliers are identified by examination of the residuals. Leverage points are found
from the diagonal elements H;; of the projection hat matrix.

6.5.2.1 Statistical analysis of residuals

(1) Classical residuals
Residuals é; are defined by the expression

&=y —xb

where x; is the ith row of matrix X. Classical analysis is based on the assumption
that residuals are estimates of errors ¢;. With the use of residuals the properties of
errors are examined. This assumption, however, is not quite correct and can sometimes
lead to false results. The false assumptions about residuals include the following:

(a) the distribution of residuals is the same as the error distribution and the
statistical properties of the residuals are identical with those of the errors, and

(b) if the residual value is large, a large effect is caused by the corresponding point,
so the point should be excluded from the data.

A

Let us note the differences between errors ¢ and residuals é;. The geometric
illustration (Fig. 6.2) shows that the residuals é; are not independent even when the
errors g; are independent. The residuals é; are a projection of vector y into a subspace
of dimension (n — m). By using projection matrix P we can write
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¢=Py=PXp +2 =Pe=(E— H)e (6.92)

To rearrange Eq. (6.92), we use the fact the vector Xp lies in the plane perpendicular
to the projection plane, so that a zero vector results. For the ith residual

é=0—-Hyy; — Z Hijyj = (1 — Hy)g — Z Hje; (6.93)
J#i Jj#i
Each residual ¢; is a linear combination of all errors ¢;. The distribution of residuals
depends on

(a) the error distribution,
(b) the elements of the projection matrix H,
(c) the sample size n.

Because the residual é; represents a sum of random quantities with bounded
variance, the supernormality effect appears for small sample sizes. Even when the
errors ¢ do not have a normal distribution, the distribution of residuals is close to
normal. In small samples, the elements of the projection matrix H are large and the
main role of an actual point is to influence the sum of terms H;;¢;. The distribution
of this sum is closer to a normal one than the distribution of errors ¢. For large
sample sizes, where 1/n ~ 0, we find that é; ~ ¢; and analysis of the residual distribution
gives direct information about the distribution of errors.

Equation (6.18) may be used to calculate the residual variance

D(;) = (1 — H;)é? (6.94)

The variance of residuals D(¢;) is not constant even when the variance of errors is
constant. According to Eq. (6.18), the paired correlation coefficient r;; between two
residuals ¢; and e; is given by
= —Hy (6.95)
S = Hy) (1 — Hy)
which shows that residuals are correlated even when errors ¢; and ¢; are independent.
For strong leverage points (extremes), the diagonal elements H;; - 1 while non-
diagonal elements H;; = 0. From Eq. (6.93), it may be concluded that an equation
é; = 0 is valid, whatever the magnitude of y;. The residuals do not always indicate
correctly some strongly deviant values.
When a regression analysis is carried out by the least-squares method, for a model
with an intercept term it is true that

r,-j

n
¢

=1 _
n

which corresponds to saying that the mean value of errors is equal to zero, E(¢) = 0.
Classical residuals are always associated with non-constant variance; they sum to
be more normal and may not indicate strongly deviant points. The common practice
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of chemometrics programs for statistical analysis of residuals is to use for examination
some statistical characteristics of residuals such as the mean, the variance, the
skewness and the kurtosis.

It should be particularly noted that in the case of small sample sizes the estimates
of skewness and kurtosis are rather distorted and cannot reliably indicate the
correctness of a proposed model.

Problem 6.25. Inappropriate application of some simple statistics for residual
analysis

To illustrate the overestimated approach to examination of the reliability of parameter
estimates, the following residual statistics are calculated: the mean of absolute values
of residuals |¢|, the estimate of the standard deviation of residuals (), the estimate
of residual skewness g,(é), the estimate of residual kurtosis g,(é). Calculate these
statistics for the four data samples from Problem 6.8.

Data: from Problem 6.8

Solution: The numerical values of some statistical characteristics for the four data
samples from Problem 6.8 are listed in Table 6.7.

Table 6.7. Statistical characteristics for the four data samples
of Problem 6.8

Sample et G (é) £.(8) £:(8) L@

A 0.837 1.237 0.13 224 0.29
B 0.967 1.237 0.63 1.94 1.25
C 0.716 1.237 —2.28 6.57 15.39
D 0.903 1.237 —-0.011 1.93 0.52

The last column of Table 6.7 lists values of the criterion of the Jarque—Berra test,
which combines both skewness and kurtosis (Section 6.54). When
L(é) > x3_.(2) = 5.99, the normality of the data distribution is not proved.

From Table 6.7 it is evident that the statistics |e| and ¢(é) do not indicate the model
quality. Only sample C, which has one strong outlier, exhibits significant deviation
in skewness and kurtosis, and the Jarque—Berra test does not prove the normality
of the sample distribution. Neither the nonlinear dependence (sample B) nor the
spurious data with one strong outlier (sample D) are correctly detected by the four
statistics of residuals.

Conclusion: The statistical characteristics |e|, 6(¢), £,(é), £,(é) often do not give a
correct indication of the quality of a model.

(2) Normalized residuals
In chemometrics the normalized residuals éy; defined by

are often recommended. It is often assumed that these residuals are normally
distributed quantities with zero mean and variance equal to 1, éy; ~ N(0, 1). When
normalized residuals are used, the rule of 3¢ is classically recommended: quantities

ﬁ



Sec. 6.5] Regression diagnostics 67

with éy; of magnitude greater than + 3¢ are classified as the outliers. For a normal
distribution, only 0.3% of all values lie outside the interval x + 36. Such assumptions
about normalized residuals are misleading.

From Eq. (6.94) it is obvious that the variance D(éy;) = (1 — H};) is not constant,
and also not equal to one. For strong leverage points, é; ~ 0, so application of + 3¢
rule could lead to exclusion of correct points but retention of erroneous values.

Problem 6.26. Inappropriate application of normalized residuals for identification of
influential points

For a dependence y; = x2,i = 1,..., 12, the data contain one gross error, the number
X1, is replaced by y;,. Estimate parameters and with the use of normalized residuals
try to locate the false leverage point 12.

Data:

2 4 5 6 7 8 9 10 11 12
x; 1 2 3 4 5 6 7 8 9 10 11 144
4 6 25 36 49 64 81 100 121 12

Solution: By the least-squares method for the model E(y/x) = f,x2, the parameter
estimate was found b; = 0.000671. Point 12 has éy;, = —0.03 and point 1 has the
highest value, éy; = 1.94. With the use of the standardized residual, Eq. (6.96), the
maximum for the 12th point was indicated, ég,, = —3.16.

Conclusion: Normalized residuals are not able to indicate leverage points. Such
points may be discovered, for example, by standardized residuals.

(3) Standardized residuals
The standardized residuals ég;, defined by

s é
S 1-H,

exhibit constant variance. The statistical properties of standardized residuals are the
same as those of classical residuals. Standardized residuals are, apart from the
multiplicative constant 1/,/n — m, equal to cosine §; the angle between the vector &
and the vector i* (which is the projection of the ith column of matrix E onto hyperplane
L) so that

(6.96)

éSi
~h—m

The maximum value of é; is bounded by _/n — m. The variable é3,/(n — m) has the
beta distribution Be [0.5, (n — m — 1)/2].

cos §; =

(4) Jack-knife residuals
If, in Eq. (6.96), instead of the standard deviation we use the estimate of standard
deviation 6_;, obtained by leaving out the ith point, we obtain the Jack-knife or fully
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studentized residuals éy;,

-m-—1
ey = éSi n—rn___;? = /n—mxX Cotg 0,’ (6-97)
n—m—ég;
which, with an assumption of normality of errors, have the Student distribution with
(n — m — 1) degrees of freedom. Jack-knife residuals correspond to the criterion of a
t-test of the null hypothesis Ho: C = 0 in the model of a simple shift

y=XB+Ci+e (6.98)

where i is the identity vector with the ith element equal to one and other elements
equal to zero. The model [Eq. (6.98)] expresses the case of an outlier where C is
directly equal to the value of deviation, but also the case of a leverage point C = d}p
where d; is the vector of the deviation of the individual x-components of the ith point.
Jack-knife residuals are often used instead of classical residuals é; for identification
of outliers. In the case of leverage points, these residuals do not give a reliable
indication.

(5) Predicted residuals
The estimate of parameter C in Eq. (6.98) is represented by the predicted residuals

A

€

= (6.99)

épi = yi — Xiby =
where b, is a vector of the parameter estimates obtained by the least-squares method

with the ith point omitted. Predicted residuals sensitively monitor the magnitude of
shift C.

(6) Recursive residuals

All the residuals already mentioned are correlated. To find uncorrelated residuals,
the recursive least-squares method can be used. The resulting recursive residuals are
very useful diagnostically as they allow identification of any instability in a model,
for example, instability in time. Recursive residuals are defined

éRi=09 i= 1,...,m (6.1003)
ons (e — Xibi-1) i=m+1,...,n (6.100b)

- \/1 + x;(XT- 1xi—1)-1x}-,

where b;_, are estimates obtained from the first (i — 1) points. The matrix X;_,
contains the first (i — 1) rows of matrix X. These recursive residuals are independent
and have constant variance. They are often used in normality tests or in tests of
stability of regression coefficients.

Problem 6.27. Identification of influential points by various types of residuals
The outlier in sample C and the leverage point in sample D from Problem 6.8 can
be identified by use of some types of residuals.
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Data: from Problem 6.8

Solution: The classical residuals é;, standardized residuals é5; and Jack-knife residuals
éy; are used to detect the outlier in sample C (x; = 13, y; = 12.74) and one leverage
point (xg = 19, yg = 12.5). The results are shown in Table 6.8. The outlier in sample
C is most effectively detected by its Jack-knife residual. The leverage point (8 in
sample D) is not detected by any residual.

Table 6.8. Various types of residuals for samples C and D

Sample i X; Vi é; és; éy
C 3 13 12.74 324 3 1203.54
D 8 19 12.5 0 0 0

Conclusion: Neither standardized nor Jack-knife residuals are always suitable for
identification of influential points.

The various types of residuals differ in suitability for diagnostic purposes.

(1) The standardized residuals é; serve for identification of heteroscedasticity.

(2) The Jack-knife residuals é;; or the predicted residuals ép; are suitable for
identification of outliers.

(3) Recursive residuals ég; are used for identification of autocorrelation.

For analysis of residuals a variety of plots are used. Three principal types of plots
can indicate inaccuracy of a proposed model, some trends, heteroscedasticity or
influential points in data.

Plot type I (the index sequence plot) is a plot of residuals é; against the index i.

Plot type 11 (the plot against the independent variables) is a plot of residuals é; vs.
the independent variable x;.

Plot type 111 (the plot against the prediction) is represented by a plot of residuals
é; against the predicted value p;.

Figure 6.26 shows possible graph shapes which can occur in plots of residuals. If
the graph shape is a random pattern (Fig. 6.26a), the least-squares assumption is
correct. Some systematic pattern indicates that the approach is incorrect in some
way. A sector pattern in graph types I, IT and III indicates heteroscedasticity in data
(Fig. 6.26b). A band pattern in graph types I and II indicates some error in calculation
or absence of x; in model (type II). The band pattern may be also caused by outlying
points or in type III by a missing intercept term in the regression model.

It should be noted that the plot of é; against the dependent variable y; is not
recommended, because the two quantities are strongly correlated. The smaller the
correlation coefficient, the more linear is this plot.

A nonlinear pattern in all three graph types I, II and III indicates that the model
proposed is incorrect.

6.5.2.2 Analysis of projection matrix elements
Analysis of elements of the projection hat matrix plays an important role in regression
diagnostics because the diagonal elements of this matrix

H; = x;,(X"X) " 'x]
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Fig. 6.26—Possible shapes of residual plots: (a) random pattern shape, (b) sector pattern
shape, (c) band shape, (d) nonlinear curved band shape.

indicate the presence of leverage points which are not detected by analysis of residuals.
Diagonal elements (denoted in literature as “leverage”) have some properties which
come from the symmetry and idempotency of matrix H. Among the properties of
matrix H are:

(1) The condition for the diagonal elements of a projection matrix is 0 < H; <1
and for nondiagonal elements —1 < H;; < 1. When a model also contains an
intercept term and the rank of matrix X is m, another condition for diagonal
elements is valid, 1/n < H; < 1/c, where C is the number of replicate measure-

ments at each value of the controllable variable.
(2) For a model with an intercept term and the full rank of matrix, X:
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The mean value of the diagonal element is H;; = m/n.
From the idempotency of matrix H it follows that

n n
j=

Jj#Fi
From this equation two important properties of diagonal elements H;; follow:

(a) If the diagonal elements are close to zero, H;; — 0, all nondiagonal elements
are also close to zero, H;;—»0,forj=1,...,n;

(b) If the diagonal elements are close to 1, H;; — 1, all nondiagonal elements
are close to zero, H;; »0,forj=1,...,n

If the matrix X comes from the multivariate normal distribution, the quantity
F=(n—m)[H;— 1/n][(1 — Hy)(m — 1)]

has the Fisher—Snedecor distribution F(m — 1, n — m).

The larger the diagonal elements H;;, the more the ith point of prediction J; is
affected. If the H;; elements are close to 1 (H; — 1, and §; = y;) then all of the
variability in x; is explained by the regression model.

The diagonal elements H;; = §9;/dy; express the sensitivity of the prediction p;
to any change in variable y;. A zero value, H;; = 0, indicates a point which has
no influence on prediction.

The diagonal elements H;; are a nondecreasing function of the controllable
variables m, and a nonincreasing function of the number of points n.

The further point x; lies from the centre of gravity of all points, the more it is
likely to be a leverage point, and the more the value of diagonal elements H;;
will increase.

If the controllable variables x have the normal distribution, for large sample
sizes n (nH; — 1) has approximately the x2(2) distribution.

For more complex analysis, it is useful to form the extension of matrix X by a
vector y to give matrix X* = (X|y). This matrix corresponds to the projection matrix

ee’

H* = H+ & 6.101
t e (6.101)

Since the matrix H* contains information about all variables it can be used as the
total measure of influential points. Diagonal elements of this matrix are given by

52
Hf = H; + (n—_e"—l)? (6.102)
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To look at elements of the projection matrix, the index graph of H;; elements against
the index i is used.

Problem 6.28. Identification of influential points from elements of the projection
matrix

The outlying point in sample C and the leverage point in sample D from Problem
6.8 may be used to test the identification of influential points by elements H;; and
H*; of projection matrix H.

Data: from Problem 6.8

Solution: The calculated diagonal elements H; and H¥; of the projection matrix H
are listed in Table 6.9

Table 6.9. Elements of the projection matrix
H;; and the extended projection matrix H¥;
for samples C and D

Sample x; Vi Hy HY;
C 13 12.75 0.236 1
D 19 12.5 1 1

The diagonal elements of the extended projection matrix indicate a strong influential
point in both samples. The leverage point in sample D is indicated even by the
diagonal element H;; of the original projection matrix.

Conclusion: The diagonal elements of an extended projection matrix are useful for
detecting outlier and leverage points in data. The leverage point was not detected by
any type of residuals (Problem 6.27).

6.5.2.3 Plots for identification of influential points
For identification of different types of influential points, various types of residuals
are combined with the diagonal elements of the projection matrix H.

(1) Graph of predicted residuals (GPR)

(x—axis: the predicted residuals ép;; y-axis: the classical residuals é;)
This graph is one of the simplest graphs. The leverage points are easy detected by
their location as they lie outside the line y = x, and they are located quite far from
this line. The outliers are located on the line y = x but far from its central pattern
(Fig. 6.27).

(2) Williams graph (W G)

(x-axis: the diagonal elements H;; y-axis: the Jack-knife residuals éy;)
In this graph two boundary lines are drawn. The first line is for outliers,
y = tg.¢s(n —m — 1) and the second line is for leverage points, x = 2m/n (Fig. 6.28).
Denote that ty o5(n —m — 1) is the 95% quantile of the Student distribution with
(n — m — 1) degrees of freedom.
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Fig. 6.27—Graph of predicted residuals (GPR): E is a high leverage point and O is an
outlier.
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Fig. 6.28—Williams graph (WG): E is the leverage point and O is the outlier.

(3) Pregibon graph (PG)

(x-axis: the diagonal elements H;;, y-axis: the normalized residuals é%;)
Since the expression E(H;; + ég;) = (m + 1)/n is valid for this graph, two different
constraining lines can be drawn,

y=—x+2m+ 1)/n
and
y=—x+ 3m+ 1)/n
To distinguish among influential points the following rules are used:

(a) a point is strongly influential if it is located above the upper line;
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(b) a point is influential if it is located between the two lines. The influential point
can be either an outlier or a leverage point.

A2
€ N

H..

/

Fig. 6.29—Pregibon graph (PG): (E, O) are influential points, and s(E, O) are strongly
influential points.

(4) McCulloh and Meeter graph (MMG)

(x-axis: In [H;;/(m(1 — H;))]; y-axis: the standardized residuals és;)
In this plot the solid line drawn represents the locus of points with identical influence,
with slope — 1. The 90% confidence line is defined by

y=—x—1InFgyon —m,m)

The boundary line for leverage points is defined as
x =1n [2/(n — 2m)]

The boundary line for outliers is defined by
y=1In[(n—m) x (t§ os(n — m)]

where t, o5(n — m) is the 95% quantile of the Student distribution with (n —m — 1)
degrees of freedom.

(5) Index graph (IG)
(x-axis: the index i; y-axis: the residuals é;, é;, éx;, ép;, €5, ég;, or the diagonal
elements H;; or H%,, or estimates b;)
The x-axis always contains the order index i, but the y-axis can be a residual or the
diagonal elements of the projection matrix. Sometimes also the parameter estimates
b; are on this axis.

(6) Rankit graph (Q—Q plot)
(x-axis: the quantile of the standardized normal distribution up; y-axis: the
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Fig. 6.30—McCulloh and Meeter graph (MMG): E is a leverage point, O is an outlier and
(E, O) is an influential point.
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Fig. 6.31—Various types of index graph:
(a) é; vs. i, (b) éy; vs. i, (c) é; vs. i,

ordered residuals &, &5y, éncy> €ray> Ei)> Crey)

On the x-axis are quantiles of the standardized normal distribution up; for
P, =i/(n + 1) and on the y-axis the order statistics of the residuals, i.e. increasing
ordered values of various types of residuals.

Problem 6.29. Identification of influential points by graphical analysis of residuals
and examination of elements of projection matrix

Use a variety of methods of graphical analysis of residuals and elements of projection
matrix to identify influential points in the data from Problem 6.7. Compare the
efficiency of the various graphical tools for detecting outliers and leverage points.
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Fig. 6.31—Continued. (d) é; vs. i, () Hj; vs. i, (f) b; vs. i.
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Fig. 6.32—Possible variations of the rankit (Q-Q) graph of residuals.
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Fig. 6.33—Four types of rankit graph: (a) recursive residuals, (b) normalized residuals, (c)
Jack-knife residuals, and (d) predicted residuals.

Data: from Problem 6.7
Solution: Figure 6.33 shows four types of rankit graph and Fig. 6.34 shows four types
of index graph.

The graph of the third type of residuals é; against prediction p; indicates that the
model proposed is incorrect; some trends and heteroscedasticity in data are also seen
(Fig. 6.35).

For identification of influential points we can use the information from four graphs.

The graph of predicted residuals (GPR) on Fig. 6.36a discovers three outliers,
points 24, 20 and 18, which, although they lie on the axis y = x, are rather far from
other points.

The Williams graph (WG) on Fig. 6.36b also discovers three outliers, points 18,
20 and 24.
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Fig. 6.34—Four types of index graph: (a) recursive estimates of slope b,; (b) normalized
residuals, (c) elements of projection matrix, and (d) Jack-knife residuals.

26.40

The Pregibon graph (PG) in Fig. 6.36c shows two outlying points above the upper
limiting line, detecting that these two points are strongly influential. Point 20, lying
between the two parallel limiting lines, is the only influential point. This point can
be either an outlier or a leverage point.

The McCulloh and Meeter graph (MMG) in Fig. 6.36d includes the line with slope
— 1, connecting points which are of the same influence, and two boundary lines. This
plot also discovers three strongly influential points, 24, 20 and 18.
Conclusion: Graphical methods of analysis of residuals are rather simple and
illustrative. They enable quick identification of influential points, i.e. here points 18,
20 and 24. To distinguish between outliers and leverage points, some boundary lines

must be constructed.
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Fig. 6.35—Graph of type III, of classical residuals ¢; against prediction, ;.

6.5.2.4 Other characteristics of influential points

In the classification of influential points, it is important to remember that they can
affect the various regression characteristics differently. Points affecting the prediction
9;, for example, may not affect the parameter variance. The degree of influence of
individual points can be classified according to the characteristics that are affected.
For identification of influential points, there are many additional diagnostics which
may be divided according to two principal approaches.

The first is based on the examination of changes which occur when certain points
are omitted.

The second approach concerns the validity of the linear regression model (6.5b)
when the variance of errors is abnormal. For the ith error, the normal distribution
N(0, 6%/w;) is valid, but the other errors ¢;, j # i, have the normal distribution of
constant variance o, i.e. N(0, ¢%). The weight parameter lies in the interval 0 < w; < 1.
This second approach leads to the model of inflated variance.

For w; = 1 this assumption leads to the classical least-squares method. If we write
b(w;) for the parameter estimate calculated according to Eq. (6.5b) when the variance
of the ith error is just equal to 6%/w;, then the following expression is valid

(XTX)_lxi(l — w;)é;
I —(1—w)H;

b(1) — b(w;) = (6.103)
where x; is the ith row of matrix X which contains x components of the ith point.
For w; = 0, Eq. (6.103) leads to

b(1) = b(0) =b — b,

where b, is the estimate reached by the least-squares method by using all points
except the ith one. Leaving out the ith point is therefore the same as the case when
this point has unbounded infinite variance.

To express the sensitivity of parameter estimates to the perturbance parameter w;,
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Fig. 6.36—Graphs for identification of outliers and leverage points: (a) GPR, (b) WG, (¢)
PG, and (d) MMG.

the sensitivity function éb(w;)/éw; can be used.

5b(wi) _ (XTx)— 1xiéi Sa + (1 — W_ i)H_ii (6104)
ow; Sk

where s, = 1 — (1 — w;)H;;. The following types of sensitivity function of parameter
estimates are possible.

(1) The Jack-knife influence function
The sensitivity function of parameter estimates defined by Eq. (6.104) at the value
w; = 0, is given by
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M — T -1 éi _ JCl
Wi |y, =0 = (X"X) Xi(l “H)Y noi (6.105)

The term JC; is the Jack-knife influence function. It is related to the sensitivity
function of parameter estimates for the case when the ith point is omitted, because

b(O) = b(i)'

(2) The empirical influence function
The sensitivity function of parameter estimates [Eq. (6.104)] at the value of w = 1 is
given by

5b(W1) — (XTX)—lx_é_ — EC!
5Wi Wi = 1 it n—

(6.106)

The term EC; is the empirical influence function. It is related to the sensitivity
function of parameter estimates at the location of parameter estimates, b, by the
least-squares method.

(3) The sample influence function SC;
The sample influence function is proportional to the change in the vector of parameter
estimates when the ith point is left out. With the use of Eq. (6.103) we can write

A

€

T-H,

All three influence functions differ only in a single term (1 — H;;) so they are not
identically sensitive to the presence of leverage points, for which H;; — 1. The
disadvantage of all these influence functions is the fact that they are m-dimensional
vectors. Their components define the influence of the ith point on the estimate of the
jth parameter. Therefore, normalization of these vectors is used [26] to obtain scalar
measures corresponding to distances which express the relative influence of the given
point on all parameter estimates.

A popular scalar measure of the relative influence of the ith point on all parameter
estimates is the Cook distance D;. This is derived by normalization of the sample
influence function SC;. The resulting D; has the form

(b — b)) X™X(b —by) _ F—96)'C —90) _é:_ Ha
D= ()mxéz o= r;)xﬁz ()=7ns—x1—Hi,~ (6.108)

SC; = n(b — bg)) = n(X™X) " 'x (6.107)

The Cook distance is related to the confidence ellipsoid of the estimates, and it
also permits comparison with the quantiles of the Fisher—Snedecor F-distribution.
However, the shift of estimates appears here when the ith point is left out. It is
approximately true that when D; > 1, the shift is greater than the 50% confidence
region, so the relevant point is rather influential. Another interpretation of the Cook
distance D; is based on the Euclidean distance between the prediction vector ¥
estimated by the least-squares method and the prediction vector §; estimated by the
least-squares method when the ith point is left out. The Cook distance D; expresses
the influence of the ith point on the parameter estimate b only.
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When the ith point does not affect the parameter estimates b significantly, the
value of the Cook distance D; is low. Such a point, however, can strongly affect the
estimate of the residual variance 2.

The relative changes in the parameter estimates caused by leaving out the ith point
may be expressed by the standardized deviations of the jth estimate b; of that
parameter estimate by, ; which has been obtained by leaving out the ith point. The
corresponding diagnostic is defined by

DS; = bi = b (6.109)
OA.(i) Cii
where C;; is the diagonal element of matrix X"X. The influence of the ith point on
the estimate of the jth regression parameter is significant when DS > 2/\/ n.

Problem 6.30. The change in the estimate of the slope and intercept of a calibration
straight line, caused by an outlier

Determine the change of estimate value for the slope and intercept of the regression
straight line E(y/x) = ,(x — X) + B% in the presence of one outlier.

Solution: From Eq. (6.103) for w; = 0, the expression for the change in parameters
A =b; — b, is given by

by =be | i(xi—x)“2 0 X — x|,
A—|:b2—b(i)2:|_ |ii=l n-1 1 “

0
-1 _ (xi — %)
'21 (x; — %)

For the slope change A; = b; — b,
n x é;(x; — x)

(n =1y, (x;— D = nx; — 9

A1=

and for the intercept change A, = b% — b},
é

AZ = n
(n— l)z (xj - f)z —n(x; — >Z)2

From these expressions it may be concluded that for x; = x, A; = 0 regardless of
the magnitude y;. The slope of the regression straight line will not change whether
the point located at x; = x is an outlier or not. The estimate of the intercept will
change, however, in dependence on the magnitude of é;.

Conclusion: The points of a calibration straight line located on the x-axis far from
the mean x have the most significant effect on the slope. A point having a negligible
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effect on the slope may have a strong influence on the intercept estimate.

To express the sensitivity of distance measures to influential points, the Atkinson
distance A; is used

n—m
A =DF, 2= e,
i i m |e.h|x

which is also convenient for graphical interpretation. With designed experiments,
usually H; = m/n, and the Atkinson distance A; is numerically equal to the Jack-
knife residual é;;.

By normalizing the sample influence function and using the variance estimate o§;
obtained from estimates b, we obtain the characteristic DF; defined by

(6.110)

2 (i — f(i))z _ . Hy
DF?{ = X Hy 8y —H, (6.111)

The ith point is considered to be significantly influential when DF; > 2, /m/n. The
characteristic DF; was recommended by Belsey, Kuh and Welsch [21] as the basic
diagnostic characterizing the influence of individual points on prediction . The term
H;/(1 — H;) in Egs. (6.108)—(6.111) is equal to the ratio of variances D($;)/D(é;), and
gives a measure of the sensitivity of regression to the location of the ith point.

There are many regression diagnostics indicating influential points which are based
on the approach of leaving out the ith point. In addition to DS;; and DF;, several
other characteristics may be useful [26].

The Anders—Pregibon diagnostic AP; expresses the influence of the ith point on the
volume of the confidence ellipsoid

_ det (X&X¥)
det (X*TX*)

where X* = (X|y) is the matrix extended by the vector y. The diagnostic AP; is
related to the elements of the extended projection matrix H* by the expression

AP; (6.112)

AP;=1—H;— &;=1—H} (6.113)
A point is considered to be influential if:

To unify some of the expressions for identification of influential points, Cook and
Weisberg [24] have recommended the use of a general diagnostic called the likelihood
distance LD; defined by

LD; = 2[L() — L)) (6.114)

where L(0) is the maximum of the logarithm of the likelihood function when all
points are used and L(a(i)) is corresponding value when the ith point is omitted. The
parametric vector @ contains either the parameter b or the variance estimate 62. For
strongly influential points
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LD; > y}_,(m+1)
where x2_,(m + 1) is the quantile of the ¥? distribution.
With the use of different variants of LD, it is possible to examine the influence of
the ith point on the parameter estimates or on the variance estimate or on both [26].
(a) To examine the influence of individual points on the parameter estimates b
the likelihood distance LD;(b) is expressed by

LDﬂ»=nx1nP%§§ﬁ+1} (6.115)

where d; = é§;/(n — m)
(b) To examine the influence of individual points on the residual variance estimate,
the likelihood distance LD;(6?) has the form

di(n - 1)
1—d;
(c) To examine the influence of individual points on the parameters b and variance
62 together, the likelihood distance LD;(b, 62) has the form

meaznxm[ ]+nma_¢y+ -1 (6.116)

n—1

1 (6.117)

A2 —
LD,-(b,o-)—n><ln|:n_1

_ (n—1d;
} B T ATy
Investigation of the three variants of the likelihood distance leads to the following
conclusions [26].

(a) The diagnostic LD;(b) is a monotonic function of the Cook distance D; (6.108)
and has no advantage over the diagnostic D;.

(b) The diagnostic LD;(6%) does not depend on H;; and therefore it is not affected
by high leverage points.

(c) The diagnostic LD;(b, 6%) expresses the influence of individual points on b and
2. It is more useful than both diagnostics 4; and DF;, especially for models
without intercept [26]. It seems to be enough to examine just this diagnostic.
Generally the LD; measures are not quite universal, and for estimation of
influential points, many diagnostics must be combined.

Another test for influential points [27] is based on the influence of individual
points on the sum of mean quadratic errors of estimates, of the mean quadratic
errors of prediction and on the integral mean quadratic error of prediction. To test
the influence of the ith point on all these characteristics, the Jack-knife residual é);
may be used as test criterion. This is suitable either for models of simple shift, Eq.
(6.98), or models of inflated variance D(g;) = a2/w;.

When more points are examined simultaneously for the model of simple shift, the
validity of condition

6 < Fy_,m(l,n—m—1,0.5) (6.118)
means that no influential points are present in data. Here, F;_,,(1,n —m — 1,0.5)
means the 100(1 — a/n)% quantile of the non-central F-distribution with non-
centrality parameter 0.5 and 1, and (n — m — 1) degrees of freedom. For the model
of inflated variance, analogously the validity of the condition

E
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e <2x Fi_gu(l,n—m—1) (6.119)

means that influential points are absent. Here F;_,,(1,n —m — 1) means the
100(1 — a/n)% quantile of the central F-distribution with 1 and (n — m — 1) degrees
of freedom. On the basis of these two tests, an approximate rule may be formulated:
strongly influential points have squared Jack-knife residuals é3; greater than 10.

Problem 6.31. Comparison of various diagnostics for identification of influential points
For the outlier from sample C and for the high leverage point from sample D
(Problem 6.8) calculate the following five diagnostics: DF;, D;, LD;(b), LD;(6*) and
LD;(b, 6.

Data: from Problem 6.8.

Solution: The calculated diagnostics for identification of influential points are listed
in Table 6.10. It can be seen that the leverage point in sample D leads to the indefinite
relation 0/0 for D; and DF; and a computer interpreted it as zero. Even the
characteristics LD; do not indicate the leverage point in sample D.

Table 6.10. Comparison of five diagnostics for identification of influential points

Sample X; Vi D, DF; LD; (b) LD; (6% LD; (b, 6%)
C 13 12.75 1.39 670 297 1.81 x 108 2.37 x 10°
D 19 12.5 0 0 0 484 x 1072 484 x 1072

Conclusion: If the influential points are leverage points, then é; =0 and H;; = 1.
Detection of these points depends on calculation of indefinite relations by a computer.

To test for influential points, some diagnostic graphs may be used:

(a) Theindex graph (IG) shows the characteristics of influential points as a function
of index i of the point. These graphs may also be plotted for elements of the
projection matrix, H;;, etc.

(b) The L-R graph introduced by Gray [28] has on the y-axis the squared residuals
6%; = ¢2/RSC and on the x-axis the elements H;. All the points will lie under

the hypotenuse of the triangle with a 90° angle in the origin of the two axes and

the hypotenuse defined by the limiting equality H;; + é%; = 1.
Most of the characteristics of influential points may be expressed in the form
K(ma n) X f(Hiia élzdl)

where K(m, n) is a constant depending only on m and n. Therefore the characteristic
DF; [Eq. (6.111)] can be rewritten as

H..62%.
DF, = —m—1 L\ .1
i=/nmm x\/ (= Ha)(1 — Hy— &%) (6.120

In the L-R graph, contours of the same critical influence are plotted, and the
locations of individual points are compared with them. It may be determined from
Eq. (6.120) that for the characteristics DF;, the contours are hyperbolic, as described
by the equation
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_(2x—x*-1)
VEMK—D—1

where K = n(n — m — 1)/(c*m) and c¢ is a constant. For ¢ =2, the constant K
corresponds to the limit 2/,/m/n. The constant c is usually equal to 2, 4 or 8. L-R
graphs for other characteristics of influential points may also be drawn.

Problem 6.32. Examination of infuential points in the validation of a new analytical
method

Use the L-R graph for DF; to examine the influential points in Problem 6.7 (validation
of a new analytical method by a comparison with a standard one).

Data: from Problem 6.7

Solution: Figure 6.37a shows the L-R graph for DF;. This indicates that points 18,
20 and 24 are strongly influential. With these three points omitted, the regression
equation y =9.413 (+5.67) + 0.876 (+0.016)x is estimated, with determination
coefficient R? = 0.994. The standard deviations of parameter estimates are given in
brackets. When these results are compared with those of Problem 6.7, it may be
concluded that elimination of influential points will not significantly affect the
parameter estimates, but does affect their variances.

The standard deviation of the residuals for the original model with n = 24 points,
& = 39.54, decreased on elimination of points 18, 20 and 24, to the value 6 = 17.24.
Omitting three influential points caused a significant decrease in the quadratic error
of prediction from MEP = 1942 to MEP = 333.6.

Figure 6.37b shows the regression model with the 95% confidence bands. If these
are compared with those on Fig. 6.9, the confidence band can be seen to have
narrowed.

Conclusion: The L-R graph permits easy identification of influential points. Elimin-

1.0 700.0

(a

350.0

il 0_0

H; 1.0 0.0 400.0 x 800.0

Fig. 6.37—(a) The L-R graph for the diagnostic DF;, and (b) comparing a new analytical
method with the standard one, with three influential points omitted.
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ating influential points causes an improvement in the interval estimates, and this
also affects the results of statistical tests.

6.5.3 Examination of a proposed regression model

The quality of a proposed model can be considered in case of one controllable
variable x directly from the scatter plot of y vs. x. In the case of more controllable
variables, scatter plots can falsely indicate nonlinearity in a linear model (cf. Problem
6.24). There are many various plots for considering y on x; but we limit the choice
here to (a) partial regression leverage plots, and (b) partial residual plots. Both plots
are augmented here by the graph of residual é vs. prediction §, which can indicate a
false model when the points form a nonlinear pattern.

6.5.3.1 Partial regression leverage plots
Belsey [21] named these graphs partial regression leverage plots (PRL plots) and
considers them as the basic computer tools for interactive analysis of regression
models. They permit classification of the quality of a regression model proposed and
also indicate the presence of an influential point and lack of fulfillment of the
assumptions of the classical least-squares method. They show the dependence between
y and a selected controllable variable x; when the other controllable variables forming
columns in the matrix X;, are kept constant. By the symbol X; we mean a matrix
formed by leaving out the jth column x;.

To discuss the properties of these plots, we assume the regression model (6.5b)
expressed in the form

y=Xpb* +x;c+e (6.121)

where p* is of dimension (m — 1) x 1 and c is the regression parameter of the jth
variable. On projecting both sides of Eq. (6.121) into a space orthogonal to the space
spanned by the columns of matrix X, we obtain

P,y =Pxjc + Pye (6.122)

In Eq. (6.122), the product P ;X; is equal to zero. The projection matrix
P, = E — H_; leads to a projection into the space of the residuals. From Eq. (6.92)
it follows that

(a) the term ¥; = P; X; is the residual vector of regression of one variable x; on the
other variables which form columns of the matrix X ;;

(b) the term @&; = P,y is the residual vector of regression of variable y on other
variables which form columns of the matrix X .

The mean value E(@;) is then given by

E(8;) = cEG;) (6.123)
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Fig. 6.38—(a) A partial regression leverage plot, and (b) a partial residual plot.

The dependences of ; on ¥; form the partial regression leverage plots.
When Eq. (6.121) is valid, Eq. (6.123) is linear with zero intercept. The slope
estimate obtained by the least-squares method is calculated from

ATA T
»_ 00, x;Puy 6.124
4 ATa TP ( . )
Vivi  XiEpX;

After some rearrangements it may be shown that the slope estimate ¢ is identical
with the estimate b; determined by the classical least-squares method for unpartitioned
model E(y/x) = XB. Moreover, an important equality

e=10;,—-9¢ (6.125)

shows how the residual & from the least-squares method (6.92) is connected with the
partial residuals @; and ¥;.
The partial regression leverage plots have the following properties.

(@) The slope ¢ in the PRL plot is identical with the estimate b; in an unpartitioned
model and the intercept is equal to zero. This linear dependence is valid only
when the proposed model [Eq. (6.121)] is correct.

(b) Thecorrelation coefficient between ¢; and @; corresponds to the partial correlation
coefficient R,, (x).

(c) Residuals corresponding to a regression straight line in the PRL plot are
identical with residuals for an unpartitioned model.

(d) In the PRL plot the influential points stand out, and also any violation of the
assumptions for the least-squares method, for example, about homoscedasticity.

Partial regression leverage plots have also some disadvantages.

(@) On the x-axis, the co-ordinates ¥; are not in the original scale of variable x;. If
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there is, for example, some scatter in the residuals of functions x;, the PRL plots
may not indicate it.

(b) If individual controllable variables (in the columns of matrix X) are strongly
correlated, the PRL plot may not indicate correctly the nonlinearity, so a false
hypothesis of the model may be proposed (6.121).

The partial regression leverage plots are in the standard output of the regression
module of CHEMSTAT, because they correctly indicate various types of influential
points.

Problem 6.33. Application of partial regression leverage plots

Construct PRL plots for a linear regression model with the simulated data from
Problem 6.24.

Data: Generated from Problem 6.24

Solution: The PRL plots for variables x; and x, are shown in Fig. 6.39. The linear
course and the zero residuals show that the data are in accord with a linear function
of x; and x,. The strong multicollinearity between the variables does not influence
their course.

36.39 (a) 6.6 (b)
1 19
A A
u1 U2
2
8
9.99 3 1.1
4
8
5
8 7
7
~16.41 4 -4.4L°
-6.06 -1.66 5, 2.74 -8.8 2.2 0 13.2

Fig. 6.39—The partial regression leverage plots for (a) variable x,, and (b) variable x,.

Conclusion: The linearity of all partial regression leverage plots proves the correctness
of a proposed regression model. The quality of estimates may be classified according
to the spread of points around the regression straight line in partial regression
leverage plots.

6.5.3.2 Partial residual plots
Partial residual plots are also termed “component + residual” plots. Rewriting Eq.
(6.125) in the form
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gives the partial regression leverage plot expressed as a dependence of & +
b;(E — H_;)x; on (E — H;))x;. The partial residual plot is the special case H; = 0. It
is, in fact, a dependence of partial residuals s on variable x;. For variable s we have

s=8+bx;=y— > x;b, (6.127)
k#j
where x,; is the kth column of matrix X.
When the regression model contains an intercept, the modified partial residuals
may be used

where X;, y are the arithmetic averages of variables x; and y.
In “component + residual” plots a deterministic component is plotted separately.

cij=(x,-j—3?,j)bj, i= 1, R () (6129)

which is usually marked on a plot by the letter “C”. The partial residual s; = ¢;; + é;,
i=1...,n,arein this plot marked by crosses. If x; is orthogonal to all the columns
of matrix X;, then ¥; = x; and the partial regression leverage plot would be identical
to the partial residual plot. The partial residual plots provide rather different
information from the partial regression leverage plots. Partial residual plots have the
following properties:

(@) the slope of s vs. x; is equal to b; and the intercept is zero. The linear dependence
shows the suitability of proposed variable x; in the model;

(b) the residuals of these regression lines are the residuals é; for the unpartitioned
model;

(c) ifthe angle between x; and some columns of matrix X ; is small (multicollinearity)
the partial residual plot has falsely small scatter around the regression line

b;x;, and the effect of influential points is suppressed.

Partial residual plots are recommended for indication of different types of
nonlinearity in the case of a poorly proposed regression model.

Problem 6.34. Building partial residual plots

Construct the partial residual plots for the linear regression model and simulated

data from Problem 6.24.

Data: from Problem 6.24

Solution: The partial residual plots for variables x; and x, are drawn in Fig. 6.40.
The linear course together with the zero residuals é; show again the linearity with

respect to variables x; and x,. Since the x-axes are not transformed, the magnitude

of slopes may be considered. This magnitude should correspond to parameter estimate

b; in the regression model.

Conclusion: The linearity in all partial residual plots shows the correctness of the

regression model proposed. It is recommended to combine examination of the partial

regression leverage plots with the partial residual plots.

E,
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Fig. 6.40—Partial residual plots for (a) variable x,, and (b) variable x,.

Problem 6.35. Examination of the model for the relationship between rubber

composition and its abrasion resistance

Make a graphical examination of a proposed linear model expressing the relationship
between the composition of rubber and its abrasion resistance (Problem 6.6). Identify

any influential points.
Data: from Problem 6.6

Solution: Figure 6.41 shows the partial regression leverage plots and Fig. 6.42 the

partial residual plots for x; and x,.
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-1.58 -0.02 02 1.54

Fig. 6.41—Partial regression leverage plot for (a) the variable x,, and (b) the variable x,.

Because of orthogonality of the two variables, the plots in Figs. 6.41 and 6.42 are
nearly the same. The variable x, is not significantly affected, as in both plots 6.41a
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Fig. 6.42—Partial residual plot for (a) the variable x,, and (b) the variable x,.

and 6.42a the points form a random pattern. Variable x, shows a distinct trend
which may result either from nonlinearity or from outliers in the data, and particularly
point 8. In Fig. 6.43 the plot of residuals é; vs. the prediction § shows a random
pattern of points, proving that the proposed model is suitable, despite two points, 8

and 2, seeming to be outliers.

2.32

K0

0.75

-0.83

-1.29

A

0.02 y

1.34

Fig. 6.43—Plot of residuals é; vs. prediction .

Both graphs in Fig. 6.44 show significant influence from point 8 and also from
points 3 and 1. The values of the Jack-knife residuals é;; do not indicate strongly
influential points, because the maximum value é;; for i =8 is é;3 = —2.404.
Conclusion: For a small sample size it is not possible to consider whether the model
has been correctly proposed. From the graphs, it can be concluded that the data
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Fig. 6.44-—(a) The L-R graph for DF;, and (b) the Q—Q plot for the Anderson distance A;.

may contain the outliers. Repetition of experiments proved that the linear model is
not correct.

6.5.3.3 Sign test for model specification

To check a proposed regression model with reference to the data, all tests of
specification (linearity) from Section 6.3 may be applied. A simple test based on the
residuals &; is the sign test. Incorrectness of a proposed model causes non-randomness
of residuals, and this non-randomness may be tested by a sign test. The number of
sequences ny of the same sign of residuals is estimated, e.g. for residuals —1,—1, 1,
—1,1,2,1 the number of sequences is equal to 4, Ay = 4. Then the number of residuals
with positive sign (n,) and negative sign (n_) is determined. For medium sample
sizes the theoretical number of sequences n, and its variance D, are defined by

2n,n_ n
n,—1+n+—+n_—~1+§ (6130)
_2nyn_@2nyn_—n, +n_) n

t

T (ne +n_ )P, +n_—1 4

When ny < n, — 2\/ D,, there is a trend in the residuals and the model is incorrect.

Problem 6.36. Examination of a proposed model by the sign test

For samples A, B, C and D from Problem 6.8, test for correctness of the proposed

model of a regression straight line.

Data: from Problem 6.8

Solution: Table 6.11 lists the numbers of sequences for samples A, B, C and D.
From the table it is evident that small values of Ay (less than n, — 2\/ D, ~ 4.84)

for samples B and C correspond to non-randomness of residuals and also the

incorrectness of the proposed straight line model.
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Table 6.11. The number of sequences for samples A, B, C
and D

Data sample A B C D

The number of sequences Ay 7 3 4 7

Conclusion: The sign test can test for non-randomness of residuals, caused either by
a false model (sample B) or by outliers (sample C).

6.5.4 Examination of conditions for the least-squares method
The violation of the basic conditions for the least-squares method is discussed in
Section 6.6. In this section the graphical diagnostics for indication of heteroscedasticity,
autocorrelation and non-normality of errors ¢ are described.

6.5.4.1 Heteroscedasticity
Heteroscedasticity often appears in instrumental data measured in the chemical
laboratory. The variance of measurement is usually an increasing function of variable
y because the relative precision of the measurement is constant. This type of
heteroscedasticity may be detected by the plot of é2 vs. §;, which gives a pattern of
typically linear or nonlinear shape. If the measurement variance is dependent on x;
the plot é7 vs. x;; leads also to a linear or nonlinear pattern. The heteroscedasticity
may be detected by plots of residuals or by partial regression leverage plots.
Identification of heteroscedasticity in data is based on the idea that the variance
of a measured quantity at the ith point is an exponential function of the variable x;$
of the type

o} = o exp(Ax; )

where x; is the ith row of matrix X. The test for homoscedasticity is carried out by
checking the null hypothesis Hy: A = 0. Cook and Weisberg [30] introduced the test
criterion

n 2
[.Z (5 — pp)é?]

S, =—"1 (6.131)
2643, (5= e’

where jp = ( Y J‘),)/n. When the null hypothsis is valid, the test statistic S, has

approximatelgl tlhe x%(1) distribution with one degree of freedom.

The corresponding diagnostic plot has the squares of standardized residuals é3; on
the y-axis and (1 — H;;); on the x-axis. If heteroscedasticity is not present in the data,
a random pattern of points appears. When heteroscedasticity is present, a wedge-
shaped pattern appears and most of the points are located in this part of plot.
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Problem 6.37. Examination of the homoscedasticity assumption in validation of a
new analytical method

Figure 6.9 shows that for larger values of x the variance of points round the regression
line increases. Are the data from Problem 6.7 homoscedastic or heteroscedastic?
Data: from Problem 6.7

Solution: The test criterion S, = 119.45 [Eq. (6.131)] has a higher value than the
quantile y3 o-5(1) = 5.02 and the null hypothesis Hy: A =0 is rejected. The data
exhibit heteroscedasticity. The plot of &% against §; Fig. 6.45a shows a recognizable
systematic trend indicating heteroscedasticity. Points 18, 20 and 24 are influential
points. The typical wedge-shaped pattern of points in the plot of é2; against (1 — H;;)9;
in Fig. 6.45b also proves heteroscedasticity. When points 18, 20 and 24 are left out,
the test criterion S, = 2.75 is lower than 3 ¢;5(1) = 5.02 and heteroscedasticity is
not proved.

Conclusion: Plots indicating heteroscedasticity can also detect whether the heterosced-
asticity is caused by the presence of influential points.

13392.2 (a) 11.05 (b)
24 24
&2 18 és
18
6696.3 5.53
28
28
13 12 13 14 19
0.5 aad 1> P4 2, 0.00lasdd 12 118 23,
44.7 451.4 )’) 8568.2 32.15 334.02 635.88
(1-H)y

Fig. 6.45—Plots for testing for heteroscedasticity (a) é;2 vs. §;, and (b) é2; vs. (1-Hy;) §;.

6.5.4.2 Autocorrelation

When data are a time series, the errors ¢ are not independent but are correlated with
one another. We will discuss only the most frequent case of autocorrelation of the
first order, the autoregressive process of the first order AR(1), described by the
expression

&= P81 T U (6.132)

where u; ~ N(0, 62) is an independent, random variable with constant variance and
p1 < 1 is the autocorrelation coefficient of the first order. For p, = 1, Eq. (6.132)
defines a case of cumulative errors, which appears quite often in chemometrics. When
the model Xf does not contain all the significant variables and is falsely proposed,
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the mean values of the residuals correspond to an AR(1) process, with a positive
autocorrelation coefficient of the first order, p,. Tests of autocorrelation can be
understood as tests of accuracy of a proposed model, with reference to the number
of controllable variables. From Eq. (6.132) it may be concluded that for an AR(1)
process, the dependence of ¢; on ¢; _ , is linear, with slope p, . To test for autocorrelation,
the graph of é; against é;_, is plotted, and an approximately linear trend proves
significant autocorrelation.

Classical residuals are, however, correlated even in cases when the errors ¢; are
not correlated. For small sample sizes, this may lead to a false finding of linearity of
the dependence é; vs. é;_,. The use of recursive residuals é; is more convenient.

Problem 6.38. Autocorrelation test for kinetic data

Kinetic data for inversion of a saccharide in 1M HCL at 30° C were measured. Find
out whether the autocorrelation effect in the data is caused by the method of taking
samples. Use graphical tests.

Data: x is time in minutes; y is the logarithm of the fraction of saccharide remaining
unreacted in the reaction mixture, multiplied by 10.

10 20 30 40 50 60 70 80
y 1 0954 0895 0843 0791 0735 0.685 0.628  0.581

=
(=)

Solution: The plot of é; vs. é;_ in Fig. 6.46a and the plot of ég; vs. éy;_, in Fig. 6.46b
show significant negative autocorrelation. Since both plots are similar in nature,
classical residuals may be used.

Conclusion: Plots for examination of autocorrelation of residuals allow the sign and

0.04, (a) 0.005 (b)
8 8
1
ei A
eRi
6 4
0.000 ) 0.001
2
3 1
5 2 s
-0.004{ ’ ~0.003
-0.004 0.000 5 ~ 0.004 -0.006 -0.001 0.004
Ri—1

Fig. 6.46—Plots for examination of autocorrelation of the first order (a) ¢é; vs. é,_;, and (b)
&p; US. &gy .
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the magnitude of the autocorrelation coefficient of the first order p, to be estimated.
Here, the classical é; and recursive residuals ég; give similar results.

6.5.4.3 Normality of errors
The normality of errors is examined by a Q—Q plot containing the order statistics
of classical residuals é; in dependence on the quantile of the normalized normal
distribution up; for P; = i/(n + 1). Since small samples exhibit a supernormality effect,
independent recursive residuals ég; are used instead of classical residuals, because
this effect then does not exist.

To test the normality of residuals, some tests from Chapter 3 may be used. The
most convenient test seems to be the Jarque-Berra test [32] which is based on the
criterion

v 2 A2 A
o | 43 (@e/83) — 3:| 31 43 x 4,
L@ = n[6123 + =y +n W (6.133)

where the symbol 4; denotes the jth general moment of the sample residuals, and is
defined by
¢} (6.133a)

uj=

30—
M=

i=1

When the errors have a normal distribution, the test statistic L(é) has asymptomatically
the 2 _,(2) distribution. When L(é) > x2.55(2) = 5.99, the null hypothesis H, about
the error normality is rejected. In this test, the supernormality effect of small samples
may again disturb statistical testing.

For linear models with an intercept term, E(é;) = i, = 0 and the Jarque—Berra
criterion can be simplified to the form

L@) = n[‘% + WJ (6.134)

where g, = #3/43 and ¢, = 4,/03. This procedure however, is not convenient for
small samples, because of the supernormality effect, and moreover the distribution
of L(¢) differs from the asymptotic y? _,(2). For small samples it is more convenient to
determine the distribution of L(é) from a simulation calculation for the given matrix
X. As L(¢)is independent of the error variance o2, the errors ¢ may be generated
from the normalized normal distribution N(O, 1).

Problem 6.39. Examination of normality for four samples

For samples A, B, C and D in Problem 6.8, use the Jarque—Berra test criterion L(é)
to test for normality.

Data: from Problem 6.8

Solution: For four samples the Jarque—Berra test criterion L(é) is the last column in
Table 6.7 (Problem 6.25). This test disproved normality only for sample C. The other
samples A, B and D exhibit normality of residuals.
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Conclusion: Tests of normality of residuals do not prove incorrectness of a proposed
regression model or unsuitability of data. When normality is not proved, the presence
of outliers is often the cause; the Q—Q plot is then recommended for detection of
influential points.

6.6 PROCEDURES WHEN CONDITIONS FOR LEAST-SQUARES ARE
VIOLATED

In Section 6.2, seven conditions were mentioned which must be met if the least-
squares method is to give the best unbiased linear estimates of parameters. The
construction of confidence intervals and hypothesis tests also depend on these
conditions being satisfied. In the chemical laboratory some of the conditions, however,
are not met. In this chapter we give our attention to regression procedures when

(1) some restrictions are placed on the parameters;

(2) the covariance matrix of errors is not diagonal and data do not exhibit the same
variance;

(3) the matrix XX is ill-conditioned because of multicollinearity;

(4) the distribution of data is not normal and some influential points exist in data;

(5) the independent variables x are also subject to random errors.

The most important diagnostic procedures for identification of violations of the
least-squares conditions are described in Section 6.5. This section gives a modified
procedure for parameter estimation and some special tests.

6.6.1 Restrictions placed on the parameters
In many chemometrics problems some restrictions are placed on parameters because
of their physical meaning and chemical interpretation. Positive values, for example,
are often requested for most chemical parameters. The regression procedure with a
restriction depends on whether the restrictions are precise (deterministic as they are
fixed numbers) or statistical (they are random numbers). The restrictions can be
stated in form of equalities, or inequalities when they concern restricted intervals.
The most frequent request in chemometrics problems is that the regression line
should fit the data and also pass through the origin. This last request can be fulfilled
by omitting the intercept term. We will discuss cases when the parameter restrictions
are given as an equality, and when parameters should be numerically greater than a
given limit.
A restriction in the form of an equality
This group of restrictions includes the following requests about parameters,

(a) some parameters should reach specified values;

(b) some parameters should have a specified mutual ratio;

(c) the sums or differences of some parameters should be equal to a given number;
and

(d) the regression model should also fit certain points specified by co-ordinates.

To satisfy these four requests, the condition of linearity may be formulated as
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PiBi+PiaBsr+ ... + PruBm= D1
P'Zlﬁl + P'ZZBZ + + P2mﬂm =p.2 (6.135)

Py By + PaBr+ ... + PowBm = Pk
or written in a matrix, notation
Pg=p (6.135a)

where P is the matrix of dimension (k x m) of known coefficients and p is the vector
of dimension (k x 1) of known components, estimated on the basis of the requested
restrictions. The mathematical condition for solution is that the rank of matrix P
should be equal to k and also k < m. This means that rows of matrix P are linearly
independent.

To estimate parameters by which fulfil the condition of the minimum of the least-
squares method with a restriction (6.135a), the technique of Lagrange multipliers is
used. This method involves minimization of the conditioned sum of squares

Ug = (y — Xbg)"(y — Xbg) + 47(p — Pbg) (6.136)

where 4 is the vector of Lagrange multipliers of dimension (k x 1); its estimate is also
sought. The method is called the conditioned least-squares method (CLS). As in the
classical least-squares method (LS), the estimates by and 4 may be found with the
use of the first derivative of function Uy according to these parameters,

% = —2X"y + 2X"Xbg — PT =0 (6.137a)
% =p—Pb =0 (6.137b)

This equation defines (n + k) linear equations according to parameters 4 and byg.
After rewriting we obtain the estimate / in the form

1 =2[PX™X)"'P"]"(p — Ph) (6.138)

where b = (X™X)" X"y is the parameter estimate found by classical least-squares.
The estimate of restricted parameters is calculated from

bg = b — (X™X) " 'PT[P(X"X)"'P"] (Pb — p) (6.139)

When a given parameter restriction is valid
(a) the estimate by is unbiased;
(b) its covariance matrix is given by

D(bg) = D()[E — PTSP(X"X)"!] (6.140)

where D(b) is a covariance matrix for estimates b by the classical least-squares
method (6.16), E is the unit matrix and S = [P(X"X) !PT} %; and
-(c) the unbiased estimate of the residual variance ¢ is calculated from



100 Linear regression models [Ch. 6

g2 = O = Xbe)'(y — Xby) (6.141)
n—m+k

If the errors have a normal distribution, confidence intervals and tests of significance
may be constructed as in Section 6.3. From Eq. (6.140) it may be concluded that the
variance D(bg;) for restricted parameter estimates are always smaller than for D(b;).
The main task here is to check the validity of Eq. (6.135a),1.e. Hy: P — p = 0 against
H,: Pp — p # 0. The hypothesis H, may be tested by the classical Fisher—Snedecor
F-test with the test criterion

_(Pb—p)'S(Pb— p)k
° (y — Xb)T(y — Xb)/(n — m) (6.142)

which, if H, is valid, has the Fisher—Snedecor F-distribution with k and (n — m)
degrees of freedom. When F, > Fg os(k, n — m) the parameter restrictions are not
suitable for the given data, and the estimate by is biased. For a small bias, the
variances often decrease, so that the estimate by seems to be better than the estimate
b [33].

From the computational point of view, it is more convenient to express the test
criterion (6.142) in terms of the residual sum of squares (Section 6.3). If we write

RSC = (y — Xb)"(y — Xb)

and
RSCo = (y — Xbg)'(y — Xbg)
the Eq. (6.142) may be expressed in an equivalent form as
Fo— (RSCy — RSC)/k
°~ RSC/n—m)

To use Eq. (6.143) both estimates b and bg must be calculated and RSC and RSC,
evaluated.

(6.143)

Problem 6.40. The conditional least-squares method in the case of a single parameter
restriction

Derive equations for estimation of parameters by in a case where only one restriction
is given:

PB, +...+ P,B,=por PB=p where P is the row vector.

Solution: Since the matrix S contains just one element we will speak about the scalar
S. The matrix M = (X"X) ™ !PT becomes the column vector M. Let us introduce the
matrix C:

C=(XTx)"!

with elements Cj. Then

j=1k=1
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and the vector M has the following elements
M;= 3 CuPy
k=1
Then, from Eq. (6.139) we have

m
=1
Since the matrix S becomes a scalar S, the expressions for the covariance matrix of
estimates and the test criterion F, may also be simplified.

Problem 6.41. Finding the relationship between the surface under a chromatographic
peak and the ethanol concentration, by linear regression with restriction

The relationship between the concentration of ethanol in water (x) and the correspond-
ing area of the chromatographic peak (y) was examined, and the model
E(y/x) = B1x + B,x* + B, was proposed. To have physical meaning, this curve should
go through the two points with co-ordinates (0, 0) and (100, 100), corresponding to
limits, the first for pure water and the second for pure ethanol. Estimate the model
parameters and test whether the restrictions correspond to the given data set.
Data: x is the volume percentage of ethanol in water and y is the relative area of the
chromatographic peak as a percentage.

b 10 20 30 40 50 60 70 80 90
y 816 159 227 315 398 494 597 706 836

Solution: Because the first restriction requires the regression curve to go through the
origin, the intercept term B, should be equal to zero, f; = 0. The second restriction
leads to the equation

100 = B, x 100 + B, x 1002
which can be rewritten as
1 = ﬂl + ﬂz X 100

On simplifying this equation by elmination of f§;, we obtain the following equation
(which is linear with respect to f,)

E(y/x) = (1 — 1008,)x + B,x? = x + B,(x*> — 100x)

By using the least-squares criterion and the analytical derivative we obtain

3 (3~ %) — 100x,)
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and find that by, = 4.1199 x 10~2 and RSC, = 31.82. The classical least-squares
estimates for the regression model without restriction has the form
y = 2.724(+0.648) + 0.557(+0.0297)x + 3.726(+0.29) x 10~ 3x?

The standard deviations of the parameter estimates are given in brackets. The
corresponding value of RSC is 1.555, and

P (31.82 — 1.555)/2
07 1.555/9 - 3)

Since F, is significantly greater than F ¢5(2, 6) = 5.14, the given restrictions do not
correspond to the data. The two models are compared in Fig. 6.47.

= 58.39

100.0 (a) 3.00 (b)
A
y e
50.0 0.0 #
° &
%
9 #
0.0 -3.0
0.0 50.0 , 1000 0.0 50.0 . 1000

Fig. 6.47—(a) Regression model without restrictions (curve 1) and with restrictions (curve

2), fitted through the experimental points. The restriction requests the curve to go through

two points, (0, 0) and (100, 100); (b) the graphical analysis of residuals: o model without and
# model with restrictions.

Conclusion: In some cases, the restrictions given enable parameters to be derived in
such a way that the method of Lagrange multipliers is not required. The statistical
criterion F, examines whether the data are in agreement with the given restrictions.

6.6.2 The method of generalized least-squares (GLS)

In the analysis of instrumental data in the chemical laboratory, it is often found that
the errors are often not independent or that they do not exhibit the same variance.
The covariance matrix of errors D(g) = C, is then not equal to 6> x E and the more
generalized relationship should be used

D(e) =C, =d’K

As the matrix K is, apart from the multiplicative constant ¢, the same as the

(6.144)
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covariance matrix, it should be the case that it is symmetric and K;; = K ;. Moreover,
the inequality

|Kijl < /K Kjj

which makes certain that matrix K is positive definite. These properties allow the
inversion matrix K~ ! to be expressed as the product of weight matrices V in the form

K !=V'v

When all other conditions for the least-squares method are met, the parameter
estimates may be obtained by minimization of the generalized least-squares criterion
in the form

U(b) = (y — Xbg)' K~ (y — Xbg) (6.145)

By using an analytical minimization of Eq. (6.145), the expression for the estimate
bg may be derived in the form

bg = (XTK~1X)"!XTK "'y (6.146)

where the index G denotes characteristics of the method of generalized least-squares
(GLS). The estimate b is called the Aitken estimate. When the weight matrix V is
introduced into Eq. (6.146) the resulting estimate by the GLS method is

b = (Z'Z) ' Zw (6.147)

where Z = VX and w = Vy. Equation (6.147) shows how the parameter estimate bg
by the GLS method can easily be transformed into the estimate b by the LS method
with the use of simple multiplication by the weight matrices. When we multiply the
Eq. (6.5b) by the weight matrix V, we obtain

Vy = VXB + Ve (6.148a)
or

w=Zp+ Ve (6.148Db)
The mean value E(Ve) is equal to zero, and the covariance matrix is calculated from

D(Ve) = VT'VKo? = Eo? (6.149)

This means that the transformed errors Ve already satisfy the conditions for the
classical LS method, and Eq. (6.147) may be used. With the use of variables Z and
w, the expressions valid for the LS method, including the interval estimates and
hypothesis tests, may be used. For example, the covariance matrix of estimates bg
may be written, by using Eq. (6.16), as

D(bg) = 6¥(Z'2)"! = a*X"K™'X)7* (6.150)

The estimates by are unbiased and best in the class of all linear unbiased estimates.
When the errors ¢ have the normal distribution N(0, 62K), the estimates bg are
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normally distributed with mean value E(bg) = B and the covariance matrix is defined
by Eq. (6.150). The estimate of the residual variance 62 is calculated from
_ (y — Xbs)'’K™ '(y — Xbg)

6% = — (6.151)

When the classical LS method is used for a case when Eq. (6.144) is valid, instead
of the more correct approach by the GLS method it is true that,

(a) the parameter estimates b remain unbiased,;

(b) the covariance matrix D(b) does not correspond to the correct covariance matrix
D(bg), so that the estimates are not already best as they have greater variances;

(c) the estimate of the residual variance 62 will be biased.

For these reasons the interval estimates and statistical tests will give quite false
results.

A special case of the GLS method is the method of weighted least-squares (WLS).
The matrix K is diagonal, condition 6 is valid and errors ¢ are independent in this
case.

If K;; are the diagonal elements of matrix K, we can write for the diagonal element
of a matrix V that

Vi=1/Kj
When this is introduced into Eq. (6.145), we obtain:

n m 2 n m 2
Ub)= Y KEI(Y.'— Y xijbj) =y I:yiVii_ Y Viixijbj:l (6.152)
i=1 i=1

i=1 i=1

When all variables are multiplied by the corresponding weights, the same conditions
apply as for the classical LS method. Linear regression programs based on the least-
squares method can readily be extended for weighted least-squares.

6.6.2.1 Heteroscedasticity
Heteroscedasticity in data means that condition 5, about constancy of variance, is
violated. In chemometrics problems, nonconstancy of variance in measured data is

common.
The operation of some instruments is such that there is a constant relative error,

so that
of = a3[E(y/x:)]* (6.153)

In other cases, the variance o2 may be estimated from error propagation for all
operations, chemicals, glassware, procedures, etc. When the values of individual
variances o2 can be exactly specified, then setting Vj; = 1/o; permits application of
the WLS method.

A large group of chemometrics problems in which there is heteroscedasticity in
the data arises from the use of transformed variables. The variable y is often
transformed to give a linear relationship (the linearization method). When the original

‘
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values y; have constant variance D(y;) = o2, nonlinear transformation g(y;) causes
the variance D(g(y;)) to be non-constant, and for the first approximation the following
expression will hold

og(y:
ot = Dlg(y) = [ £ )] D(y) (6.154)
The variances can be equalized by introduction of weights given by
-1
Vi= [MJ (6.155)
oy L=y,

with the use of the WLS method. The method of weighted least-squares with weights
V,; defined by Eq. (6.155) is called quasilinear regression. It is generally true that each
transformation distorts the error distribution, so it is always better to use the method
of nonlinear regression.

Problem 6.41. Examination of the dependence of the solubility of Na,SO5 on
temperature

The dependence of the solubility of Na,SO; (y) on temperature (x) may be described
by the empirical expression y = exp(f; + f,x). Estimate parameters f, and f, with
the use of the linearization, quasilinearization and non-linear methods of least-
squares.

Data: solubility y, %, and temperature x, °C.

x 0 10 20 30 40 50 60 70 80
y 335 37.0 412  46.1 500 520 563 643 69.9

Solution: The expression y = exp(f; + f,x) can be transformed into linear form
Iny = B, + B,x. The weights V; will eliminate the heteroscedasticity and can be
expressed by V; = y; [Eq. (6.155)]. Table 6.12 lists the parameter estimates by the
three least-squares methods.

Table 6.12. Comparison of parameter estimates found by the LS,
WLS and NLS methods

Method  Transformation b, b, RSC*
LS linearization 3.532 8812 10.22
WLS quasilinearization 3.535 8756 10.13
NLS nonlinear regression 3.537 8720 10.11

*in transformed variables

The estimates achieved by the quasilinearization (WLS) are in quite good agreement
with those found by nonlinear regression (NLS). The precision of prediction should
be considered in the original and not in the transformed variables.

Conclusion: Application of statistical weights V;; from Eq. (6.155) in the WLS method
increases the accuracy of parameter estimates.
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To solve chemometrics problems with heteroscedasticity in the data, the procedure
is usually as follows:

(1) Identification of the presence of heteroscedasticity in the data with the use of
tests from section 6.5.4.1.

(2) Identification of the actual type of heteroscedasticity, which determines the effect
of the errors variance on the variables of the regression model.

(3) Determine parametric estimates for the known type of heteroscedasticity.

Step 1: identification of heteroscedasticity
Instead of a sample diagnostic test (Section 6.5.4) or the various plots, there are also
nonconstructive tests, which do not require knowledge of the heteroscedasticity model,
and constructive tests, which require knowledge of the heteroscedasticity model.

A common test is the test of residual trend, which has the test criterion

D= ._il LP(.) — i? (6.156)

where P(]é;]) stands for the order of absolute value of the ith residual. This criterion
D is connected with the Spearman correlation coefficient p, by the expression

6D
n®—n

(6.157)

pszl_

The heteroscedasticity test therefore becomes the test of a null hypothesis Hy: p, = 0
(i.e. homoscedasticity) against an alternative H,: p, # O (i.e. heteroscedasticity). For
larger sample sizes, n > 10, another test-criterion can be also used

A20
=, /3‘1(—':?2—) (6.158)

which, when the null hypothesis is valid (i.e. homoscedasticity) has the Student
t-distribution with n — 2 degrees of freedom.

The Szroeter test requires the data to be rearranged in ascending order of variance,
6?_, <0, i=2,..., n in order to examine the values of the variable which is a
monotonic function of the variances. If Eq. (6.153) is valid, the ordering is made
according to the magnitude of the y-values (or prediction §;, respectively) in ascending
order. The null hypothesis of homoscedasticity Hy: 62 = 6%_,,i=2, ..., n, is tested
against the alternative H,: 62 > o2 _,. The test criterion of the Szroeter test is defined

by
QT=,/n26f 1<Q—";1> (6.159)

where
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and residuals é, correspond to ordered data. The statistic Q1 has, asymptotically, the
standardized normal distribution N(0, 1). When Q¢ > 1.645, heteroscedasticity is
proved at the significance level a = 0.05.

The constructive tests are based on the known model of heteroscedasticity and on
significance tests.

Step 2: identification of the type of heteroscedasticity

When the matrix ¢%K is not known, it is necessary to estimate its diagonal elements,

which correspond to variances o2, For large sample sizes, the variance estimates o2

can be replaced by the squared residuals é? obtained by the classical LS method.

This procedure is usually used in seeking parametric models of heteroscedasticity.
Horn [35] suggested application of so-called AUE estimates of variances, defined

by

A
2
A2 ei

“T1-H,
A2

The estimates of variance 6; may be used directly in the method of weighted

least-squares (WLS) where V; = 1/6;, or for examination of various types of

heteroscedasticity. Three principal models of heteroscedasticity are distinguished.
(@) The multiplicative model of heteroscedasticity is expressed by

o? = odexp(dx;;) (6.160a)

or
o} = aglxyl’ (6.160b)

where ¢ is a parameter.
Instead of variable x; in these two models, the theoretical value E(y/x;) = n; may be
used. The multiplicative model is valid when the dependence of In (¢2) on x;; or ; is
approximately linear. The significance test of the slope é here corresponds to the test
for the multiplicative model of heteroscedasticity.

(b) The additive model of heteroscedasticity is expressed by

o} = od(1 + 6x;;)* (6.161)

where instead of x;, E(y/x;) = n; may be used. The additive model is valid for cases

when the dependence of |é;| on x;; or §; is approximately linear. The significance test

of the slope é corresponds to the test for the additive model of heteroscedasticity.
(c) The mixed model of heteroscedasticity is expressed by

0% = 8o + 81Xy (6.162)

where instead of x;, E(y/x;) = n; may be used. The mixed model is valid for cases
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when the dependence of é2 on x;; or J; is approximately linear. The significance test
of this slope §, shows the presence of the mixed type of heteroscedasticity.

In chemometrics practice, the most common model seems to be the model of
constant relative error (6.153) which corresponds to the multiplicative type of
heteroscedasticity.

Step 3: Estimation of parameters

There are many methods of parameter estimation for linear models with heteroscedas-
ticity in the data, but we restrict ourselves to the simplest one, i.e. the method of
weighted least-squares (WLS), which is possible with most linear regression programs.
The general procedure consists of the following steps:

(1) Estimation of parameters f in the linear model by the classical LS method and
estimation of the residuals é;.

(2) Estimation of the parameters of the chosen heteroscedasticity type, with 62 = é2.

(3) Estimation of weights from V;; = 1/6% where 6% is the estimate of the standard
deviation determined from the parametric model of heteroscedasticity.

The main problem of parameter estimation for heteroscedastic models lies in the
transformation of the squared residuals é%. This problem can be solved partly by use
of quasilinear regression.

For a case defined by Eq. (6.153) the weights may be chosen such that V;; = 1/|y;l,
or with the use of predicted values calculated by the classical least-squares method,

V= 1194

Problem 6.42. Tests for heteroscedasticity in the validation of a new analytical
method

Data from Problem 6.7, on the validation of a new analytical method by comparison
with a standard one, were examined in Problem 6.37 and heteroscedasticity was
proved. For the multiplicative model of heteroscedasticity [Eq. (6.153)], estimate the
unknown parameters by the weighted LS method.

Data: from Problem 6.7

Solution: Data are examined for two assumptions:

(a) Assumption of constant relative error of measurement.

With the use of the WLS method and weight Vj; = 1/|y;| the regression equation is
found to be y = 8.23 (+5.177) + 0.879 (+0.0249)x, with determination coefficient
R? = 0.983 and quadratic error of prediction MEP = 20560.

Figure 6.48b illustrates “reverse” heteroscedasticity with regard to variable x: the
variance decreases with increasing values of x.

(b) Assumption of multiplicative heteroscedasticity.

The results of Problems 6.7 and 6.37 suggest that the multiplicative model of
heteroscedasticity is applicable. Figure 6.49 shows the plot of In é7 vs. x;, with the
straight line In 2 = 3.239 + 0.005098x.

For parameter estimation, the WLS method was used with weights

Vi = 1/./exp(3.239 + 0.005098x,)

and the regression equation was estimated as:
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Fig. 6.48—(a) Regression model with 95% confidence interval of prediction, and (b) the
graphical examination of residuals & The weight V;; = 1/|y;| is used.
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Fig. 6.49—The plot of In é? vs. x; indicates a multiplicative model of heteroscedasticity.

y = 7.937 (+6.898) + 0.895 (+0.0259)x

with determination coefficient R? = 0.982 and the mean quadratic error MEP = 1410.
In Fig. 6.50, the residuals form a random pattern, and therefore the heteroscedas-

ticity has been removed.

X

1000

Conclusion: It was found that application of weights according to V;; = 1/|y;| is not
always the best solution. It is better to determine the actual type of heteroscedasticity.

1000
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Fig. 6.50—(a) Regression model with the 95% confidence intervals and (b) graphical
examination of residuals. Weights ¥;; were found from a multiplicative model of heteroscedas-
ticity.

6.6.2.2 Autocorrelation

Autocorrelation in data represents a violation of condition 6 for least-squares
methods, concerning independence of measurement errors. Autocorrelation may be
found in chemometrics problems involving data concerned with time dependencies,
for example, the data from the kinetics of a reaction. The covariance matrix of errors
C, contains off-diagonal elements.

In chemometrics problems, we are often faced with cumulative errors which are
the consequence of a sampling technique used when all experiments are carried out
on a single solution. For example, investigation of the kinetics of a chemical reaction
is performed by measurement of the concentration of initial substances or resulting
reaction products in a single experiment. The process error ¢, at time t is, in an ideal
case, given by

t
6= u (6.163)
j=1

where u; are independent random variables of the normal distribution N(0, 6?). This
equation shows that the process error ¢, is a sum of all the random effects which
have affected the process throughout the experiment. The model [Eq. (6.163)] is a
special case of the autoregressive model of the first order AR(1), for which Eq. (6.132)
is valid. Other eventualities leading to a non-diagonal matrix C, rarely appear in

chemometrics.
In the case of model AR(1), Eq. (6.132) may be expressed in matrix form as
e=Au (6.164)

where A, is the lower triangular matrix
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1 0 0 0
P1 1 0 .. .0

A =| p? 01 1 . . .0 (6.165)
Pt T e 1

and moreover it is valid that E(g) = 0 and the variance of the ith error is given by

t—1
De) =0y plim—
i=0 1 —py

(6.166)

The last term in this equation is valid on the assumption that ¢ has a sufficiently
high value, or that the autoregressive process started at t = — oo.

For an autoregressive process of the first order, simple expressions for covariance
of errors, E(¢, ¢,) may be found and the stationary covariance matrix of errors
formed

. | Y S
- L (6.167)
T 1—p}| : R '
[ R R B
with a general element C;; =p|i~J!. The inverse matrix has the simple structure
1 —p, 0 0o . 0]
p | =P 1Pt —p 0O .0
C'=—=1| 0 —pr 1+4p3 —p, . O (6.168)
g . . . . . .
0 0 0 0 01

For the autoregressive model of the first order, the covariance matrix of errors
may be determined by substitution into Eq. (8.21a) (Chapter 8). In calculation of the
inverse matrix C,! the matrix A7! should be known

1 o o0 . . .0

—p1 1 o . . . 0

Al = 0 —p; 1 0
0o 0 0 . . .1

This matrix is composed from unit diagonal elements and one underdiagonal band
of identical elements — p,. The corresponding matrix C ! differs from the matrix of
Eq. (6.168) only in that the first element on the main diagonal is not equal to 1 but
to (1 + p2). For the case of cumulative errors in Eq. (6.169), p; = 1. When p, is
unknown, the GLS method with a weight matrix V = A7' is used.

Let us derive the equation for the transformed vector w and the matrix Z used in
Eq. (6.147). By a straight multiplication we determine that w; =y, and
w;=y;— p1yj—1 for j=2,..., n. The first row in the matrix Z is x,. The general
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element Z;; of other rows of this matrix is given by
Zij=xij—p1xi_1,j, i=2’_”,n
j:l,..-,m (6169)

When the first experimental point is omitted and the first row in matrix Z is neglected,
we obtain the Cochrane—Orcutt estimate, which corresponds to the minimum of the
LS criterion for the first differences

Uog = 'Zn‘,z [yi = p1Yyi-1) — (X — p1Xi—1)bz]? (6.170)

where x; stands for the ith row in matrix X. However, it is better to use all experimental
points, and the regression criterion

Ug = Ug + (y1 — X1 bz)? (6.171)

When the autocorrelation coefficient p, is not known it can be estimated by
A i=2 .
pp=—"n—— (6.172)

Equation (6.172) represents the slope of the regression straight line of the plot of é;
vs. é;_,, estimated by the classical LS method. As the residuals do not have constant
variance, it is more convenient, in Eq. (6.172), to use the standardized residuals
és; = é;/</1 — H;;. By substituting for p, from Eq. (6.172), U, or Uk can be minimized
and the estimates b, of parameters p may be found. These estimates are biased,
because the estimate of the autocorrelation coefficient of the first order, p,, from Eq.
(6.172) is not ideal for small sample sizes. A significant improvement can be achieved
by iterative refinement, as follows:

(1) For a given p, the estimates b, and residuals & are evaluated,;
(2) With the use of the residuals &, estimate p, is refined, then step (1) is repeated.

The iteration process terminates when the estimates for p, in two successive steps
do not differ.

It is permissible to make a simultaneous search for both estimates b, and p, by
minimization of Ug by nonlinear regression, because of p,, even though the model
is linear in B.

Problem 6.43. Estimates of the parameters of a regression straight line in data with
cumulative errors

Write expressions for the parameter estimates of the calibration straight line
E(y/x) = B;x + B, when the experimental arrangement produces data with cumulative

€ITOTIS.
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Solution: Because the case of cumulative errors is a special case of model AR(1) for
p1 = 1, we start with the more general solution which is valid for any p,. For a
regression straight line, E(y/x) = B;x + B, the regression criterion Uy is

Ug = (y1 — byzxy — baz)* + 'Zz [(yi = p1yi-1)

—bizlxi — p1xi—1) — baz(1 — Pl)]z-

From both derivatives dUg/db,z and 8Ug/db,z, estimates may be found which
minimize Ug. Then a set of two linear equations is formed

yixg + Z i — P1yi- )X — p1Xi—1)
i=2

i=

yi+ (U= p)Y (31— pr3iet)

i=

xi + an (xi — p1Xi-1) x + (11— Pi)'i (xi — p1Xi-1) I:blz]

i=2 i=2
. b
Xy +(1=p) Y (X1 —prxi-y) 14+(1—p) 2
i=2
from which the estimates b,z and b, are calculated. For a case of cumulative errors,
when p = 1, the formulation is simpler

i=2

{J’xxl + i (yi = yi-x; — xi—l):‘

N
_ X+ Y - Xi-1)* X1 | | biz
i=2 byz
Xy 1

From this, the following estimates are calculated
bzz = yl - blZ X xl (6.174)

and

Vi — yi-1)0ei — xi-1)

i

i

(6.175)

blZ =

i (xi — xi—l)z
i=2

Equation (6.175) corresponds to the minimum of Uy, and also of the simplified
criterion U, of the LS method in first differences. From the set of normal equations,
the estimates of variance may be derived
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0.2

D(bIZ) =
(i — x;-1)?

n
i=2

and

D(bzz) = 0'2 1 + —',.—'X%—
‘Zz (xi — xi- 1)

From Eq. (6.175), we can also prove that for the case of constant difference between
the location of experimental points A = x; — x;_, i =2, ..., n, a simple expression
can be derived for the slope

— Yn— V1
bz Axm—1) (6.176)
Conclusion: For the case of cumulative errors, the estimates of the calibration straight
line parameters and their variances can be found from Egs. (6.174) and (6.175). The
estimate of a slope is not affected by the use of the simple criterion of the LS method.

Problem 6.44. Parameters of the kinetics of sugar inversion, with consideration of
various errors in the data
Problem 6.38 presented kinetic data for the inversion of sugar. Because samples were
taken from a single sugar solution after different time intervals, it can be expected
that the data contain cumulative errors. Estimate parameters §, and S, of the
regression straight line E(y/x) = f; x x + B, with the use of (a) the classical LS
method, (b) the generalized LS method for the case of cumulative errors, and (c) the
generalized LS method for the AR(1) model of errors.
Data: from Problem 6.38
Solution: (a) The LS method.

By use of the classical LS method, the regression equation found was

y = 1.002(40.0017) — 0.005303(+0.0000357)x

with the residual standard deviation ¢ = 0.00276. The sign test confirmed a trend in
residuals. The number of sequences ny = 8 is significantly higher than the expected
mean value E(ny) = 4 for independent residuals. The estimate of the autocorrelation
coefficient p, = —0.715 shows that the assumption of cumulative errors is not quite
correct. The value p, is strongly affected by the small number of data points.

(b) The GLS method for cumulative errors.

Substitution into Egs. (6.173) and (6.174) and the corresponding expressions for
variances yields the regression equation

y = 1.000(£2.19 x 10~3) — 0.005238(+0.000166)x

with residual standard deviation 6 = 0.00469.
(¢) The GLS method for the AR(1) model of errors.
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With the use of estimates from Eq. (6.173) the best estimate of p; was refined
iteratively, to p, = —0.864. The calculated regression equation is then

y = 1.003(£6.8 x 107%) — 0.00532(£+1.49 x 107 )x

with residual standard deviation 6 = 0.00189.

Conclusion: The large number of sequences of residuals ny in comparison with the
mean value E(ny) ~ n/2 shows that the model has structure AR(1). With a model of
cumulative errors, it may happen that the results are much worse than those from
the LS method. The general expression (6.173), with iterative refinement of p,, is
more convenient to use. This method gave decreased residual standard deviation and
variances of parameter estimates.

Many varied tests may be used to test the significance of the autocorrelation
coefficient p,. The Wald test is a simple one which examines the null hypothesis Hy:
p: = 0 against the alternative one H,: p; # 0 by using the test criterion

A2
npy
W,=——-— 6.177
=T (6.177)
When H, is valid, the test statistic W, has approximately the y*(1) distribution with
one degree of freedom.
The Durbin—Watson test is based on the test criterion

(6 — &)
p,==2 (6.178)

n
x &

i=1

e

and D, ~ 2 — 2p,. The range of rejection of a null hypothesis Hy: p; = 0 depends
not only on the selected significance level o but also on the location of experimental
points x;. For positive autocorrelation, 0 < D,, < 2, while for negative autocorrelation
2 < D, < 4.1f D,, ~ 2 then the autocorrelation coefficient is not significant. If D, ~ 0
or D, ~ 4, respectively, the null hypothesis H, is rejected and p, is significantly
different from zero. In statistical tables both critical limits, the lower, d;, and the
upper, dy, for a given significance level « and number of controllable variables m,
may be found. When p, > 0, for D,, > dy the null hypothesis H, is accepted, and for
D, < d, it is rejected. When d; < D,, < dy, the test is not conclusive. When the value
of the autocorrelation coefficient p, is very high, the proposed regression model may
be false, and a significant variable may have been excluded from the model.

Problem 6.45. Examination of the autocorrelation coefficient for the kinetics of
inversion of sugar

Examine the significance of the autocorrelation coefficient p,. In Problem 6.44, a
value p, = —0.715 was found for its estimate.

Data: p; = —0.715,n = 9.

Solution: For the Wald test (6.177), the test criterion is
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9(—0.715%)
o = (1 —0.715%) 9413

Since W, is greater then the quantile x3 o5(1) = 3.84, the null hypothesis Hy: p; =0
is rejected and the autocorrelation coefficient p; may be considered to be significantly
different from zero.

Conclusion: Examination of the autocorrelation coefficient confirmed the conclusion
of Problem 6.44. By using the iterative method of refining the autocorrelation
coefficient, the refined estimate is p, = —0.864.

6.6.3 Multicollinearity

Mutlticollinearity does not mean a violation of the conditions for the least-squares
methods. It concerns an assumption about positive definite matrix X*X and therefore
the solution of Eq. (6.11).

According to Section 6.1, we understand the columns of matrix X as the column
vectors which define the hyperplane L in n-dimensional Euclidean space E” (Fig. 6.2).
According to the angle 6 between two vectors x; and x; (or between columns of
matrix X) two limiting cases may be distinguished:

(1) Orthogonality is found when the cosine of angle 8 is zero

cos 0 = —Xin Xe2_ (6.179)
(b 91/ b A
and also the scalar product <{x;, x; > = 0 where the symbol |x;| = \/{x;, X;)> means
the length of vector x;. If all the columns of matrix X are mutually orthogonal, then
the matrix XTX is diagonal and the regression analysis simplifies (Section 6.4.1).

(2) Collinearity is found when the cosine of angle 6 is equal to 1, cos 0 = 1,
because the angle between vectors x; and x, is zero, 6, = 0, and the two vectors x;
and x, are parallel and linearly dependent, and the following expression holds for
them

CiX; + ¢ X = 0 (6180)

where c; and ¢, are nonzero constants. When Eq. (6.180) holds for g pairs of columns
of matrix X, its rank is equal to m — q and the matrix X"X is singular.

Equation (6.180) can be valid for more vectors yet, when one of the columns x; is
the result of a linear combination of several other columns. This situation is called
perfect multicollinearity. The term multicollinearity, however, can include other
cases when some columns of matrix X have nearly zero angle and are therefore
approximately linearly dependent.

Y cx; =9 (6.181)
i=1

where & is the vector with components near to zero, and the vector ¢ with elements
c; is nonzero, |cl| > [4]|. The multicollinearity causes ill-conditioning of the matrix
XTX, and this has two consequences:

(a) the determinant of matrix X"X is close to zero;

(b) some eigenvalues of matrix XTX are close to zero.
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Multicollinearity causes many difficulties in inversion of matrix XX and also
numerical errors, depending on the machine precision of the computer used. As well
as numerical difficulties, multicollinearity causes statistical difficulties. From Eqgs.
(6.88) and (6.87), it is evident that for 4 values near to zero, the parameter estimates
and their variance will be abnormally high. The special difficulties are caused by the
sensitivity of the parameter estimates b to small changes in data, such as adding
another point to the data.

Figure 6.51 shows a geometric interpretation of the LS method for two nearly
collinear controllable variables. Figure 6.51a shows vector y projected into a segment
of angle 0, ,, and Fig. 6.51b shows a case when a small change in vector y causes its
perpendicular projection to lie out of this segment.

b
v (a) v (b)

Fig. 6.51—Geometric interpretation of the sensitivity of the estimates in the case of
multicollinearity: (a) the estimates b, and b, are small and positive, and (b) the estimate b,
is negative while b, is large and positive.

Multicollinearity causes the following statistical difficulties:

(a) Non-stability of estimates is caused by great sensitivity of parameter estimates
to small changes in the data. The estimates often have the wrong sign, and this
damages their physical interpretation.

(b) Large variances D(b;) of individual estimates cause t-tests to indicate that
parameter f; (cf. Section 6.3) is statistically insignificant.

(c) Strong correlation between elements of the estimates vector b means that they
cannot be interpreted separately.

On the other hand, in cases of multicollinearity the determination coefficient is
always high and the regression model may fit the data quite well. For data
approximation and data smoothing by regression, multicollinearity does not cause
difficulties apart from numerical ones related to the ill-conditioning of matrix X"X.

When data are measured according to an experimental design the problem of
multicollinearity is removed. The plan of designed experiments leads to orthogonality
of the columns of matrix X.

When data are not measured according to a designed experiment multicollinearity
always exists to some extent. However, strong multicollinearity causes the parameter
estimates and hypotheses tests to be affected more by linear connections between the
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columns of matrix X than by the regression model itself. In the chemical laboratory,
the values of the controllable variables may be adjusted freely, so the problem of
multicollinearity may be avoided by an appropriate data measurement step.

With reference to multicollinearity in data, we can identify three cases of interest.

(a) The over-estimated regression model contains too many controllable variables
expressing the same basic factors. An example is a structure — properties model
in which properties of substances are described by various measurable changeable
structures.

(b) Inappropriate location of experimental points causes multicollinearity to form
“artificially” because of the choice of location of points. Often the values of
significantly important variables oscillate in a small range and seem to be nearly
constant, and they are collinear with the vector corresponding to the intercept
term.

(c) Physical constraints in model or data refers to limits on the values of the
controllable variables derived from the chemistry of the system. An example is
an investigation of multicomponent mixtures where the controllable variables
are represented by the content of each component. Because the sum of all
relative concentrations should be equal to 100%, in a g-component mixture
there will be (g — 1) independent components. In a model, only (g — 1) variables
are assumed: for a two-component mixture there is only one variable, for a
three-component mixture, only two, etc. Similar restriction may apply to
stoichiometric ratios, etc.

From knowledge about the controllable variables, and their significance and
restrictions, multicollinearity can be completely removed from the data. In the case
of polynomial models, the multicollinearity is defined by the model structure. If the
experimental strategy cannot be changed, other techniques for decreasing the influence
of multicollinearity should be used, despite the fact that the parameter estimates are
then biased, as in the case of the method of rational ranks (section 6.4.2).

Muiticollinearity can be detected from scatter plots for x; and x;, when the
approximate linear dependence proves the strong multicollinearity. The multicollin-
earity may be exposed or masked by the presence of influential points and especially
by high leverage points. For diagnostic purposes, the residuals v; of regression
variable x; on the remaining controllable variables in a matrix X(; which does not
contain the column x; can be used. Let us use H;, to denote the projection matrix
which corresponds to the projection into a subspace of columns of matrix X;. For
diagnosis of influential points from the point of view of multicollinearity, the plot of
v3:/(v].v;) against H;; is used, where v;; is the ith component of vector v; and
H_;;; is the ith diagonal element of matrix Hy;.

In Fig. 6.52, the points strongly affected by multicollinearity are located in the
bottom right-hand corner and the top left-hand corner of the graph. The points
located in the top left corner cause multicollinearity only when variable x; is included
in the model. The points located in the bottom right corner are strongly influential
only when variable x; is not included in model.

The presence of multicollinearity can be identified on the basis of numerical and
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Fig. 6.52—Identification of multicollinearity in data: M denotes multicollinearity.

statistical criteria. Instead of the matrix X"X, its normalized version R is used. Matrix
R is formally identical with the correlation matrix of controllable variables.

The following numerical criteria are commonly used.

(a) The determinant of matrix R is calculated from

det®) = ] 4
j=1

where the ; are eigenvalues of the matrix R. If det(R) is small and less than 1073,
multicollinearity is detected.
(b) The conditioning number K is calculated from

K = Amax/Amin (6.182)

where A,,, and A.;, are the maximal and minimal eigenvalues of a matrix R. If
K > 103, strong multicollinearity is detected.

The main statistical criterion used is the VIF factor, defined as the ratio of the
variance of the jth regression coefficient to the same variance for orthogonal variables
when R is the unit matrix. It is given by

~

where R; is the jth diagonal element of matrix R™'. The VIF factors are related to
the determination coefficient R,ch of regression x; on X(; when x; is expressed as a
combination of other controllable variables. Then

VIF) = - (6.184)
xj

If VIF; > 10, strong multicollinearity is detected.
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Problem 6.46. Testing for multicollinearity in the dependence of the mean activity
coefficient on temperature

The dependence of the logarithm of the mean activity coefficient on the temperature,
Inyy = f(T) can be expressed by a polynomial of the third degree. Consider the
extent of multicollinearity and use the method of rational rank to decrease the
multicollinearity level.

Data: measured for myg = 0.1

T, °C 0 10 20 30 40 50
Iny, 0.8067 0.8038 0.8000 0.7964 0.7927 0.7867

60 70 80 90
0.7828 0.775 0.769 0.765

Solution: For the proposed model, Iny, = B, T+ B,T? + B3 T? + B,, the regression
equation is found to be

Iny, =0.807(£1.06 x 1073) — 2.654 x 10~4(+ 1.07 x 10~4)T
— 313 x 1075(+2.87 x 10-%)T? + 9.44 x 10°(+£2.09 x 10~%)T?

by the classical least-squares method (estimated standard deviations of parameter
estimates are given in brackets). The determination coefficient R? = 0.9957, the
quadratic error of prediction MEP = 3.507 x 10~% and the Akaike criterion
AIC = —132.26. Table 6.13 lists the eigenvalues and the VIF factors. From
these numbers, det(R) = 3.97 x 10~* and the conditioning number K = 1989.73 are
calculated. From t-tests at the significance level « = 0.05, parameters 8, and f, are
statistically insignificant.

Table 6.13. Characteristics detecting multicollinearity

P Characteristic j=1 j=2 j=3
10733 VIF; 70.42 439.1 184
y 0.00146 0.0935 2.905

0.05 VIF; 6.204 0.260 4.373

With the use of the method of rational ranks, the regression equation with precision
P = 0.05 is estimated in the form

Iny; =0.807(+8.72 x 107%) — 3.22 x 1074(£3.28 x 10~ 3T
—1.476 x 107 %(+7.18 x 107 8)T? — 2.837 x 1079(+3.314 x 10™°)T?

with the determination coefficient R? = 0.9955, the mean quadratic error of prediction
MEP = 2.264 x 10~ ° and Akaike criterion AIC = —131.7. Table 6.13 gives the VIF
factors. The matrix R ™! constructed according to Eq. (6.86), and replacing j = 1 with
Jj = o, removed multicollinearity, and t-tests at significance level a = 0.05 showed
that the parameter f; is statistically insignificant.
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Figure 6.53 shows the regression model found by the method of least-squares, with
the 95% confidence intervals, and Fig. 6.54 shows the model found by the method
of rational ranks (P = 0.05). From comparison of these figures, it is obvious that
elimination of multicollinearity leads to narrower confidence bands.

Conclusion: Significant multicollinearity, as indicated by the VIF criterion having a
value higher than 10, causes an increase in the estimates of variance, and hence an
increase in width of the confidence bands. Elimination of multicollinearity leads to
a decrease in goodness-of-fit (a decrease of R?) but to an improvement in the pre-
diction ability of model (the criterion MEP), in addition to the decrease in the vari-
ance of estimates and narrowing of confidence bands. Elimination of muiticollinearity
is rather important in calibration in the instrumental methods of analytical chemistry.

0.82 (a)  3.00 (b)
Inyx | e
7
5]

12

0.79 0.00{! 2 6
8
9
4
0.75 -3.00
0 50 - 100 o 50 - 100

Fig. 6.53—(a) Regression model estimated by the LS method, and (b) graphical examination
of residuals.

6.6.4 Variables subject to random errors

In chemometrics problems, both the dependent variable y and controllable variables
x are measured quantities. The variances of x are usually significantly smaller than
the variance of y, and also smaller than the differences between the locations of
individual points. Under such conditions the assumption about the deterministic
matrix X may be abandoned. In some cases it is necessary to suppose that instead
of variables x; we measure experimental values ¢; given by

tij = xij + K,'j (6185)

where k;; are errors of measurement of the jth independent variable at the ith point.
The result of measurement is the set of n points {y;, t;;;j=1,...,m},i=1,...,nIf
the x;; are deterministic quantities we speak about functional models, but if the x;;
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Fig. 6.54—(a) Regression model estimated by the rational rank method and (b) graphical
examination of residuals

are random quantities we speak about structural models. The errors ¢; and k;; have
the properties:

(@) Both errors, ¢; and x;;, have zero means.

(b) The variance of errors D(e?) = 6% and D(x? ;) = 13 are at all n points constant
(homoscedasticity). j

(c) The errors ¢; and «;; at different points (i.e. measurements) are uncorrelated, so
that E(s; ¢€;)=0,i#jand E(x;; ;) =0,i#k.

(d) The errors ¢; and «;; are mutually uncorrelated so that E(s; k;;)=0,j=1, ...,
m.

If errors ¢ have a normal distribution N(0, 62) and errors k; also have a normal
distribution N(0, 7%), then according to the maximal likelihood method, the criterion
of the extended least-squares method (ELS) can be expressed as:

n 1 m 2 m
Ugh, X) = ), [7<yi— ) bjxij> + ) —2(tij—xij)2] (6.186)
i=11L0 j=1 j=17Tj
By minimizing the function Ug(b, X) with respect to b and to x;, we find the extended
estimates bg and also correct quantities X;; of controllable variables x;;. With some
simplifying assumptions, Eq. (6.186) can be expressed as

Ug(b) =" 2 (6.187)
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where b,, is the intercept term. For a regression straight line, Eq. (6.187) is simplified
to:

Z (yi — by x t; — by)?
UE(bnbz) ==t

. (6.188)

Figure 6.55 shows that for g% = 12, the criterion Ug(b,, b,) leads to minimization of
the squares of perpendicular distances between the regression function and the
experimental points.

x

[ R ——— ]

t

Fig. 6.55—Illustration of the criterion of squares of perpendicular distances
v* = Ay*/(1 + (Ay/Ax)?) for a straight line y = bt + b,.

The estimate of parameters b in Eq. (6.187) may be achieved by the iterative
procedure of the weighted least-squares method with weight values given by

me1_ \"172
Pi= 0'2+ .Zl bl:_'j'l,']g
j=

where by ; are the parameter values estimated in the previous iteration. However, the
procedure requires knowledge of variances 62 and 3. From the structure of Egs.
(6.187) and (6.188), it may be concluded that a knowledge of the ratios of variances,

should be useful in application of the iterative procedure.
We restrict ourselves now to the simplest linear case, i.e. the straight line. From
Eq. (6.185) we can write
Yi= bl(ti - Ki) + bz + & = blti + b2 + 8? (6.189)

where &% = ¢ — b k; represents errors related to a magnitude b,. To express the
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variance of real x values, the mean quadratic deviation o2 is used,

n
> O —x)?
=1

e L E—

n
The ratio
R
t x

is called the reliability ratio. If the true values of x; and the errors «; are not correlated,
the mean value E(b, ) estimated by least-squares with neglect of an error &* structure
is given by

E(by) = B1K, (6.190)
The corresponding determination coefficient is expressed by
R% = R%LK, (6.191)

If the classical least-squares method is used, measurement errors cause a decrease
in slope estimate b; and in the correlation coefficient. The magnitude of this decrease
depends on the reliability ratio K, or on the ratio of 62 to 2. If K, is significantly
lower than 1, Eq. (6.188) is used to estimate slope b, .

To remove the intercept b, we introduce the centred variables (y; — y) and (t; — ).
If we know the variance ratio K = ¢?/12, Eq. (6.188) may be expressed in the form

T G- -b-07
Ugthy) = =2

K10, (6.192)

After analytical minimization of Ug(b,) we obtain
big = L+ sign(S,,) x /K + [? (6.193)
where

L=S!i_KXS'

28,

and sign(S,,) gives the sign of variable S,,. Symbols S represent the sums of squares

= % -y

=§m—w

g — -0
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When the slope b, is known, the intercept b,g of the regression straight line may
be calculated from

The influence of the magnitude of K on the set of regression straight lines is evident
from Eq. (6.193).

(a) For K — oo, the regression line corresponds to the LS method.

(b) For K =1, the regression line minimizes the perpendicular distances from
experimental points. This is called orthogonal regression.

(¢) For K — 0 the regression line is an inverse regression ie. a linear dependence
of t on y.

Unsuitable selection of the magnitude of K leads, however, to an increase in
variances, so the techniques for simultaneous estimation of parameters and variance
ratio are used. Some other procedures of regression analysis, for the case when all
variables are subject to random errors, are described by Fuller [36].

We will write an expression for a structural model for which the random variables
x, ¢ and k have independent normal distributions with variances 62, ¢> and 2, and
for which the ratio K = ¢?/12 is also known. The variance estimates are then given
by

ﬁ=ﬁ%ﬁ{JK+E—4 (6.195)

and
1

£2 = m_—l)[Sy + KS, — 25, /K + LZ:I (6.196a)
and

4% = t’°K (6.196b)

The variance of the slope of the regression straight line is given by
1 . N

D(blE) = m[éiSv + TZSV - b%E‘lA] (6197)

where

n—1 .
S, = o 2(K + b3p)t?
To test hypotheses about parameter b g, the test criterion

i — b

" /D)

is used. If the null hypothesis Hy: f; = b¥ is accepted, this criterion has approximately

(6.198)
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the Student t-distribution with (n — 2) degrees of freedom.
The variance of the intercept of the regression straight line is estimated by

Dibar) =¥ + 2D(b) (6.199)
where
Xt
F= i=1

1]

Problem 6.47. Validation of a new analytical method when both variables are subject

to random errors

In Problem 6.7 the results of new analytical method (y) are compared with the
standard one (x). Estimate both parameters of regression straight line y = f1x + f,
when both variables x and y are loaded by experimental error and the variances of
both methods are same, K = 1. Test the null hypothesis Hy: f; = 1.

Data: From Problem 6.7

Solution: Sum of squares S, = 1.327 x 105, S, = 1.714 x 10°,5,, = 1.489 x 10° substi-
tuted into Eq. (6.193) give the estimate of slope b, = 0.8784 and into Eq. (6.194) the
estimate of intercept b, = 11.521. As the estimates of variances are 62 = 7.367 x 10*
and 72 = 848.53 = 62, the estimate of variance of the slope from Eq. (6.197) will be
D(b,) = 9.337 x 10~ * and of the intercept from Eq. (6.199) D(b,) = 161.53. When we
test the null hypothesis Hy: f; = 1 with Eq. (6.198), we find that the test criterion
T = |0.8784 — 1|/\/9.337 x 1074 =39795 is higher than the quantile
to.075(22) = 2.074 and therefore the null hypothesis H,, is rejected and the slope B,
differs significantly from 1. Figure 6.56 demonstrates the regression straight line
which minimizes perpendicular distances from experimental points.

Conclusion: Correctly recognizing that both variables are subject to random errors
does not cause any difficulties in estimation of the parameters of the regression
straight line. A set of regression straight lines arranged according to the precision of
individual variables (the magnitude K) may be calculated. For K =1 the useful
criterion of perpendicular distances from experimental points is obtained.

6.6.5 Other error distributions of the dependent variable

6.6.5.1 The M-estimates method

When the distribution of the errors in the dependent variable y is not normal
(violation of condition 7 for the LS method, Section 6.2) the parameter estimates
obtained by the LS method are not the best possible estimates. In such a case, instead
of the least-squares criterion some other robust criterion can be used, that is not so
sensitive to violation of the condition about the error distribution, and not sensitive
to influential points. The most convenient robust criteria seem to be the group -
of M-estimates. The M-estimates are maximal likelihood estimates for a given proba-
bility density function of errors p(g). All M-estimates are related to the minimization

N
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700

350

0

0
500 X 1000

Fig. 6.56—The regression straight line minimizing the perpendicular distances from
experimental points.

criterion
Uu = ), plei/o) = 3, p((y: — x;bw)/o) (6.200)
i=1 i=1
where x; is the ith row of matrix X, ¢ is the parameter of spread and p(.) is a
convenient function determined from the probability density p(e). By analytical
minimization of Uy, (6.200) a set of normal equations is obtained:

i Yle/o)x;;j=0, j=1,....,m (6.201)
i=1

where the function

represents the derivative of function p(x) with respect to x. Then, if r; = ¢;/0, Eq.
(6.201) may be expressed in a form which corresponds to the weighted least-squares
method

Z w,-(r)yix,-j = Z Z Wi(r)xijxikbk j= 1, P /() (6.202)

i=1 i=1k=1

where w;(r) = Y(r;)/r;. The parameters are estimated by the iterative method of re-
- weighted least-squares (IRWLS), by using the following procedure:

(1) Select wi(ry=Li=1,...,nandsetl=1.
(2) Estimate the residuals r, = /6, by the classical least-squares method. In order
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to reach convergence, corrected least-squares estimates are used [40]. '
(3) Calculate the weights wy(r;) from Eq. (6.203), for I =1 + 1.
(4) Use the reweighted least-squares to estimate b; and the residuals r,.
(5) If the estimates b, and b, ; are not close enough, go to step 3, otherwise b, = by,.

It should be noted that in the jth iteration the weights used have been calculated
from residuals &,_, in the (I — 1)th iteration. By applying this method, the robust
estimate of parameter ¢ can be evaluated. An independent estimate 6; from the
residuals &,_, determined in the previous iteration seems to be most convenient. A
useful expression is

med(|é, — med(2,)])
0.6745

6= (6.203)
where med(é;) is the median calculated from all residuals and for sake of simplicity,
the indices (I — 1) denoting the actual iteration used for residual estimation, are
omitted. The constant 0.6745 for large sample size fixes the value 6 to be equal to
the residual standard deviation & but for a normal error distribution. A simpler
option is

¢ = 2.1 med(|g]) (6.204a)
Hill and Holland [37] recommended the expression

med(largest(n — m)|é;|)

0.6745 (6.204b)

6=

Huber [38] recommends a procedure of simultaneous estimation of b; and 4, in every
iteration. Some variants of IRWLS method are described in a paper by Li [39].

It can be difficult to make the initial guess of the parameters to be estimated.
Application of the classical least-squares method can cause difficulties from non-
convergence of the estimates. The simple procedure of the corrected least-squares
method was suggested by Phillip and Eyring [40]. It starts with estimates b determined
by the classical least-squares method. From residuals & the robust parameter of scale
is estimated

S = med;(|¢;]) (6.205)
and the winsorized residuals are calculated by the rule

A—158 foré; < —1.58
e}v = —}éi for lé,l < 1.5 S
™S158 foré; > 158

The vector of correction § = (g, ..., q,)" is calculated as the vector of regression
coefficients e on X from

q = (XTX)— leew

To calculate the quantities 7, and w;(r;), the following corrected parameters values
are taken as initial values

_
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b*=b+4q

This procedure does not require much computer time, since the matrix (X™X) 7! is
already evaluated.

The statistical analysis of M-estimates is based on fact that estimates by, have an
asymptotically normal distribution with mean B and covariance matrix

D(by) = *(X™X)"! (6.206)
where
2 B
- 2
LEW)]
Estimate 22 can be found from the expression
i )
A2 i=1 h—m
' =K;gr——=; (6.207)
i Y'(r:)
i=1 N

The constant K, is the correction for finite samples; it may be set equal to one
(according to Li [39]) or calculated from an expression suggested by Huber [38].

The advantage of the IRWLS method is the fact that after termination of iterative
refinement of parameter estimates the covariance matrix of the LS method is already
the estimate D(by).

To examine robustness, functions such as p(r) should be selected in order to get
the derivative y(r) bounded. From Fig. 6.57b it is obvious that for the LS criterion
the function Y(r) is not bounded, because it increases with an increase of r.

plr) (a) win) (b)

r
Fig. 6.57—(a) Function p(r), and (b) function y(r) for the least-squares method.

Of the robust methods, we restrict ourselves here to the L; method and the method
of combined procedure with “Biweights”, i.e. regression with limited influence. The
second method is robust for all types of influential points.
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6.6.5.2 The L, approximation method
The method of L, approximation is also called the method of least absolute residuals.

The criterion is in the form

Liby= Y lyi— ), xi;b; (6.208)
i=1 j=1
This is a special case of M-estimates for p(r) = |r| and Y(r) = sign(r). Both are shown
in Fig. 6.58.
plr) (a) w(r) (b)
1
r
-1
r

Fig. 6.58—(a) The function p(r), and (b) function y(r) for the L, approximation method.

It can be seen from Fig. 6.58b that the function y(r) is bounded for all r by the
value + 1. This means that the criterion (6.208) is robust for all residuals. The estimates
b, achieved by minimization of the criterion L,(b) are maximum likelihood estimates
when the errors ¢ have the Laplace distribution. For a symmetric distribution of
errors with kurtosis greater than 3, the estimates by, are more effective, i.e. they have
smaller variances than the estimates b from the classical LS method. From Eq. (6.208)
it arises that the L,(b) criterion consists of several linear segments. Figure 6.59 shows
the dependence of L,(b) on b for the case of m = 1, for a regression straight line
passing through the origin.

From Fig. 6.59b it is evident that many different estimates may exist that correspond
to a minimum of L,(b). Minimization of the criterion L,(b) is a linear programming
problem, i.c. to search for the minimum of [Z’,’=, (et + e7)] when

Xb, +e* +e =y

where e*, e~ > 0 are vertical deviations from the regression plane Xb, (Fig. 6.60).

Estimates for parameters b, may be obtained by the program IRWLS by using
the weights w;(r) = 1/|r;| [Eq. (6.202)].

For simple regression models such as the equation of a straight line, we can use
the condition that the regression function corresponding to a minimum of the
criterion L,(b) must go through just m experimental points. This fact can be used in
writing an algorithm which, for all combinations of m points, determines the parameter

|




Sec. 6.6] Procedures when conditions for least-squares are violated 131

L4(b) @ 1) (b)

by b by b

Fig. 6.59—Two possible shapes of the criterion function L,(b): (a) with an obvious minimum,
(b) the minimum covers an interval.

s X bL/
B

=

Fig. 6.60—Representation of the vertical deviations e* and e~ from the regression plane
Xb,.

estimates by solving linear equations for m unknowns, and the values for the estimates
by are those for which the criterion Ly(b) has a minimum. For a regression straight
line, and a small number of experimental points, this algorithm is rather simple i.e.
it formulates a search for the slope and intercept of a straight line going through two
points.

Problem 6.48. Examination of the relationship between the change of surface energy
of adsorption and the effective specific surface of a sorbent

Nikulichev and Kanchenko [41] studied the adsorption of stearic acid from decane
solution onto various sorbents including stearates and 12-oxystearates. The effective
specific surface S, of these sorbents and the change of surface energy as a consequence
of adsorption, — AG, were measured. Compare the L, approximation and LS methods
and, construct a linear model between the variables —AG and §,.
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Data:

[Ch. 6

S,, m2kg! 26 33 44 42 62
—AG, klmol~! 178 186 162 173 158

6.5
15.2

Solution: The LS method estimates the regression equation as
—AG = —0.7524 S, + 20.23

with the residual sum of squares RSS = 0.266 and the mean absolute deviation

A =044

By determination of all possible straight lines going through two points and

substituting into the L,(b) criterion, the following model was found:
—AG = —0.5556 S, + 19.24

with the residual sum of squares RSS = 0.352 and the mean absolute deviation

A = 0.435. The two straight lines are compared in Fig. 6.61.
19.0

17.0

15.0
0.0 3.5 s 7.0

e

Fig. 6.61—Comparison of the regression straight lines found by the LS method (LS) and

the L, approximation (L,).

Conclusion: For a regression straight line, application of the L, approximation is
simple. This method is robust enough to cope with the outlying point number 2.

Statistical analysis of the results of the L, approximation depends on the asymptotic
normality of estimates by . The covariance matrix D(by ) is calculated from Eq. (6.206),

and the variance 72 is estimated from

S
 2p(@)
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where p(é) is the probability density function of errors at the median. It is
approximately valid that

p(e) = 0.5 (e0.75s — €0.25)
where e, ;5 is the upper and e , 5 is the lower quartile of the residuals (Chapter 2).
Statistical analysis is similar to the LS method, but instead of 6? the quantity 7?2 is
used. Many authors describe the L, approximation as a generally robust method, but
this method is robust only with reference to outlying points and not to leverages.

Problem 6.49. Comparison of the robustness of the LS method with the L,
approximation, in the presence of one influential point

To illustrate the efficiency of robustness of the two methods, the LS and L,
approximation, six data points are used. The first data set (A) contains one outlier
(y is equal to 10 instead of the correct value, 1) and the second data set (B) contains
one leverage (x is equal to 10 instead of the correct value 1). If the regression method
is robust enough it should estimate both parameters f; = 1 and 8, = 0 in the model
E(y/x) = B1x + f,. Estimate b, and b, by the LS and L, approximation methods,
and compare the results.

Data:
x 1 2 3 4 5 6
Data set A ) 0 2 3 4 5 6
x 10 2 3 4 5 6
Data set B ) 1 ) 3 4 5 6

Solution: The estimates of parameters f, and §, by the LS and L, approximation
method are listed in Table 6.14, and the regression straight lines are shown in Fig.
6.62.

Table 6.14. Comparison of parameter estimates b, and b,
found by the LS and L,-approximation methods for the model

y=1xx+0.
LS method L, approximation
b, b, by b,
Data set A —0.2857 6 1 0
Data set B —1.25 4.125 —0.2857 3.857

The poor robustness of the LS method leads to a change of sign of the slope of

the straight line. The L, approximation is robust enough towards the outlying point
(set A) but not towards the leverage point (outlying in x value) (set B).
Conclusion: The L; approximation method is not generally robust enough to cope
with all types of influential points. One influential point can be enough for both
methods to give a false estimate of slope; the difference may be big enough to result
in a change of sign of the slope.
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12.0 (a) - 120 (b)

0.0 0.0

0.0 6.0 x 12.0 0.0 6.0 X

Fig. 6.62—Robustness of the LS method and the L, approximation for (a) set A (one outlier)
and (b) set B (one leverage and outlier together).

6.6.5.3 Robust estimates with bounded influence

By using a convenient choice of function p(r) or w(r), the robust M-estimates may be
found by the iterative reweighted least-squares method. Table 6.15 lists the most
frequently used types of M-estimates for p(r) and w(r) with numerical values of the
constant term.

Table 6.15. Functions p(r) and w(r) for five selected robust methods

Author
of

method plr) w(r) Range Constant
A%(1-cos(r/A)) (4/r). sin(r/A) <A  A=1339

Andrews 242 > A
(B*/2) 1 — (1 — (r/B)?»?) (1 — (r/B)?»)? Irl <B B = 4.865

Tukey B2 Irl > B
r2)2 1 Irl <k k = 1.345

Huber Kirl — K22 K/lr ">k
Tal /2 1 M<T  T=2795

alwar T22 0 n>T
Welsch (W2/2) (1 — exp (—(r/w)?) exp(—(r/w)?) - W= 2985

For analysis of chemometric problems the Tukey “biweight” is recommended. It
is suitable for calculation of r; = e;/a, with ¢ = S from Eq. (6.205). For the normal
distribution of errors this estimate is equal to 0.67¢.

The estimates of parameters determined by methods from Table 6.15 are robust
only on outliers but not on leverages (outlying in x values). To ensure robustness
against all types of influential points, estimates with bounded influence are constructed.
In the simplest way the set of equations (6.201) is modified by introducing new

|
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weights V(x;) into the expression

Z Ylei/o)x;;V(x;) =0

i=1

The weights ¥V(x;) eliminate the influence of leverages and are proportional to the
magnitudes H;; of the diagonal elements of the projection matrix H.
Krasker and Welsch [43] recommend selecting weights by using the expression

1 —Hy

Effective procedures for a construction of estimates with bounded influence may be
found in the work of Hettmansperger [44]. Introduction of the weights V(x;) from
Eq. (6.209) into computer programs does not cause any difficulty. In the IRWLS
method the weights w;(r) are replaced by weights V(x;)w;(r).

Vix;) =

Problem 6.50. Examination of the robustness of estimates with bounded influence
Estimate the parameters of the regression straight line for data from Problem 6.49
by using a combination of Welsch weights V(x;) (Table 6.15) in Eq. (6.209).
Data: from Problem 6.49
Solution: Table 6.16 lists estimates of the parameters for the regression straight line
for both data sets. Although both sets contain one strongly influential point, the
slope estimates are always equal to 1.

Table 6.16. Estimates b; and b,

of parameters f; =1 and §,=0
determined by the use of Welsch

weights

b, b,
Set A 1 1.87 x 107¢
Set B 0.995 0.0196

Conclusion: Estimates with limited influence are robust against all types of influential
points.

Some other global robust methods exist. Strong robust methods are methods in
which, instead of the sum of squared residuals, the median of squared residuals is
sought. These robust methods may be used to locate groups of influential points.

Problem 6.51. Operation of a plant for the oxidation of ammonia to nitric acid

The operation of a plant for the oxidation of ammonia to nitric acid was studied
[45], and a set of data from 21 days of operation was collected. The dependent
variable y represents the percentage of the input ammonia that is lost by escaping
as unabsorbed nitric oxides. This is an inverse measure of the yield of nitric acid for
the plant. Three independent variables are x the rate of operation, x, the temperature
of the cooling water in the coils of the absorption tower for the nitric acid, and x,
the concentration of nitric acid in the absorbing liquid. Investigation of plant
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operations indicates that the following sets of runs can be considered as replicates:
(1,2), 4,5,6), (7,8), (11, 12), and (18, 19). While the runs in each set are not exact
replicates, the points are sufficiently close to each other in x-space for them to be
used as such. Suppose the linear model is E(y/x) = f,x, + B,Xx, + B3x3 + B4, and
apply the LS method and the L, approximation method to indicate influential points.
Data: (*denotes the strongly influential point in output)

Stack Loss
Run % Air Flow Temperature [HNO;] Residual _‘
No. y Xy X, X3 éq Concl. j
1 42 80 27 89 2.53 *
2 37 80 27 88 1.85 x 107¢
3 37 75 25 90 2.715
4 28 62 24 87 3.814
5 18 62 22 87 —0.61
6 18 62 23 87 —0.89
7 19 62 24 93 0.50
8 20 62 24 93 0
9 15 58 23 87 —0.73
10 14 58 18 80 —-28 x 1078
11 14 58 18 89 0.279
12 13 58 17 88 0.039
13 11 58 18 82 —143
14 12 58 19 93 —0.887
15 8 58 18 89 0.601
16 7 50 18 86 0.008
17 8 50 19 72 -0.217
18 8 50 19 79 9.1 x 10~°
19 9 50 20 80 0.241
20 15 56 20 82 0.812
21 15 70 20 91 —4.722 *
Solution: The classical LS method finds the regression equation

$ = —37.68 + 0.7336x, + 1.3883x, — 0.2164x,

with determination coefficient R? = 0.913 and residual standard deviation & = 3.243.
The partial regression graphs for the independent variable x; and x, indicate that
points 21 and 4 are outliers. The L-R graph indicates that point 21 is a strongly
influential point and points 1, 3 and 4 are less influential.

With the use of the L, approximation, the regression equation takes the form

9§ = —39.65 + 0.83x; + 0.581x, — 0.0621x;

with mean absolute deviation 4, = 2.004. The last column in the Table shows the
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Fig. 6.63—Partial regression graph for independent variables (a) x,, (b) x,, and (c) x.

residuals & ; = é/4,, which indicate that points 21 and also 1, 3 and 4 are influential.
Conclusion: The robust methods can be useful for identification of influential points.

Problem 6.52. Examination of the effect of three different factors on the amount of
ozone in air
The dependence of the amount of ozone in the air (y) on the intensity of the sun’s




138 Linear regression models [Ch. 6

1.0

0.5}

| 8 Sl
0.0 %mjéle 17l RSN

0.0 0.5 H 1.0

Fig. 6.64—The L-R graph for the diagnostic DF,.

radiation for the range of wavelengths 400-700 nm (x,), the mean velocity of wind
(x,) and the highest daytime temperature (x3;) was studied [45]. The linear model
y = Bi1x; + B3x; + B3x3 + B4 was proposed. Compare the robust estimates of the
parameters with the estimates found after strongly influential points are rejected.

Data:
Y, X2, X3,
Measurement ppm X, miles/hr. °F
1 41 190 74 67
2 36 118 8.0 72
3 12 149 12.6 74
4 18 313 11.5 62
5 23 299 8.6 65
6 19 99 13.8 59
7 8 19 20.1 61
8 16 256 9.7 69
9 11 290 9.2 66
10 14 274 10.9 68
11 18 65 13.2 58
12 14 334 11.5 64
13 34 307 120 66
14 6 78 18.4 57
15 30 322 11.5 68

16 11 44 9.7 62
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17
18
19
20
21
22
23
24
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1
11
4
32
23
45
115
37

8 9.7
320 16.6
25 9.7
92 12.0
13 12.0
252 14.9
223 5.7
279 74

59
73
61
61
67
81
79
76

Solution: The classical LS method leads to the regression equation
P=—79.99 — 0.01868x,; — 1.996x, + 1.963x,

The partial regression graphs and the L-R graph indicate that there is only one
influential point, number 23. From these graphs it is also evident that the dependence
on the chosen independent variables x,, x, and x5 is not strong. When point 23 is
omitted, the regression equation becomes

$ = —37.52 + 0.00559x, — 0.7488x, + 0.9935x4

The L, approximation gives the equation

9= —7536 + 0.00665x, — 0.3391x, + 1.527x;

62.57
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Fig. 6.65—Partial regression graph for independent variable (a) x,, (b) x,, and (c) x;.

It is interesting that when the LS method is used, some predicted points (amount
of ozone) have a negative sign: this does not happen with the alternative regression
methods. From the physical point of view, predicted values of y should always be
positive. For example, for the point 7, by the LS method §, = —0.7, by the LS
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Fig. 6.65—continued
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Fig. 6.66—The LR graph for diagnostic DF.

method without point 23, $; = 8.14, and by the L, approximation , = 11.13.

The presence of a single influential point caused the model to be unsuitable for
prediction. Omitting the outlier (23) has a more beneficial effect than the use of the
L, approximation.

Conclusion: Interactive data analysis based on identification of influential points often
leads to better and more correct parameter estimates than robust regression.
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One of greatest disadvantages of robust methods is a preference for the regression
model proposed. If the proposed model is unsuitable, robust methods lead to
suppression of the influence of individual points and therefore also to a suppression
of the detection of unsuitable proposed models. Therefore, robust methods should
be applied only with careful regard to the peculiarities of the model and data.

Sometimes it is falsely believed that the effects of influential points (outliers and
leverages) are suppressed in large samples. Let us illustrate the effect of a single
influential point (outlier O or leverage L) in a set of 50 points. Samples of 50 points
containing one outlier O or one high-leverage point L, were generated, and the
influence on the estimate b, of the slope of the regression straight line was examined.
Data x; were simulated by generation from a rectangular distribution R[0, 1], and
then linearly transformed into the interval (10, 20). The variable y; was calculated
using the relation

yi= By X x; + B, + N, 1)

where f; =1, f, =1 and N(0, 1) is a random number with standardized normal
distribution. Into this data, for point 37, either an outlier O or a leverage L was
introduced. Table 6.17 lists values of the slope estimate b, of the regression straight
line y = x + 1, when point 37 has magnitudes 40, 70, and 80. Regression analysis
was performed by classical LS (LS), by the M-estimate with Welsch weights from
Table 6.15 (WR) and by the estimate with bounded influence (K WR).

Table 6.17. Estimation of slope b, by three different regression methods:

LS, WR and KWR for a data set of 50 points with one influential point
(O = outlier, L = leverage point). 8, = 1.

Value of LS WR KWR
influential

point L (o] L O L (6]
40 0.46 1.180 0.926 0973 0.958 0.962
70 0.17 1.490 0.203 0.969 0.965 0.959
80 0.13 1.602 0.140 0.969 0.965 0.959

Table 6.17 illustrates that one outlier or leverage point in a set of 50 points causes
the classical LS method or the M-estimate method to determine a totally false
estimate of the slope b,.

The method of slope estimate with bounded influence (KWR) is robust and found
a true estimate of parameter §,.

This example of the influence of a single outlier or high leverage point indicates
that without an analysis of influential points in interactive co-operation with the
computer, routine data treatment may be totally invalidated by false and meaningless
estimates. Just one decimal point falsely writtten may cause totally erroneous
parameter estimates.

6.7 CALIBRATION

Calibration is one of the most important applications in the chemical laboratory for
regression analysis. Calibration consists of two steps:
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(1) building a calibration model;
(2) application of the calibration model.

Building a calibration model is identical with the task of building a regression
model. The second step of calibration involves inversion of the first step, i.e. for a
measured response y* the corresponding value x* and its statistical characteristics
are calculated. The main attention in this section is paid to calibration straight lines.

6.7.1 Types of calibration and calibration models
Calibration tasks have been classified according to different criteria by Rossenblatt
and Spiegelman [46].

(1) Absolute calibration is the most frequently used procedure in chemical
instrumentation. In the construction of a calibration model, the measured quantity
n, called the signal (potential, EMF, electric resistance, pH, absorbance, etc.) is related
to the quantity & which describes a state or a property of the system (composition,
concentration, temperature, time, etc.). An example of an absolute calibration is the
dependence of the absorbance of a solution (1) on its concentration ().

In a calibration experiment for n samples with known (or precisely measured)
values of variable £, the corresponding quantities # are measured. Frequently, both
variables are monitored instrumentally, and there will be n points {x;, y;},i=1, ...,
n, where

yi=nt+g (6.210a)
x; =&+ 0; (6.210b)

where ¢; and J; are experimental errors. If the variable £; is measured precisely, or
exactly defined standards are used, §; =0, i = 1, ..., n. The quantity #; is replaced
by a calibration model f(x, f), and data treatment leads to estimation of parameter
B.

In the second phase, there are M repeated measured values of an analytical signal
{y¥},j=1,..., M, from which the mean value of property £* with its confidence
interval is estimated. An example of a signal that depends on concentration is
illustrated in Fig. 6.67, where symbols L; and Ly denote the lower and upper limits
of the confidence interval of concentration. In the rest of this chapter we will consider
only absolute calibration.

(2) Comparative calibration is a procedure in which one instrument is calibrated
agianst a second one, and either may be used as the standard. An example is the
determination of concentration with the use of absorbance (Lambert—Beer law) as
the first. method, and potentiometric titration as the second method. Absorbance
values are compared with volumes of titrant added. The errors J; are not negligible,
and to construct the calibration model the regression analysis for the case when both
variables are subject to experimental errors must be used.

With reference to the application of the calibration model, the following cases may
be distinguished:
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c

Fig. 6.67—Absolute calibration and a procedure for determination of concentration £* for
the mean value of analytical signal y*. Ly and Ly are the lower and upper limits of the
confidence interval of concentration.

(a) single application of the calibration model: the calibration model is constructed
from n measured points {x;, y;}, i = 1, ..., n, and then one estimate £* with its
confidence interval is calculated from one y* value;

(b) mutliple application of the calibration model: from the calibration model, several
estimates X* are determined from values of the analytical signal.

(c) single or multiple application in combination with other measurements: the
result of the second phase of calibration is used together with other variables and
constants for determination of a quantity which is a function of more variables.
Here, any bias in the estimates £* which will be included in the final systematic
error of the result.

The difficulty of the calibration task depends on the model used. For linear
regression models, the confidence bands around the model may be expressed by Eq.
(6.45) or for all possible values by Eq. (6.45a). The components of vector x are
functions of a measured property (i.e. usually concentration), and when polynomial
models are considered, the individual components correspond to powers of this
measured property. To find a value of X*, a root of a polynomial must be found.

For nonlinear regression models the solution is sought in the form

X*=f"1) (6.211)

On the base of the Taylor series for this function, the approximate formula for the
variance D(x*} may be found in the form [47]

I
D(*) &~ [5f f;; ")] [D E\; ) 4 D(f(x, b))] (6.212)

where D(y*) is the variance of y* values, usually equal to ¢? and D(f(x. b)) = D(¥) is
the variance of prediction, estimated from the Taylor series of function f(x, b). For
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the linear regression model the variance of prediction is given by

* _ %)2 * _ )2
D(9) = az[l TREL A ] - 02[1 D LA }
" Z (x; — %) " bt Z (x; — X)?
i=1 i=1
where b, is the estimate of the slope of the regression line. On substituting into Eq.
(6.212) we obtain

D(%%) ~ Zj[ L ,11 + %] (6.212a)
B2Y (x; — )
i=1

Difficulties are caused by the generally non-symmetric distribution of quantity x*.
Only in the case of a calibration straight line and small residual variance can the
distribution of x* be assumed to be approximately normal [48].

If both y and y* are random variables with normal distribution, the difference
A = j* — f(x*, b) will also have the normal distribution. The standardized random
variable A/, /D(A) has the Student distribution with the number of degrees of freedom
used for determination of D(A). To find the 100(1 — )% confidence interval of the
quantities £* defined in Eq. (6.211) it is necessary to solve the equation [51]

(7* — fE*, b)) = Fy (1, 1) x D(y* — f(£*,b))

where r = n — 2. The variance D(A) = D(j* — f(%*, b) may be estimated by the Taylor
series expansion of function f(£*, b). It is approximately valid that

D) = o + 5 [2en o R

S f(X*, b) af(x*,b)
2 b, b; 6.213
+ ,-; ,.; b, o5, 0Vbibi) (6:213)

where m is the number of regression parameters. The special case represented here
is the model of the calibration straight line

y=bi(x—Xx)+y (6.213a)

for which, after substitution into Eq. (6.213), we obtain

D(A) = &2[% P 2* ] (6.213b)
n Z (x; — x)?

When D(A) is known, the two limits of the confidence interval of £* may be estimated.
This involves finding roots of the quadratic equation
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V=7 —b,*—x)=F;_,(1,n—2) x D(A) (6.213¢)

with respect to the variable X*.

6.7.2 Calibration straight line

A straight line is the usual calibration model in a chemical laboratory. Usually, it is
supposed that this model fits all the measured points for a given set of variables x
and y. For example, the Lambert—Beer law 4 = edc expresses a linear relationship
between absorbance and concentration ¢ where ¢ is the molar absorptivity and d is
the path length of the cell.

In some cases, however, the straight-line model is valid only in a limited interval,
and above a limiting point {x,, y5} there is a significant departure from linearity.
For example, the Kubelka—Munk relationship between the remission function
(1 — R?*/2R and the concentration ¢ is valid only for low concentrations. The
Lambert—Beer law too is valid only up to some limiting concentration, above which
curvature occurs.

For statistical data treatment, the model in the form of Eq. (6.213a) may be used,
or some other equivalent expression such as

Vi=Bi xx+ By +¢, i=1,...,n
or
Vi=Bixk+pB+e%, j=1,.., M.

The task of calibration is to find an estimate of parameter x*, the primary parameter,
and of parameters f, and f§,, the supplementary parameters. The estimation assumes
normality of the errors ¢; and &¥%. The estimate £* and its confidence interval may
be calculated by several procedures.

By substituting into Eq. (6.211) from Eq. (6.213a) we obtain the straight estimate
of parameter k in the form

x_ -
PO Viled ) (6.214)
b,
where y* is the measured signal (or the average j* for M > 1 repeated measurements,
respectively) and b, is the estimate of the slope. This estimate is generally biased and
a correction is made by Naszodi’s modified estimates [49]
. - _ b,
=x+0G*—1y > (6.215)
bt +

T (% — P
i=1

Krutchhoft [50] proposed the inversion estimate
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i (i = X}y — »)

=%+ (y* — j=t (6.216)

(yi — f)z

M=

i=1

which refers to the inversion regression model

E(x/y) = ay(y — ) + a,.

From analysis 'of the estimate X% it was found that it too is a biased estimate which
is not better than the straight estimate £*. Moreover, in the estimation of parameters
o, and a, it is falsely supposed that the y values are measured with negligible errors
in comparison with the x-values.

Schwartz [51] proposed the nonlinear estimate given by

—(y*—by,—b; x xi)2

i=zl X; X expl: 557 ]

262

(6.217)

which, however, assumes normality of residuals.

Problem 6.53. Point estimates of concentration from an AAS calibration line

The atomic absorbances of solutions of various concentration of lithium were
measured. Determine the calibration line and from it then the concentration of
lithium for measured absorbance values 4; = 0.0002, 4, = 0.5 and 4; = 1.0.

Data: n=16

C,gofLiin25ml 2.5 5.0 7.5 10.0 12.5 15.0
A 0.063 0.120 0.189 0.251 0.316 0.393

17.5 20.0 225 25.0 27.5 30.0 325 35.0
0.442 0.502 0.568 0.639 0.694 0.749 0.821 0.884

375 40.0
0.947 1.010

Solution: The classical method of least-squares leads to the regression equation

A = 0.02525(40.00011)C + 0.0002(+ 0.0028)

with correlation coefficient R = 0.9999. Table 6.18 lists the estimates £*, £%, ¥ and
%% for A = 0.0002, 0.5 and 1.
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Table 6.18. Concentration estimates by various methods

Absorbance x* X% ¥ X%
0.0002 0 432 x 1074 6.05 x 1073 2.5
0.5 19.795 19.795 19.795 20
1.0 39.597 39.597 39.592 40

Within experimental error, all estimates except the nonlinear one lead to the same
result.
Conclusion: For sufficiently precise data with small spread around the regression
straight line, the classical estimate £* is satisfactory.

In the construction of confidence intervals of the estimates £* and x§ for more
scattered data, the simplest is the determination of D(X*) and to use Eq. (6.213) with
an assumption of normality. The limits of the 95% confidence interval are calculated
by

L, = #* — 1.96./D(%*) (6.218a)
Ly = £* + 1.96,/D(%*) (6.218b)

To construct the confidence interval, the ratio

[(b; + by) x * —y")]?
02[1 + ——‘“,fx* =% ]
SN,

is often used. This ratio exhibits the Fisher—Snedecor distribution with 1 and (n — 2)
degrees of freedom. The corresponding 100(1 — )% confidence interval of parameter
x is calculated from

* _ )2
(W—WiéJﬂw&n—DF+A+ 0" =) ]
TRy (- %P

— i=1
Liy=x+ b x (=7 (6.220)

~Fi_(1,n-2) (6.219)

Parameter A is given by
2_62 x Fi_(1,n—2)
bt Y (x;— %)
i=1

is the variation coefficient of slope 8,. When this ratio is smaller than 0.1 the slope
estimate is sufficiently precise for the approximate confidence interval for paramater
K to be used in the form
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A * _ 5)2
Liy=x*+1t_,n—2)x |b6| \/ ! + M (6.221)
! By (xi - ®?
i=1
If we want information about the whole regression (calibration) line, we replace in
Eq. (6.220) the term /F, _,(1,n — 2) by the term _/2F,_,2,n — 2).
The Scheffe’s confidence interval of one predicted value y* at £* is calculated by

1/2

*x _ )2
Liy=y*+./2F,_2,n—2)¢ 1+1+%i—11— (6.222)
Y (- %P
i=1

This confidence interval is larger by the variance o2 because the variable y* is used
instead of its mean value E(y*). By rearrangement of Eq. (6.222) we find the
100(1 — «)% confidence interval of variable k in the form

— . o2 1/2
POLvE S e Tk B PR okl (6.223)

n

& L P

i=1

LL,U =

where

bt — /2F,_(2,n—2)
j'1 = n
Z (x; — %)
i=1

When the arithmetic mean y* is used, the term 1 is replaced by term 1/M in the
brackets of Eq. (6.222). An analogous adjustment can be made to give Eq. (6.223),
which corresponds to Eq. (6.213c). The graphical interpretation of the confidence
interval of parameter x is shown in Fig. 6.68.

When there are replicate values of y, and y* has been determined, the confidence
straight lines U, and Uy should be calculated. The intersection of straight line Uy
with the lower confidence parabola P, of the calibration straight line leads to point
Ly and the intersection of straight line U, with the upper confidence parabola Py
leads to point L; .

If the variance of measurement, o2, is known it is easy to define the 100(1 — @)%
confidence interval of signal j* in the form

ULn=y*tuj_p0
where u; _,/, is the quantile of the normalized normal distribution. If 62 is unknown,
the inequality

2, (=267

—_— 6.224
’ <xf/2(n—2)><M ( )

may be used, where y2,, is the lower 100 a/2% quantile of the y?-distribution. The

R 1
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Fig. 6.68—Determination of the confidence interval of parameter x for a calibration straight
line. The confidence interval of the signal is indicated by the hatched area.

confidence interval of signal Uy y is then calculated from

é n—2
Urn=7* T ug_ys X
L 2T MmN a2 —2)

Instead of the quantile u;_,, in this equation, for M =1 the more convenient
quantile of the Student distribution ¢, _,/,(n — 2) is used and the variance o2 is
replaced by its estimate 62.

From Eq. (6.45a) the limiting 100(1 — )% confidence parabola are given by

(6.225)

92
PL,U = bix + b2 i g 2F1 _a(2, n— 2) l + n(x—x)— % (6226)

Z (x; — x)?

The limiting value Ly, represents the solution of the equation
Uy=P, (6.227a)
with respect to variable x. The limiting value L, is the solution of the equation
U.=Py (6.227b)

Both equations are quadratic with respect to variable x. From Fig. 6.68 it can be
seen that in some cases the intersection of a straight line with the parabola does not
exist, but in other cases the confidence straight line of the signal may intersect the
parabola of calibration line at two points. This indicates that the spread of data is
too large when the slope of the calibration straight line is small, and such a calibration
straight line is a poor model.
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Problem 6.54. Various confidence intervals of concentration from a photometric
calibration straight line

For the photometric calibration data from Problem 6.53, calculate the bounds of the
95% confidence interval of concentration, L; and Ly, for the following absorbance
values: AT = 0.0002, A% = 0.5, A% = 1, A = 0.51 (the mean of two measured values
0.50 and 0.52; M = 2) and A% = 0.977 (the mean of measured values 0.95, 0.98, 1.00;
M = 3) by using Eqgs. (6.218), (6.220), (6.221), (6.223) and (6.227).

Data: from Problem 6.53

Solution: The calculated limits L; y for the 95% confidence intervals of concentration
are listed in Table 6.19.

Table 6.19. The 95% confidence interval of concentration calculated by various
expressions

Expression for confidence interval

(6.218) (6.220) (6.221) (6.223) (6.227)
lower L; L, Ly Ly Ly
M A* upper Ly Ly Ly Ly Ly
1 0.0002 —0.46 —0.3018 —0.299 —0.646 —0.398
0.46 0.295 0.299 0.639 0417
1 0.50 19.37 19.65 19.65 19.20 19.39
20.22 19.94 19.94 19.94 19.20
2 (0.50; 19.89 20.05 20.05 19.76 19.90
0.52) 20.50 20.33 20.33 20.62 20.48
1 1.00 39.15 39.33 39.33 38.97 39.19
40.05 39.87 39.87 40.23 40.01
3 (0.95; 38.37 38.42 38.42 38.26 38.43
0.98; 38.97 3893 38.93 39.09 3891

1.00)

By using Eq. (6.223) instead of 4,(1 + 1/n) when M > 1, the term A,(1/M + 1/n)is
used.

The confidence intervals from Egs. (6.220) and (6.221) do not reflect a higher
precision of determination of j*. The confidence limits (6.227a, b) were evaluated by
a simplified expression for the confidence straight line of the signal by

ULu=7*Fuy_o2 X 6/\/M (6.228)

with a = 0.05. From Table 6.19 it is seen that for sufficient precision of data, Eq.
(6.220) and its approximation (6.221) lead to the same results. The other confidence
intervals are, however, rather different. The approximation (6.218) leads to values
L, y which are close to the values calculated from Eq. (6.227).

Conclusion: For data with a small spread around the regression straight line, the
simpler approximation (6.218) should be used. For replicate signal measurements the
expressions (6.220) and (6.221) are not suitable.

The quality of the confidence interval around the parameter x is improved by

(1) repeating the signal measurement y*, i.e. increasing the number of measurements

|
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M. For a sufficient number of replicates, M, the estimate U} y can be calculated
from Eq. (6.228), with ¢ replaced by the variance o2* and the quantile u; _,/,
replaced by the quantile of the Student distribution t; _,,.

(2) The confidence parabola may be narrowed by elimination of influential points.
In polynomial calibration models the confidence bands may be narrowed by the
use of biased estimates calculated by the method of the rational ranks.

(3) decreasing the residual variance 62 and so increasing the precision of measure-
ment, or by the use of a correct calibration model.

6.7.3 The precision of calibration

To express the precision of a calibration, limiting values of the concentration for
which the measurement signal is still statistically significantly different from the noise
are usually defined. To express precision and sensitivity of calibration methods, three
levels of signal are identified:

(1) The critical level y. represents the upper limit of the 100(1 — )% confidence
interval of the predicted signal from the calibration model for the concentration equal
to zero, i.e. the blank measurement. By replacing . /2F _,(2, n — 2) by the quantile
ty —g2(n — 2) in Eq. (6.222) and setting x = 0, we obtain an expression for the critical
level yc in the form

x—2

(x; — %)

1
Ye=Y — by X + 6ty _4p(n—2) x \/1 + ” + (6.229)

M=

i=1

Signals above this critical level y. are significantly different from the noise. The
concentration x. corresponding to this critical level yc is determined from the
calibration model from

xe=2"Y 1 5 (6.229a)

(2) The detection limit yp, corresponds to the concentration for which the lower
100(1 — «)% confidence interval of signal prediction from the calibration model is
equal to yc. The detection limit yp and its corresponding concentration xp are
illustrated on Fig. 6.69.

For the linear calibration model we have

Y
Yp = Yc + 6ty —qa(n —2) \/1 + ! + ,,(xD—x) (6.230)
Ty -
i=1
Oppenhelmer [52] proposed the following approximation
1 x?
Yp = Yc + 6ty —gpa(n —2) X\/ O e e — (6.231)
" Z (x; — %)

i=1

The corresponding concentration xp, is calculated from
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Fig. 6.69—Definition of the critical level y,, the detection limit yp and their corresponding
concentrations xc and xp,.

xp=22"Y 1 % (6.231a)

The detection limit gives the lowest true signal level which still permits detection.
The quantity xp, gives the minimum concentration which can be distinguished from
zero with probability (1 — a).

(3) The determination limit y, is the smallest signal level for which the relative
standard deviation of prediction from the calibration model is sufficiently small and
equal to the number C, where C = 0.1, usually.

If the predicted value at point x, is given by

y(xs) = )7 + bl(xs - i)

and the condition of determination y; is then equal to

D(y(x))
Y == 6.232
31 (©23)
Substitution and rearrangement leads to the expression
A 2
ys=%\/1+1+,,(x‘7x) (6.233)
Y - R
i=1
In practice, in the chemical laboratory, an approximation is used, as follows.
A F2
ysz%\/1+1+n—x— (6.234)
Y X2
i=1

The corresponding concentration x, is given by
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x, =" % (6.234a)

For nonlinear calibration models, Schwartz [53] recommends that the upper Ly
and lower L; limits of the confidence interval of concentration which correspond to
different signal levels y* are determined. Instead of the relative standard deviation
of prediction from the calibration model, Schwartz uses the effective relative standard
deviation

C(xl) — LU - LL

2x' X ty_g2(n—2)

(4) The modified determination limit y, is the value of x’ for which C(x") = C. This
y. limit is found graphically by plotting C(x’) against x and substituting in the
calibration model. Equation (6.235) may be used for linear models as well as nonlinear
ones.

All four definitions may be simply used to calculate the detection limit yp, and the
determination limit y, for nonlinear calibration models, and for data for which the
variance of measurement is not constant (heteroscedasticity) [52]. Generally, it is
valid that

Ye<Yp=<Ys

Ebel and Kamm [54] have described an alternative procedure of determination of
the detection limit yp, and this is illustrated in Fig. 6.70.
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Fig. 6.70—Illustration of the procedure for determination of the detection limit y,, according
to Ebel and Kamm [54].

Even for this case for linear calibration models it is easy to determine xp by the
use of L; from Eqgs. (6.220) and (6.221). Substitution of x; into the expression for Ly
leads to

Ly=yp
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Problem 6.55. Precision and sensitivity of a photometric calibration model

For the photometric calibration from Problem 6.53 calculate the critical level yc, the
detection level yp and the determination limit y, for the relative standard deviation
C=0.1.

Data: from Problem 6.53 16

Solution: The values calculated are x = 21.25, j = 0.5368, Y (x; — 21.25)* = 2125,

i=1
K =0.0252, 4% = 1.722 x 107 and ¢, ¢;5(14) = 2.14. The limiting levels of absorb-
ance and the corresponding concentrations are determined to be: y. = 0.0129 and
X¢c = 0.504; yp = 0.0257 and xp = 1.008; and y, = 0.0593 and x, = 2.339. To calculate
yp and y,, the approximate expressions (6.231) and (6.234) were used. Figure 6.71
shows the dependence of C(x’) on x’ for the interval 0.1 < x’ < 1. Here, x, ~ 0.6 and
ye=7 + (0.6 — x) x b; = 0.0164, for C(x') = 0.1.

0.7

Cix’)

0.35

0.00
0.10 0.55 x’ 1.00

Fig. 6.71—Plot of C(x’) vs. x’ in a search for the determination limit. Dotted line corresponds
to C=0.1.
Conclusion: For linear calibration models, all three limits are easy to calculate.

A modified determination limit x;, y; may be determined by use of the expression
for variance D(X), Eq. (6.212). Setting C = 0.1, the quantity x/ is the root of the
equation

0.01x2 = D(x) (6.236)
For linear calibration models with M = 1, the variance D(x') is defined by Eq. (6.212a).
By a simple rearrangement, Eq. (6.236) can be transformed into a quadratic equation
with the following root

,_—X+/X*+ 4D (6237)

Xs

A
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where
b} x Y (x; — %)
A= =1 -1
10062
and

413 (xi— 22
i=1

n

D=x*+

When x. is known, the value y; is determined by substitution of the value into the
calibration model.

Problem 6.56. Modified determination limit for the photometric calibration model
Calculate the modified determination limit for photometric calibration model from
Problem 6.53.

Data: from Problem 6.53

Solution: From Egs. (6.236) and (6.237) the following numerical values are calculated:
A =7936.5, D = 2709.375 and x = 0.582, which corresponds to y; = 0.01596.
Conclusion: For the linear calibration model the modified determination limit is
readily calculated from Eq. (6.237).

6.8 PROCEDURE FOR LINEAR REGRESSION ANALYSIS

The procedure for examination and construction of a linear regression model consists
of following steps.

(1) Proposal of a model

The procedure should always start from the simplest model, with individual
independent controllable variables not raised to powers other than the first, and with
no interaction terms of the type x;x; included. Only in cases when it is known that
the model contains functions of the controllable variables is an exception made.

(2) Exploratory data analysis in regression

The scatter of individual variables and all possible pair combinations are examined.

The scatter plots of x; vs. x, or the index plots x; vs. j are often used here. In this

step of a regression analysis, the significance of individual variables with reference to

scatter and the presence of multicollinearity is examined. An approximately linear

relationship between variables in scatter plots of x; vs. x; indicates multicollinearity.
Also, in this step the influential points causing multicollinearity are detected.

(3) Parameter estimation
The parameters of the proposed regression model and the corresponding basic
statistical characteristics of this model are determined by the classical least-squares
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method (LS). Individual parameters are tested for significance by using the Student
t-test, the determination coefficient R? and the predicted determination coefficient
R2. Other statistical characteristics calculated are the total F-test, the model
significance test, the model complexity test, the mean quadratic error of prediction
MEP and the Akaike information criterion AIC, to examine the linearity of model.

(4) Analysis of regression diagnostics

The statistical analysis of classical residuals leads to estimates of residual variance
62(é), residual standard deviation s(é), residual skewness g,(é), residual kurtosis g,(é),
the Pearson yx>-test of residual normality and the Jarque-Berra normality test.
Different diagnostic graphs are used to examine the regression diagnostics for
identification of influential points, and to test the conditions for the least-squares
method, namely homoscedasticity, absence of autocorrelation, and normality of error
distribution. If influential points are found, it has to be decided whether these points
should be eliminated from data. If points are eliminated, the whole data treatment
must be repeated. When there are several controllable variables, the significance of
each variable and its function is examined by partial-regression graphs and by the
partial-residual graph.

(5) Construction of a more accurate model

According to the test for fulfilment of the conditions for the least-squares method,
and the result of regression diagnostics, a more accurate regression model is
constructed as follows.

(a) When heteroscedasticity is found in the data, the weighted least-squares method
(WLS) is used.

(b) When autocorrelation is found in the data, the generalized least-squares method
(GLS) is used.

(c) When some restrictions apply to the parameters, the conditioned least-squares
method (CLS) is used.

(d) When multicollinearity is found in the data, the method of rational ranks (MRV)
is used.

(¢) When all variables are subject to random errors, the extended least-squares
method (ELS) is used.

() When the data have an error distribution other than normal, or the data contain
outliers or high leverage points, some robust methods are used.

(6) Evaluation of the quality of the model proposed

With the use of classical tests, regression diagnostics and some supplementary
information about the “model + data + method”, the quality of the proposed linear
regression model is evaluated.

(7) Analysis of calibration models
For a calibration model proposed for the given signal value y*, the quality of the
independent variable x* together with its confidence interval is estimated. Before
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application of the calibration model, the detection limit and the determination limit
should be estimated. These limits determine the allowable lower limit of the calibration
model.

(8) Statistical hypothesis testing
In some cases, to compare several straight lines, statistical hypothesis testing is
performed.

6.9 ADDITIONAL PROBLEMS

Problem 6.57. The effect of influential points on the detection limit and determination
limit in a photometric calibration model
The relationship between absorbance A and the concentration of nitrate c in solution
is described by the Lambert—Beer law,

A=¢xdxc+a

where d is the cuvette length in cm (here d = 1 cm), ¢ is the molar absorptivity and
a is the absorbance of the blank. Estimate (i) the parameters of the Lambert—Beer
calibration model, (ii) the detection limit and determination limit for nitrate.

Data: n =16

¢, mg of NO3 in 25ml 0.005 0.0161  0.0165 0.0213  0.0275
A 0.110 0.272 0.224 0.274 0.338

0.0324 0.0382  0.0453 00523 00575 00632 0.0712
0.389 0.449 0.522 0.595 0.649 0.708 0.791

0.0803 0.0862  0.0918  0.0982
0.885 0.946 1.005 1.067

Solution: The classical least-squares method gives the regression model
A =10.20(£0.11)c + 0.06478(+0.00635),

where the standard deviations of the parameter estimates are given in brackets. Both
parameter estimates are statistically significant at significance level a = 0.05. The
determination coefficient R? = 0.9984, the mean quadratic error of prediction
MEP = 0.0001904 and residual standard deviation ¢ = 0.01257. Heteroscedasticity
is identified in the data by the criterion S, and the sign test indicates a trend in
residuals. Figure 6.72a shows the regression model with the 95% confidence intervals
and Fig. 6.72b is a plot of the classical residuals vs. c.
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Fig. 6.72—(a) Regression model with the 95% confidence interval, and (b) graph of classical
residuals é vs. concentration c.

The graphs indicate that point 2 is an outlier and causes the heteroscedasticity
in data and the trend in residuals. When point 2 is compared with 3 and 4, it is
obvious that 2 is a mistake. The rankit graph of normalized residuals (Fig. 6.73a)
leads to the same conclusion. The rankit graph for recursive residuals is also
interesting (Fig. 6.73b) as a consequence of one outlier in a base from which the first
estimates of the parameters are calculated.

From Fig. 6.74 it is evident that, apart from point 2, which is strongly masking
the influence of other points, there are other influential points such as 3 and 16, and
to some extent 4 and 1.

When point 2 is omitted, the classical least-squares method gives the residual
regression model

A =10.33(+0.013) x ¢ + 0.05497(+0.00078)

with determination coefficient R? = 0.9999, and MEP = 2.92 x 10~°. The residual
standard deviation & = 0.00143 demonstrates a significant improvement in the
statistical regression characteristics, too. In residuals there is no evidence of trends
nor heteroscedasticity. Omitting point 2 caused just small changes in the numerical
estimates of the parameters. Figure 6.75a shows the regression model and Fig. 6.75b
the residual plot without point 2.

Despite the excellent degree of fit of the regression straight line to the experimental
points (Fig. 6.75a), the residual plot (Fig. 6.75b) indicates the presence of some other
influential points, i.e. points 1 and 15 (previously 16) and to some extent 14. Valuable
information about influential points is found from the L-R graph for D; and
McCulloh—Meeter graph, in Fig. 6.76.
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Fig. 6.73—Rankit graph for (a) normalized residuals, and (b) recursive residuals.
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Fig. 6.74—(a) The L-R graph for D; and (b) McCulloh—Meeter graph.

The Jack-knife residuals show that point 1 is strongly influential, having é;, = 4.072
and, also point 15 is suspect, with &5 = —1.976.
Since calibration requires the highest precision, points 1 and 15 were omitted; i.e.
from the original data set, points 1, 2 and 16 were discarded. The regression model
by classical least-squares has the form
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Fig. 6.75—(a) Regression model without point 2, and (b) the residual plot.

(a)

0.5 H; 1.0

[Ch. 6
1.2+ (b)

A

0.6

0.0
0.00 0.05 0.10

2.72 ; (b)
Y 13 .............................
14
2
473
1.3 7
” 12 13
6
10
®
-4.97
-3.67 ~1.74 \nlH,/m(1-H)]

point 2.

with standard deviation ¢ = 0.00029.
The estimates for all three data sets of the detection limits (Ap, cp) and the
determination limits (A, c,) are listed in Table 6.20.

Fig. 6.76—(a) The L-R graph for D, and (b) McCulloh—Meeter graph for the data without

A = 10.364(10.0033)c + 0.053(+1.91 x 107%)




Sec. 6.9] Additional problems 161

3.0
P 13
2 4
S 8 10
0.0 13 ; 9
11
12
6
-3.0
C.00 0.05 c 0.10

Fig. 6.77—Plot of residuals vs. variable c.

Table 6.20. The effect of influential points on detection and determination limits

i Detection limit Determination limit
Points
Set  Size omitted Ap Cp A, s
1 16 none 0.125 593 x 1073 0.1410 7.458 x 1073
2 15 2 0.062 6.83 x 1074 0.0163 —3.74 x 1073
3 12 1,2,16 0.055 1.46 x 1074 0.0034 —4.79 x 1073

Problem 6.58. Influence of instrument precision on the detection limit

Three instruments A, B and C, with different precisions, were used to measure the
signal S for 20 levels of concentration c¢. For the proposed model of the calibration
straight line

ES/c) =By x c+ B,

calculate the detection limit and determination limit. For signal levels S* = 6, with
one signal measurement, (M = 1) estimate the concentration and the corresponding
95% confidence limit.

Data: n =20

3

¢, moldm™ Signal S from the

instrument
A% B % C,%

0.01 4823 5108 5.101
0.02 5.197 5207 5199
0.03 5937 5311 5300
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0.04 5424 5399 5.400
0.05 5.255 5497 5500
0.06 5702 5.606 5.599
0.07 5.790 5700 5.699
0.08 5962 5769 5.800
0.09 5.734 5889 5.899
0.10 5.786  6.008 5.999
0.11 6.117 6.099 6.101
0.12 6.555 6203 6.200
0.13 6.570 6.289 6.299
0.14 6.815 6399 6.400
0.15 6.187 6494 6.500
0.16 6.552 6.606 6.598
0.17 6.947 6.697 6.702
0.18 7090 6807 6.801
0.19 7.159 6.896 6.900
0.20 7291 6994 7.001

Solution: Since the main task of this problem is to examine the influence of the
instrument precision on the estimates b, and b,, the regression diagnostics were not
used. Table 6.21 lists the parameter estimates b, and b,, correlation coefficient R
and the residual standard deviation 6 estimated by the classical least-squares method.

Table 6.21. Parameter estimates b; and b, of the calibration model from
data measured by three instruments with different precisions

Instrument Precision by b, R G
A Fair 0.1120 4968 0.937 0.058
B Good 0.0997 5.002 0.9999 0.022
C High 0.1000 5.000 1.0000 0.0002

Table 6.22 shows the calculated detection limit and the determination limit for all
three instruments. The values of the limits are affected by the relatively large value
of the intercept of the calibration straight line, which shows that the signal
measurement always gives a large blank value.

Table 6.22. Limit values for three instruments

Instrument Precision Sp ¢p S Cs u
A Fair 6.143 10.48 2792 —1.942 !
B Good 5.046 0.445 0.105 —491 i
C High 5.004 0.0448 00106  —49.86 |

Table 6.23 lists the point estimates of concentration ¢ = £ for the signal levels
S* =6, with M = 1.

Table 6.24 lists the 95% confidence interval of the estimated concentration ¢ at
the signal level S* = 6.
Conclusion: The spread of points around the calibration straight line is related to the

]
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Table 6.23. Concentration estimates for signal level S* = 6

Instrument Precision X* < ba1 X%
A Fair 9.209 9.219 9.366 9.209
B Good 10.009 10.009 10.010 10
C High 10.001 10.001 10.001 10

Table 6.24. The 95% confidence interval of concentration L; < ¢ < Ly for the signal
level $* =6 by five methods.

Instrument Precision (6.218) (6.220) (6.221) (6.223) (6.227)

A Fair L, 4.662 771 7.83 2.77 4.68
Ly 13.76 10.56 10.59 15.5 139

B Good L, 9.817 9.95 9.95 9.746 9.82
Ly 10.2 10.07 10.07 10.27 10.2

C High L, 9.98 9.995 9.995 9.974 9.98
Ly 10.02 10.007 10.007 10.03 10.02

precision of the instrument. It has a significant affect on the detection and
determination limits, and also on the confidence interval for the concentration. In
evaluating calibration experiments, attention should be paid to the model quality
and to the data quality.

Problem 6.59. Determination of the degree of polynomial in the approximation of
analytical data

There are two sets of analytical data, the spectrum of molar absorptivities and the
titration data. Both sets of data should be approximated by a polynomial, and the
degree of polynomial should be examined with regard to prediction ability.

Data: (S) the spectrum of molar absorption coefficients as a function of wavelength;
n=15

A, nm 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
¢, mol™!lem™? 30 34 43 50 60 68 81 92 107 11.6 129 13.6 14.6 153 15.5

(T) the titration curve, n = 13

v, ml 012 0.56 0.83 1.36 1.48 1.73 2.20
y,mV 385 942 1290 1736 19.31 2273  32.89

2.57 2.83 3.01 332 3.62 3.90
4451 5301 6209 8100 10211 124.00

Solution: (1) The spectral data:
Because the x values are in the range 460600, possibly resulting in some numerical
difficulties with polynomials of higher degree in the precision of building the
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covariance matrix, the linear transformation A* = (4 — 460)/100 was applied, to give
data in the interval <0, 14).

Figure 6.78a shows the straight line regression model and Fig. 6.78b a plot of the
classical residuals & vs. A*. Obviously, the nonlinear pattern in the residuals shows
that the approximation polynomial must be of degree greater than 2. Table 6.25
presents the statistics MEP, AIC and ¢ for increasing degree of polynomial, together
with the conclusion from the sign test of residuals. The best seems to be the polynomial
of 4th degree. The polynomial of the 3rd degree differs only slightly, and all its
parameters are significantly different from zero. Therefore, on the base of Student -
tests the polynomial of the 3rd degree was chosen.

16.0 3.0 (b)
A
c e
i 11
9 18 12 13
8.0 0.0 2 3 14
8
7
45
6
15
0.0 -3.0
0.0 7.5 A 15.0 0.0 7.5 15.0

l*
Fig. 6.78—(a) The linear regression model with the 95% confidence interval, and (b) the
residual plot vs. A*.

Table 6.25. A search for the most convenient degree of polynomial, on the
basis of four statistical characteristics MEP, ADC, & and the sign test.

Polynomial Trend in
degree MEP AlIC a residuals Conclusion
1 0.2280 14.26 0427 yes Rejected
2 0.3502 16.26 0.445 yes Rejected
3 0.0284 —18.1 0.138 no Accepted
4 0.0277 —18.89 0.132 no Accepted
5 0.0560 —-17.14 0.138 yes Rejected
6 0.2570 —15.19 0.146 yes Rejected

Figure 6.79a shows the degree of fit of the polynomial model of the 3rd degree
with the 95% confidence interval, and Fig. 6.79b the residuals plot. The polynomial
model is
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Fig. 6.79—(a) The 3rd degree polynomial, and (b) the residuals plot.

€ = 3.054(+0.113) + 0.297 (£ 0.0727)A* + 0.1288(+0.0123)1*2
— 6.146(+0.578) x 10731%3,

(2) The titration data:

The titration curve data covers a small range of x values and therefore does not
need any initial data transformation. Table 6.26 lists the statistical characteristics.
All characteristics are statistically significant for the polynomial of the 3rd degree.

Table 6.26. The search for the most convenient degree of polynomial by
analysis of titration data, on the basis of the statistical characteristics MEP,
ADC, 6 and the sign test

Polynomial Trend in
degree MEP AlIC 6 residuals Conclusion
1 264.1 101.3 14.04 yes Rejected
2 40.97 71.63 4.357 yes Rejected
3 1.07 25.85 0.731 no Accepted
4 1.04 26.36 0.732 no Accepted
5 2497 27.17 0.747 no Rejected

Figure 6.80a shows the curve for the polynomial model of the 3rd degree, with the
95% confidence interval, and Fig. 6.80b shows the residuals plot. The regression
model is

y = 2.145(+0.814) + 16.51(% 1.70)v — 7.715(+0.977)* + 2.959(+0.159)0

Conclusion: In the search for the best degree of polynomial, several statistical
characteristics of regression quality should be considered.
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Fig. 6.80—(a) The 3rd degree polynomial, and (b) the residuals plot.

Problem 6.60. Influence of statistical weights on the search for the degree of an
approximated polynomial

Experimental data were obtained by repeated measurements of the dependent variable
y. For each measured point, the standard deviations s(y) were also calculated. Try
to find the best approximate polynomial with regard to its prediction ability.

Data: n= 13
X 0.12 0.56 0.83 1.36 1.48 1.73 2.20 2.57 2.83 é
y 385 942 1290 17.36 19.31 22.73 32890 44.51 62.09 ]

s(y) 0.09 0.15 0.42 0.42 0.23 0.27 0.36 0.83 0.52

3.01 3.32 3.62 3.90
81.00 102.11 12400 124.00
0.61 0.93 0.86 071

Solution: Table 6.27 compares the results of a search for the polynomial degree by
two methods, the classical least-squares (LS) and weighted least-squares (WLS) with
weights 1/s(y). By the WLS method, from the point of view of the mean quadratic
error of prediction MEP, it was found that the best degree is the third degree, whereas
by the classical LS method it is the 4th degree.

Conclusion: The precision of each point measurement may affect the search of the
most convenient polynomial degree. Often differences among several polynomial
degrees are quite small. In this case, the polynomial with the lowest degree is chosen,
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Table 6.27. Choice of best degree of polynomial on the basis of selected statistical
characteristics, by the LS and WLS methods

Polynomial Trend in
degree Method MEP AlC 6 residuals Conclusion
2 LS 40.82 71.57 4.346 yes Rejected
WLS 1168 69.46 4.007 yes Rejected
3 LS 1.04 25.29 0.715 no Accepted
WLS 0.626 16.2 0.504 no Accepted
4 LS 1.341 2571 0.714 no Rejected
WLS 0.826 17.55 0.521 no Accepted
5 LS 4.469 18.71 0.539 no Rejected
WLS - - - no Rejected

or the polynomial for which most characteristics are statistically significant. Another
way is to use specialized techniques such as a stepwise regression.

Problem 6.61. Calibration model of the polarographic determination of clotiazepine
Ebel and Brockmeyer [55] made a polarographic determination of the drug
clotiazepine, which is derived from benzodiazepine. For calibration the height of the
polarographic peak was measured for samples of exactly determined concentration.
Find a suitable calibration model (the authors proposed a linear one).

Data: Measurements were repeated three times.

Polarographic current I, uA

¢, pg/ml Istrun  2nd run  3rd run

0.76 5.81 5.63 6.46
1.48 9.96 9.96 10.47
2.16 14.50 14.72 15.09
2.82 19.24 18.84 18.82
344 23.12 23.47 23.19
4.04 27.59 28.32 28.33
4.62 31.50 32.57 31.67
5.17 3538 36.34 35.40
5.69 40.19 38.99 39.20
6.20 43.53 42.95 4341

Solution: In the first step, the regression model was analysed by the classical least-
squares method, and the regression equation was found.

I = 6.923(+0.0545) x ¢ — 0.03085(+0.2197)

The intercept of this regression straight line is not statistically significant at significance
level o = 0.05. Some characteristics R? = 0.9983, & = 0.5179, MEP = 0.2946 and
AIC = 61.09 do not point to any deviations from linearity, but the sign test shows
a trend in residuals. No influential points are indicated.
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Figure 6.81a shows the calibration straight line and Fig. 6.81b the residual plot.
The nonrandom pattern of residuals shows the need to introduce a nonlinear term,
ie. x%
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Fig. 6.81—(a) The calibration straight line of peak height vs. concentration of clotazepine,
and (b) the residuals plot.

The second step was to do a regression analysis for a quadratic model by the
classical least-squares method, with the result

I = 1.017(+0.325) + 6.132(+0.209)c + 0.1126(+0.0291)c>.

All coefficients of polynomial are significantly different from zero at « = 0.05.
Characteristics R? = 0.9989, ¢ = 0.423, MEP = 0.1989 and AIC = 49.86 show that
the quadratic model fits the data better than the linear one. The residuals do not
exhibit any trend.

Figure 6.82a shows the quadratic model and Fig. 6.82b the residuals plot.

To test the significance of the difference between the two models, the Fisher—
Snedecor F-test is used. The test criterion

(7.511 — 4.883) x 27
43883 x 1

gives a higher value than the quantile Fg 5(1, 27) = 4.21, so the quadratic model is
more suitable than the linear one.

Conclusion: The calibration equation is better expressed by a quadratic model than
a linear one, because the quadratic model has significantly lower value of the residual
quadratic error. The estimated instrumental error is also lower for this model.

F = = 14.53

Problem 6.62. Investigation of the influence of three factors on the percentage of
conversion of n-heptane

The influence of the reaction temperature (x,), the ratio of hydrogen to n-heptane
(x2) and the reaction contact time (x;) on the yield (%) of acetylene (y) from
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Fig. 6.82—(a) The quadratic regression model, and (b) the residuals plot.

n-heptane has been studied [56]. Determine the influence of the three factors x, x,
and x; on y, assuming the linear regression model

y=Bo + Bixy + Bax; + B3x3

Test also the validity of the conditions for the least-squares method.
Data: n =16

i x4, °C X, x;3, sec ¥y, %
1 1300 7.5 0012 49.0
2 1300 9.0 0012 50.2
3 1300 11.0 0.0115 50.2
4 1300 135 0013 48.5
5 1300 170 00135 475
6 1300 23.0 0.012 44.5
7 1200 5.3 0.040 28.0
8§ 1200 7.5 0.038 315
9 1200 11.0  0.032 34.5
10 1200 135  0.026 350
11 1200 170  0.034 38.0
12 1200 23.0 0.041 385
13 1100 53  0.084 15.0
14 1100 7.5 0.098 17.0
15 1100 11.0  0.092 20.5
16 1100 170  0.086 29.5
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Solution: There is significant correlation between y and x;, and y and x;. There is
also correlation between x; and x; which shows up as a multicollinearity. Also,
the individual VIF factors (VIF, = 12.2, VIF, = 1.06 and VIF; = 12.32) indicate

multicollinearity (see Table 6.28).

Table 6.28. Preliminary stastistical analysis of data

Variable Mean Standard Partial regression
deviation coefficient
y 36.11 11.90 1.000
Xy 12130 80.62 0.945
X, 12.44 5.662 0.370
X3 0.04031 0.03164 —0914

Correlation between independent variables:

Xy US. X5: 0.2236
Xy vs. x3: —0.9582
X, vs. x3: —0.2402

Table 6.29 lists the parameter estimates obtained by the classical least-squares
method and the statistical tests of these parameters. It is discovered that parameters

B, and B are nearly equal to zero.

Table 6.29. The estimates of the four parameters of the proposed regression model, and

their statistical

analysis at a = 0.05

Standard Conclusion
i Parameter f; Estimate b; deviation s(b;) texp Bi=0
0 Bo —121.3 55.44 —2.188 no
1 B 0.1269 0.04218 3.007 no
2 B 0.3482 0.1770 1.967 yes
3 B 19.02 107.5 —0.1762 yes

The basic statistical characteristics of the proposed linear model are listed in Table

6.30.

Table 6.30. Basic statistical characteristics of the linear regression and results of
statistical tests

Determination coefficient, R?
Standard deviation of prediction, s(y)
Total F-test, F,,,

Criterion M

Multicollinearity test

Significance of model
Heteroscedasticity test
Complexity of model
Quadratic error of prediction

Autocorrelation coefficient
Sign test

0.9198

3.767

45.88

0.7718

Worse model modification
requested

Model is significant at the
level a = 0.05
Insignificant
heteroscedasticity

2.775 x 10°

21.02

0.4445

No trend in residuals

Examination of the linear model by statistical testing leads to the conclusion that
the proposed model is as a whole statistically significant. The conversion is affected
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mostly by temperature (x, ), then by the ratio of n-heptane to acetylene (x,) and the
smallest influence is that of the reaction time (x;). Although the results are a little
distorted by multicollinearity, the distortion is not very significant.

Table 6.31 shows the predicted values J, the standard deviation of prediction s(9),
and the relative residual é(9). Table 6.32 gives an analysis of residuals.

Table 6.31. Comparison of predicted values § with
experimental values y

i y 9 s(9) é (9), %

1 49.00 46.02 1.892 6.075

2 50.20 46.55 1.702 7.280

3 50.20 47.25 1.550 6.433

4 48.50 48.09 1.537 0.839

5 47.50 49.30 1.679 —3.794

6 44.50 51.42 2.245 —15.550

7 28.00 32.04 1.684 —14.426

8 31.50 32.84 1.519 —4.265

9 34.50 34.18 1.729 0.939
10 35.00 35.16 2.255 —0.459
11 38.00 36.23 1.686 4.666
12 38.50 38.18 2.137 0.824
13 15.00 18.52 1.905 —23.447
14 17.00 19.02 2.372 —11.863
15 20.50 20.35 1.941 0.735
16 29.50 22.55 2.047 23.5551
The mean of absolute residuals ;2475
The mean of relative residuals, % . 7.822
The residual sum of squares 11703

Table 6.32. The various residuals

i p) & n é
1 2977 0.790 0.906 0.899
2 3.654 0.970 1.087 1.096
3 3.249 0.862 0.946 0.942
4 0.407 0.108 0.118 0.113
5  —1802 —0478  —0535  —0.518
6  —6920 —1837 —2287 —2916
7 —4039  —1072 —1.199  —1223
8  —1343  —0357 —0390  —0.375
9 0.324 0.086 0.097 0.093
10 —0161  —0043  —0053  —0.051
11 1.773 0471 0.526 0.510
12 —0317 0.084 0.102 0.098
13 —3517 —0934  —1082  —1.091
14 —2017 —0535 —0698 —0673
15 0.151 0.040 0.047 0.045
16 6.948 1.844 2.197 2721

From these tables it is evident that points 6 and 16 are outliers, and this should
be investigated further.

The partial regression graphs in Fig. 6.83 show that excluding both outliers 6 and
16 does not affect the parameter estimates, so the slope of remaining points in graphs
will not change much. A more detailed analysis of individual groups of points
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Fig. 6.83—The partial regression graphs for (a) variable x,, (b) variable x,, and (c) variable

X3.

(according to different temperatures) shows that points 1 to 6 (temperature 1300°C)
have a different trend (dotted) from the points of the other two groups.

Omitting this group (temperature 1300°C) increases the significance of factor x,.
Conclusion: Despite the statistical significance of the linear model, the data should
be experimentally investigated again and the number of data points increased. With
a small number of points it is rather difficult to examine the regression model fully.
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It may be concluded that
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(a) the temperature 1300°C has a different effect on the reaction from temperatures

1200°C and 1100°C;

(b) besides temperature, the yield is affected also by the ratio of hydrogen to

n-heptane;

(c) for the time range studied, the contact time has no influence on the yield.

Problem 6.63. Investigation of the dependence between phosphorus content in maize

and in soil

The content of the inorganic phosphorus (x,) and organic phosphorus (x,) in a soil
affecting the content of phosphorus (y) in the maize was studied [45]. Examine the
influence of factors x; and x, on variable y.

Data: n =18

i X1 X2 y
1 04 53.0 64.0
2 0.4 23.0 60.0
3 31 19.0 71.0
4 0.6 34.0 61.0
5 4.7 24.0 54.0
6 1.7 65.0 77.0
7 9.4 440 81.0
8 10.1 310 93.0
9 11.6 29.0 93.0
10 126 58.0 510
11 10.9 370 76.0
12 231 46.0 96.0
13 231 50.0 77.0
14 216 440 93.0
15 231 56.0 95.0
16 19 36.0 54.0
17 268 580 168.0
18 299 510 99.0

Solution: In the first step of regression analysis the linear model

E(y/x) = B3 + B1x1 + Bx,

was proposed. The method of least squares gives

9 = 56.25(+16.31) + 1.79(+0.557)x, + 0.0867(+0.415)x,.

At the significance level o = 0.05, parameter f, is statistically insignificant. The
determination coefficient is R? = 0.482 and the residual standard deviation is
6 = 20.68. The proposed linear model is, as a whole, statistically significant since
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Fig. 6.84—Graphical examination for influential points (a) the index graph for H;; (b) the
rankit graph for é;; (c) the autocorrelation graph; (d) the heteroscedasticity graph.

F.,, = 6.988 is larger than corresponding quantile of the F-distribution. The test
criterion of the Jarque-Berra test L; = 11.52 proves the strong non-normality of
residuals. One strong outlier, point 17, is found (see Fig. 6.84) for which the
standardized Jack-knife residual is é; ;; = 5.36.

The graphical analysis of residuals shows that the outlier 17 causes the heteroscedas-
ticity of data. Figure 6.85 shows the partial regression graphs for variables x; and
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Fig. 6.85—The partial regression graph for (a) variable x;, and (b) variable x,.

x,. Excluding point 17 decreases the significance of factor x,, as a random pattern
of points is now formed. The significance of the factor x; remains unchanged.

In the second step of regression analysis, point 17 and factor x, were omitted. The
calculated regression model is

y = 62.57(+4.452) + 1.229(40.306)x, .

Both parameters are statistically significant, the determination coefficient is increased
now to R? = 0.519 and the residual standard deviation is decreased to & = 11.92.
The normality test Ly = 10.10 still demonstrates the non-normality of residuals. There
is no heteroscedasticity or trend in residuals. The regression diagnostics discover one
influential point, number 10, with é; 1, = —2.84.

Figure 6.86 shows the linear regression model with its 95% confidence interval
and the classical residual plot.
Conclusion: The content of phosphorus in maize stem is affected only by the content
of inorganic phosphorus in soil. Excluding a strongly influential point may cause a
decrease in the significance of some variables in a model.
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7

Correlation

Chapter 5 considers the characteristics and procedures of multivariate data analysis,
and Chapter 6 describes the construction of linear regression models. In this chapter
we describe relationships expressing dependencies among the components &, ..., &,
of an m-dimensional vector & by using regression. The difference from construction
of linear regression models in Chapter 6 is that here the data form a random sample
from the m-dimensional distribution of random vector &. There is no consideration
about which component {; of the random vector £ is the response (in the linear
model, the dependent variable) and which components of vector £ are controllable
(in the linear model, the independent variable).

The random sample {x;},i =1, ..., n of size n represents an (n x m) array of data

X117 eer X12 oo Xim
x21 e x22 . e x2m
Xpt  ovr Xp2  eer Xpm

where the number of rows n (i.e., the number of m-dimensional “points” x;) is larger
than the number of columns m (ie., the number of “variables” or components of
vector x). The characteristic fact is that all components of the data vector are
measured and not controllable by the experimenter.

In the regression models of Chapter 6, some independent variables such as
temperature, concentration, etc. are also measured (and therefore random) variables,
but the experimenter could adjust and control their magnitude.

Although in chemometric practice, correlation problems do not often require
detailed analysis, we find that problems such as (a) comparison of various analytical
methods on different samples or (b) searching for relationships among various
properties or characteristics of compounds, are more problems of correlation than
regression.
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7.1 CORRELATION MODELS

As for univariate random variables, the components of random vectors can be
characterized by use of means and variances. A measure of intensity of the dependence
between components &; and &;, i # j is given by the second central mixed moment
cov(¢;, £;), denoted as the covariance. The standardized covariance or correlation
coefficient p(¢;, £;), is more useful.

Covariance and correlation coefficients and methods for their estimation are
described in Chapter 5. Here we use the covariance matrix C with elements formed
by individual covariances or the correlation matrix R with elements formed by
individual correlation coefficients. The covariance matrix C has the variances on the
diagonal while the correlation matrix has ones.

A random vector is characterized by the vector of mean values u = (uy, ..., u,)"
where u; = E(¢;), and by the covariance matrix C. This information is generally not
sufficient. Analogously to the mean values E(¢;), conditional means or conditional
variances can also be defined. We will define these characteristics for a case of two
random quantities &; and &,, and then for the general random vector é&.

7.1.1 Correlation models for two random variables
For two random variables ¢; and &, the conditional means are given by

E(f1/x2)=J X1 f(xq/x3)dxy (7.1a)

E(&,/x1) = J X2 f(x2/x1)dx, (7.1b)

where f(x,/x,) and f(x, /x,) are the conditional probability densities (cf. Chapter 5).

From Eq. (7.1a,b) it is evident that the conditional mean value E(&,/x,) is in fact
a mean value of the random variable &,, with condition that the random variable &,
lies in the infinitely small interval around the value x,. The conditional mean value
E(¢,/x,) is defined similarly. Because they are conditioned by a random variable,
the conditional mean values are random variables which may be characterized by the
means and variances. The means of the conditional mean values do not provide any
new information because

E(E(81/x3)) = E(&4)
and
E(E(£2/x1)) = E(&2)

By introducing the variances of the conditional mean values (D(E(¢,/x,)) and
D(E(E,/x,)) the total variances D(&,) and D(£,) may be decomposed into the
components

D(&1) = E(D(1/x2)) + D(E(S1/%2)) (7.2a)
D(&2) = E(D(E2/x1)) + D(E(E2/x1)) (7.2b)
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The first terms on the right hand sides represent the mean values of the conditional
variances which may be defined in a similar way to the conditional mean values (Eq.
7.1), with the use of conditional probability densities.

The conditional mean values have the same properties as the unconditional. For
the conditional mean value E(£,/x,) it is also true that

(1) For any x,; of random variable &,, the values E(&,/x,) exist if E(£,) < oo.

(2) If a random variable ¢; does not depend on the random variable ¢,, the
conditional mean value is independent of the condition and E(£,/x,) = E(&,).

(3) If &, =g(&) where g(-) is a function notation, then E(&,/x,) = g(x;).

(4) The conditional mean value is a not symmetric function of the arguments, so

that E(£,/x;) # E(,/x2).

Property (3) shows that the conditional mean value is a function of quantity x, of
condition ¢, and therefore it is denoted as the regression of variable £, on the
variable &;.

Generally, two types of regression are distinguished [1].

(1) The theoretical regression is a conditional mean value derived from knowledge
of a conditional probability density f(x,/x;) or the knowledge of a joint
probability density f(x;, x,) and both marginal densities f(x,) and f(x;). It is
valid that for all elliptic conditional distributions, including the normal one, the
theoretical regression is a linear one [2]. For some conditional distributions,
however, the theoretical regression may be nonlinear [3].

(2) The empirical regression is any conveniently selected function g(x,) which
approximates the behaviour of the conditional mean value E(£,/x,). To find the
function g(-) and the parameters estimates, the methods in Chapter 6 may be
used.

We will now deal with the theoretical regression when all the components of vector
& have the normal distribution, and also the joint distribution of vector ¢ is normal.

Problem 7.1. Deriving a theoretical regression for the normalized normally
distributed random variables

Let us assume that the random variables £; and £, have the normalized normal
distribution N(0, 1) with zero mean and variance equal to one. The joint distribution
of the variables is also normal with the probability density function

1 x3 —2p X XX, + x3
Fy, %y) = ——_ex [— t
P T 21— p?)

where p = p(&,, &,) is the correlation coefficient between the random variables &,
and &,. Derive the theoretical regression E(¢,/x,).

Solution: In the first step, the conditional probability density f(x,/x,;) should be
calculated.

Slx1, x2)
fxy)

Sxa/xq) =
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On substitution and rearrangement, we get

- 1 (x2 — px;)?
s = i <o - &

By substituting into Eq. (7.1) and analytical differentiation we get

® X (2 — pxq)?
E(&,/xy) = J -—z—exp[— —————:Idx = px (7.4)
. —w /271 — p?) 2(1 - p?) g !
Conclusion: For this case of random variables, the theoretical regression is linear
with zero intercept, and the slope corresponds to the correlation coefficient p.

The conditional variances are the characteristics of variability of conditional
distributions. The conditional variance D(¢,/x,) expresses the variability of the
random variable ¢, around the theoretical regression E(¢,/x,), on condition that &,
has a realization x,, where function x, is called the scedastic function. If D(&,/x,) is
a constant independent of &, (or x, )it is a heteroscedastic function. The homoscedastic
and heteroscedastic functions are illustrated in Fig. 7.1.

fixq, X,) @ tix,, x,) (b)

&1 S

Fig. 7.1-—(a) Homoscedastic, and (b) heteroscedastic relationship between two linearly
dependent random variables.

For independent random variables the following expressions are valid

E(C2/%1) = E(&2)

and

D(&2/x1) = D(&,).

The theoretical regression E(£,/x;) and E(£;/x,) then represents two mutually
perpendicular straight lines, parallel with the co-ordinates when the scedastic functions
are constant.
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For dependent random quantities, either the conditional mean value (Fig. 7.1) or
conditional variance, or both, is/are non-constant.

Problem 7.2. Determination of a scedastic function

Determine the scedastic function D(¢,/x,) for the variables £; and &, defined in
Problem 7.1.

Solution: From the definition of variance we can write

=9}

D(&2/x1) = _[ (x2 = E(€2/%1))’f (x2/x,)dx;

After substitution from Eq. (7.3} and analytical differentiation, we find

D, /%) = (1= p?) (7.5)

Conclusion: For normalized normal quantities with the normal distribution, when
their joint distribution is also normal the scedastic function is constant.

Conditional variances are also random variables (dependent on condition) which
may characterized by the mean values and variances. In the linear regression of &,
on ¢, the mean conditional variance is

E(D(£,/x1)) = D(&,)[1 — p*] (7.6)
and the variance of conditional mean value is
D(E(S;/x,y)) = D(fz)ﬁz 7.7

For homoscedastic functions, the mean conditional variance is equal to the conditional
variance which does not depend on the conditional values. Conditional variances
have all the properties of unconditional variances.

The mean conditional variances generally characterize a stochastic dependence
between random variables which can be nonlinear.

If E(D(¢,/x,)) = D(&,), &, and &, are independent.

If E(D(&,/x,) < D(&,), there is a stochastic relationship between the variables.

From Eq. (7.2b) and the definition of regression it follows that the variance of the
conditional mean is that part of the total variance concerned with “the theoretical
regression” caused by the influence of variable &; on the variability of variable &,.
The mean value of the conditional variance expresses the influence of all other (not
considered) variables which cause variability in output variable &,.

For a measure of regression quality, we use the ratio R2

D(E(E2/x1))
D(&,)

RZ=

which determines the part of the variability of random variable £, explained by
theoretical regression. From Eq. (7.7) it follows that R3 for linear regression is equal
to the square of correlation coefficient or to the determination coefficient.

Let us mention the theoretical regression and conditional variances for two random
variables, &, with distribution N(u,, 62) and &, with distribution N(u,, 03), when
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their joint distribution is also normal. On the basis of Problem 7.1, the theoretical
regression E(£,/x,) may be expressed in the form

H@MJ=M+P%UrﬂM (7.9)

This is a straight line with slope b, = po, /o, and intercept b, = u, — by, which
passes through the centre of gravity of co-ordinates [y, u,].

Similarly, on the basis of the results of Problem 7.2, the conditional variance may
be determined as

D(&,/x,) = a3(1 — p?) (7.10)
From the definition it follows that
D(¢,/x() = E[&;, — E(&,/x,)]? (7.11)

and the conditional variance is equal to the mean value of the square of deviations
of random quantity &,.
In a similar way, the linear expression for the regression E(&,/x,) may be found

mama=m+p%ufqm (7.12)

The conditional variance

D(y/x;) = 63(1 — p?) (7.13)

It is obvious that both theoretical regressions go through the same point. The product
of their slopes is equal to the square of the correlation coefficient. If the correlation
coefficient p = 1, both slopes of theoretical regressions will be equal to one and both
regressions will be identical. If p = 0, both slopes will be equal to zero and the
regressions will be parallel with the axis of the co-ordinate system and will have an
angle of 90°. The angle ¢ between the theoretical regressions gives a measure of the
linear dependence between the random quantities ¢, and &,. For this angle

0,051 — p?) (7.14)

tan @ =
plo} + o3)

Figure 7.2 shows the relationship between the two theoretical regressions.

In cases when the correlation coefficient is not equal to zero or one, there exist
two different regressions. Often it is possible to determine which variable is a response
and which is the controllable one, and according to that, to select a suitable type of
regression. When it is not possible to determine the type of variables, to determine
the linear relationship between &, and &, we can use:

(1) the principal axis which corresponds to the minimum of the squares of the
perpendicular distances of points from the regression straight line.

(2) the reduced principal axis of the ellipses of constant densities, corresponding to
the minimum of the products of deviations in the two variables. The slope of
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ézr

&

Fig. 7.2—The relationship between theoretical regressions.

the corresponding reduced principal axis is directly equal to the variance ratio
d = 0,/5, and the regression goes through the centre of gravity (uy, u,).

These expressions may be used for practical purposes. The means p; and y, may
be replaced by the arithmetic averages X, and X,, the variances o7 and ¢ by the
sample variance estimates s and s3, and the correlation coefficient p by the sample
estimate of the correlation coefficient:

=

(1 — X1 )(x2; — X3)
R= _f=1 . (7.15)
'§1 (x1; — %)% x Z (x2; — X5)?

i=1

The slope b, and the intercept b, of the regression E(£,/x,) correspond to estimates
found by the least-squares method, and D(¢,/x,) corresponds to the residual sum of
squares.

Problem 7.3a. Influence of solvent type on the degree of polymerization of cotton
For 17 differently degraded samples of cotton the relative viscosity was determined
in (a) a solution of the ethylenediamine complex of copper (CUEN), and (b) an
alkaline solution of copper tetra-ammine hydroxide (CUOXAN). From viscosity
values, the degree of polymerization values DP P were calculated. Examine the
relationship between the degree of polymerization DP, in solution CUEN and DP,
in solution CUOXAN.

Data: n =17

DP, x 1000 5913 1837 5732 3792 5823 2837
DP, x 1000 2341 1740 2863 1648 2608 1.391
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DP, 103
7.0

6.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0
DP, 103

Fig. 7.3—The straight line corresponding to the reduced principal axis (RPA) and to the
regression E(&,/x,).

”=[ﬂ1] C=|:6§ c?]
u* ¢, C*

where ¢] = [cov(y, &,), ..., cov(&y, E,)] is the vector containing the covariance
between the response variable ¢, and the explanatory variables &*. The symbol C*
represents the covariance matrix of the explanatory variables.

As for the case of two variables, the conditioned probability density f(x, /x*) may
be determined, and this has a normal distribution, so the conditional mean value is

E(1/x*) = py + efC* I (x* — p¥) (7.16)

Let us introduce the vector a = (a;, ..., a,_;)", and the expression

a=C*"!¢, (7.17)

Then Eq. (7.16) represents the linear function of variables x* in the form

m—1
E¢C /x¥) =p +a’(x* —p*) =y + Y ;(Xiv1 — Mis1) (7.18)
i=1
If the joint distribution of the random vector is normal and the distribution of all ¢;
components is also normal, the resulting theoretical regression is linear.
The vector of regression coefficients a is estimated here as a solution of the set of
(m — 1) linear equations

aC* =¢, (7.19)

where C* and ¢; contain individual covariances. The corresponding conditional
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variance is given by the relation
m
D(&,/x*) =0} —c]C* '¢; = 0] — ) ¢! C¥Hcj (7.20)
i=1
where c}, ¢} are elements of vector ¢;, and C?} are elements of matrix C*~ 1. If
all components of the random vector &* are mutually independent, matrix C is
diagonal with variances ¢ on the diagonal. For individual regression coefficients,
then

o= e e )% =2 (.21)

J

Similarly, the expression for the conditional variance will simplify to

D, /x*) = a1 — Z I (ST )0'1 = o[l - R1(2 ..... m] (7.22)
j=2
where Rz, is the multiple correlation coefficient between £, and the vector &*.

For this correlation coefficient

D(E(£:x*)) det(R)
Ri,..m= \/0—1 \/1 = m (7.23)

where R;; is the matrix formed by leaving out the ith row and the jth column of the
correlatlon matrix R.
Basic properties of the multiple correlation coefficient are

(1) 0<Ry,

(2) if Ry, . m =1, the random quantity &, is exactly a linear combination of
quantities &,, ..., &,.;

(3) ifRyz, . 'm=0, all pairwise correlation coefficients p(¢, &) =0,j=2, ..., m;

(4) for the case of a single explanatory variable, the multiple correlation coefficient
is identical with the absolute value of the paired correlation coefficient,
Ry = 1p(1, &2)Is

(5) as the number of explanatory variables increases, the multiple correlation
coefficient never decreases:

2
R1(2> < R1(2 3) < R1(2 3.9 <..<Rig. .m

Problem 7.4. Multiple correlation coefficient for two explanatory variables

Estimate the multiple correlation coefficient R, 3, between a variable £; and two
variables &,, &;.

Solution: For correlation matrices R and R,; we can write

1 RIZ R13 | 1 R
R= R12 1 R23 and R11 = R 123
R13 R23 1 23
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In these expressions, the symmetry R;; = Rj; of paired correlation coefficients is used.
After substitution into Eq. (7.23) and some rearrangement we get

2 2
— 2R
Ry.3) = \/RIZ + Ris 12_11(2%3>< Ry3 X Ry (7.24)

Equation (7.24) shows that paired correlation coefficients can not reach any value in
the range —1 < R;; < 1, but they are mutually bounded by the condition R, , 3, < 1.
If R,5 = 0, the explanatory variables are mutually uncorrelated, and

Ri@z3 =R}, =Ri; (7.25a)

Conclusion: The multiple correlation coefficient may be estimated as the function of
paired correlation coefficients. When the explanatory variables &,, ..., &, are mutually
uncorrelated, the square of the multiple correlation coefficient is equal to the sum of
squares of paired correlation coefficients.

In some cases the centred random variables or normalized random variables are
used. For centred random variables

éc}zéj_#,v j=1,...,m

and for normalized random variables

_Si—w L
ch— s, s ji=1,.

The regression defined by Eq. (7.18) may be expressed with the use of centred
random variables in the form

.., m

m-—1
E¢ /x¥)=¢c[C* !x} = Y aiX. ;4 (7.25b)
i=1

It can be seen that centring does not change the estimates of the regression coefficients,
but the intercept term is equal to zero.
With normalized random variables, the regression E(, /x*) takes the form

T
ElGns /%) = RTR* 1t = 20Xy (126
1
where R is a vector of size ((m — 1) x 1) containing paired correlation coefficients
p(&1, &), 7 =2,..., m and R* is the correlation matrix of the vector of explanatory
variables of size (m — 1) x (m — 1), D denotes a diagonal transformation matrix with
elements g, j = 2,... m, on the main diagonal. The coefficients b; = R* ~'R are called
the normalized regression coefficients. From Eq. (7.26) it follows that a relationship
exists between non-normalized (a;) and normalized (b;) regression coefficients

ai_,=b_=t, j=2..m (7.27)

J
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of normalized regression coefficients is the fact that they concern directly the paired
correlation coefficients and are easier to interpret.

Problem 7.5. Regression for two explanatory variables

Estimate coefficients a and b of the linear regression of one response variable ¢, and
two explanatory variables ¢&,, ;.

Solution: The vector R is (R, Ry3). Matrix R* is identical to the matrix R, from
Problem 7.4. For the matrix R* !

1 —R
*x—1 _ _ R2 )1 23
R - (1 R23) l:__ R23 1 :I
The normalized regression coefficients then are

)l e R
b, 1 —R3;| —Rzs 1 Ry,

leading to the expressions

Ryi3; — Ry3 X Ry3

by = 1-R, (7.28a)

b, = Rus T 52135: Riz (7.28b)
Non-normalized regression coefficients are expressed by

a; =b, Z—:

a, = bZZ—;

If the explanatory variables are mutually uncorrelated, R,; = 0 and the normalized
regression coefficients correspond to the paired correlation coefficients

bl = Rlz (7.293.)
and
b2 = R13 (729b)

Conclusion: It is obvious that the regression coefficients are functions of the
only paired correlation coefficients. When the explanatory variables are mutually
uncorrelated, the normalized regression coefficients are directly equal to the paired
correlation coefficients between the jth response and the explanatory random variable.

The regression coefficients a and b are such that the correlation between random
variables ¢, and &, = (&, /x*)is maximal. Random variable ¢, is the linear combination
of components &,, &5 ..., &, of random vector & for realization x*. It is also valid
that
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p&y, 51) = R1(2,3 ..... m) (7.30)

In regression analysis &, is called the prediction. Equation (7.30) shows that the
multiple correlation coefficient is, in fact, the paired correlation coefficient between
the vector £, and vector ¢,.

The random variable ¢ = £, — &, is called the residual in point x*. The residuals
are uncorrelated with individual explanatory variables because

covie, &) = E(e£) = E(€y &~ & &)=0

The covariance of residuals with a controllable variable £, is equal to the conditioned
variance

covle, &1) = D(S1/x*) (7.31)

which is also the residual variance D(g). As for the case of one explanatory variable
(Section 7.1.1) the estimates of the regression parameters and other random variables
may be obtained on the basis of the sample means X,, ..., X,,, and the sample
covariance, or correlation matrix, respectively. It is also valid that these estimates
are identical with the estimates obtained by the least-squares method.

Problem 7.6. The effect of inorganic and organic nitrogen in soil on the nitrogen
content of corn

The effect of the concentration of inorganic nitrogen (x,) and organic nitrogen (x3)
in the soil on the content of nitrogen in corn has been studied [4]. Estimate the
linear regression model for the regression of x; on x, and x;, and calculate the
multiple corrrelation coefficient.

Data:

Xy 64 60 71 61 54 77 81 93 93 51
Xy 04 04 31 06 47 17 94 101 116 126
X3 53 23 19 34 24 65 44 31 29 58

76 96 71 93 95 54 168 99
106 231 231 216 231 19 268 299
37 46 50 44 56 36 59 51

Solution: From the expressions for the mean, variance and pair correlation coefficient
we estimate

x, = 81.28 x, = 1194 X3 =42.11
s? =7288 s3 = 103.6 s3 =185.6
and

1 0.6934 0.3545
R = | 0.6934 1 0.4616
0.3545 0.4616 1

B
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On substitution into Eq. (7.24) we obtain

= 0.6945

0.6934% + 0.3545% — 2 x 0.6934 x 0.3545 x 0.4616
Ries = 1 - 0.46167

From Eq. (7.28a) we obtain
_0.6934 — 0.4616 x 0.3545

by = = 0.6732
! 1 — 0.46162
and from Eq. (7.28b)
b, = 0.04375

For non-normalized regression coefficients

[728.8
4= /1036 * 0.6732 = 1.7855

a, = 0.08669

For the intercept term, from Eq. (7.18), we have
ag = X — a1X, — a,X3 = 56.31

The linear regression model has the form
x; = 56.31 + 1.7855x, + 0.08669x,

The multiple correlation coefficients are the same, and the coefficients a,, ay, a,
correspond to the estimates by the least-squares method.
Conclusion: The coeflicients of linear regression models and the multiple correlation
coeflicient may be calculated directly from the definitions.

From a practical point of view, it is convenient to use computer programs for
linear regression. However, these expressions show that regression models can be
directly derived from the random vector, and moreover they often aid the interpret-
ation of the statistical characteristics.

In some cases it is useful to examine a relationship between two components &,
and ¢; of a random vector, when the other components of vector £ are excluded. To
express the intensity of this dependence, the partial correlation coefficients of various
orders are used. The simplest are the partial correlation coefficients of zero order,
which correspond to the paired correlation coefficients.

The partial correlation coefficient of the first order R, 5, corresponds to the
paired correlation coefficient between the residuals

& =& — E(81/x2)
and the residuals

Ky = &3 — E(&3/x,)
Then
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R0 = Ris — Ryz X Ry
‘ V(1 = R3,)(1 — R3,)

Similarly, other partial correlation coefficients R,;(j, of the first order can be defined
from the paired correlation coefficients between residuals

&= & — E(¢4/x;)
and residuals
Kk; = & — E(&i/x;) (7.33)
Then, it can be shown that
Riip= R RuRy
/(= RE)(1 - R,

The partial correlation coefficients of the second order R ;(;, are the same as the
paired correlation coefficients of residuals

ik = 1 — E(&1/(xj, xi))
and residuals
Kik = &i— E(éi/(xja X))

To estimate these, an equation analogous to Eq. (7.33) may be used, where instead
of the paired correlation coefficients the partial correlation coefficients of the first
order are used

(7.32)

Ryij — Ryjay X Rij

Rl,i( ik =
V(1 = Rija)(1 — R¥y)
The partial correlation coefficient of the (m — 1)th order R, ;; 3
to the paired correlation coefficient between residuals

m = &1 — E(1/x¥)
and residuals
m = & — E(&;/x*)

where the vector x* contains the components Xj, X3, ..., Xj— 15 Xi+ 15 «--5 Xp-
Generally, the partial correlation coefficients of the higher orders are estimated
according to a recursive formula
A—BxC

Ry j2,3,..i-1) = - B1_0) (7.35)

(7.34)

m) corresponds

.....

&2

.....

K3

.....

where
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and

C= R}} 1(2,3,..., -2)

When individual partxal correlation coefficients of all orders are known, the multiple
correlation coefficient can be estimated from

m = 1 - (1 - R%,Z)(l - R%,3(2))(1 - R%,4(2,3))“'(1 - R%,m(2,3 ,,,,, (m—l)))

All these expressions can be evaluated on a pocket calculator.
In the computer estimation of the partial correlation coefficients, matrix notation
is convenient.

.....

(— 1)' X dct(RU)
Vdet(R, ;) x det(R; )

where R is the correlation matrix corresponding to the vector £ and R; ; is the matrix
formed by leaving out the ith row and the jth column of matrix R.

Rii2,3,..m= (7.37)

Problem 7.7. Partial correlation coefficients of the first order

For the random variables &,, &,, &;, estimate with the use of Eq. (7.37) the partial
correlation coefficients R; ,(3y and R, 3(,).

Solution: For calculation of the correlation coefficients the matrices R, Ry, Ry, R;,,
R,; and R;; are necessary. We determined

1 Ri; Rys 1 R,
R=| Ry, 1 Rj3 Ry, = R, 13
Ri3 Rys 1 }

— R12 R23 _ 1 R12
R12 - I:Rl3 1 R33 - R12 1

_ R12 1 _ 1 R13
R“‘[Rm Rza] RZZ_I:RH 1

On substitution into Eq. (7.37) we find
— Rjy3 X Ry3
J(l —R 33)(1 — R}y

(7.38)

Rl,2(3)

or
— Ry, x Ry;
J(l — R%,)(1 — R%,)

Conclusion: The partial correlation coefficients may be estimated directly from Eq.
(7.37).

It is interesting that by use of the partial correlation coefficients, the normalized
regression coefficients may also be found. The intensity of the mutual relationship

(7.39)

R1,3(2)
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between components of a random vector may be better estimated by the partial
correlation coefficients than by the paired correlation coefficients.

Problem 7.8. Partial correlation between the nitrogen content in corn and in soil

For the data from Problem 7.6, calculate the partial correlation coefficients between
the nitrogen content in corn and (a) the content if inorganic nitrogen in soil Ry 53,
and (b) the content of organic nitrogen in soil, R; 3(,).

Data: from Problem 7.6

Solution: By direct substitution into Eq. (7.38), we find

0.6934 — 0.4616 x 0.3545
12T 1= 046165)(1 — 035457
and from Eq. (7.39)
Ry 32 = 005325

= 0.6386

Conclusion: The nearly zero value of the partial correlation coefficient R, 3, shows
that the influence of organic nitrogen in soil on the nitrogen content in corn is
negligible. The relatively high value of the paired correlation coefficient R, 5 = 0.3545
is strongly affected by the correlation R,; = 0.462 between the organic and inorganic
nitrogen in soil. Detailed data analysis shows that point 17 is an outlier, so the
analysis should be repeated with that point omitted.

7.2 CORRELATION COEFFICIENTS

Correlation coefficients serve as basic measures for expressing “closeness” of the
linear stochastic dependence between components of the random vector &. In the
literature [5] many other characteristics are used which can also cover nonlinear
stochastic dependences. We restrict ourselves here to a description of the distributions
of the sample correlation coefficients, and some selected tests.

7.2.1 Paired correlation coefficient
The paired correlation coefficient p(&;, £;) = R;; is a measure of the linear stochastic
dependence between the random variables ; and &;. For sample size n, the same
correlation coefficient may be estimated from Eq. (7.15). For simplicity, we denote
the paired correlation coefficient by the letter p and the sample paired correlation
coefficient by R.

At first we restrict discussion to a case when the joint distribution of quantities &,
and &, is normal and p = 0. Then the probability density of random quantity R is
symmetrical around zero and has the shape [6] expressed by

L

SR === x = x (1 — R2)n=412 (7.40)

where I'(-) is the Gamma function. For n =35, 9 and 51, the courses f(R) are
illustrated in Fig. 7.4.
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2.8

fiR)

1.4

0.0

-1.0 0.0 R 1.0

Fig. 7.4—The probability density of the sample correlation coefficient for p = 0 and for
sample size n = 5, 9 and 51.

In construction of significance tests the following test criterion is used

R./n-2
/1 —R?

which for p = 0 has the Student distribution with (n — 2) degrees of freedom. This
may be used for testing the independence between a pair of random variables. If
their distribution is two-dimensionally normal, lack of correlation is identical to
independence.

The null hypothesis Hqy: p = 0 is tested vs. various alternatives. If the criterion [t
from Eq. (7.41) is larger than the corresponding quantile of the Student distribution,
the null hypothesis is rejected and the random variables are not correlated. This test
is strongly non-robust and is valid only in the case of two-dimensional normality of
¢, and &,. To speed up the convergence of f(R) to the normal distribution, various
transformations are used. The simple Ruben transformation has the form

R(R) = _@ (7.42)
1 —0.5R?
The random variable R(R) has, even for small sample sizes, the normalized normal
distribution N(0, 1).

t= (7.41)

Problem 7.9. Significance of the degree of polymerization of cotton in two solutions
Determine the significance of the correlation coefficient between the degrees of
polymerization of cotton determined in solution CUEN and CUOXAN (Problem
7.3) when the sample correlation coefficient R = 0.6142 was estimated from 17 data
values.
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Data: from Problem 7.3

Solution: We select the significance level o = 0.05. Since there must be a positive
linear relationship between the degrees of polymerization in the two solutions, we
know that p > 0. We examine the null hypothesis Hy: p = 0 vs. Hy: p > 0.

(a) By substituting into Eq. (7.41), we calculate the test criterion t = 3.104. This
value is higher than the quantile of the Student distribution tg ¢5(15) = 1.753,
so the inequality p > 0 is accepted.

(b) By substituting into Eq. (7.42) we calculate the test criterion of the Ruben
transformation R(R) = 2.596. This value is higher than the quantile of the
normalized normal distribution ug o5 = 1.645, so the null hypothesis H, is
rejected.

Conclusion: Both tests prove that the population correlation coefficient is, with 95%
probability, positive, and therefore correlation exists between the two degrees of
polymerization of the two solutions.

A common case is a simultaneous distribution of two random variables that are
two-dimensionally normal with p # 0. For n > 3 the probability density function of
the sample correlation coefficient may be expressed in the form [6].

f(R/p) — Fj"_—;%)_’(l _ p2)(n—1)/2 x (1 _ RZ)(n—4)/2
© i . 2
x ¥ (z‘f,Ry[r[" T/ 1]] for -1 <R'<1, (7.43)
j=o J: 2
f(R/p)=0 elsewhere

The probability density function f(R/p) is rather asymmetrical for small sample sizes
(see Fig. 7.5).

For sufficiently large sample sizes (n > 500), the distribution of f(R/p) can
be approximated by a normal distribution with mean E(R)=p and variance
D(R) = (1 — p?)*/(n — 1).

If random variables &, and £, have a two-dimensional elliptic distribution with
correlation coefficient p and kurtosis g,, the random variable

" =|R—p|><./n—1 (7.44)

n 1_p2

has an asymptotically normal distribution with zero mean value and variance equal
to (1 + g5,).

Problem 7.10. The confidence interval of the correlation coefficient

For 600 random samples, the content of iron was determined by two analytical
methods with correlation coefficient R = 0.85. Estimate the 95% confidence interval
of the correlation coefficient p. Examine the null hypothesis Hy: p = 0.9 against the
alternative H,: p # 0.9.
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3.2

f(R)

1.6

0.0 y
0.0 0.5 R 1.0

Fig. 7.5—The probability density function of the sample correlation coefficient (for p = 0.6)
for sample sizes n = 5, 9 and 51.

Solution: We make use of the asymptotic normality of the distribution of the
correlation coefficient. It is valid that

(1-R?» (1-R?

V-1 NS

where u, _,), is the quantile of the normalized normal distribution. On substituting,
we get

0.828 < p < 0.872

R_ul—a/Z SPSR+u1_¢/2

To test the Hy, hypothesis, we use the test criterion u, [Eq. (7.44)]

= |0.85 — 0.9],/600 — 1 644

" 1-092

which is higher than the quantile uy 975 = 1.96, so we reject the null hypothesis Hy,:
p = 0.9 at the significance level & = 0.05. The correlation between the two analytical
methods for iron determination differs significantly from the value 0.9.

Conclusion: For large sample sizes the asymptomatic normality can be utilized to
permit a test of paired correlation coefficients.

If the sample correlation coefficient is estimated from the sample size n, some
measures of location, spread and distribution shape may be approximated [6]. The
mean may be expressed in the form

P 3 _ 5
E(R)=p+(1_p2)[_ p_, P 9p +p+42p 75p

2n—1) " 8n— 1) 6n—17 ] (7.43

the variance
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1 11p2  —24p% + 75p* ]
R) = —(1 — p?)? 7.4
D(R) n( p)[1+2(n_1) 2 — 1) (7.46)
the skewness
_ 6p —30 + 70p*
gl(R)—n_ 1[1 + 20— 1) + ... (7.47)
and the kurtosis
6(12p% — 1

The bias E(R) — p is, as an initial approximation, equal to

o —pl=pY
ER) = p=—u—)
and the estimate R calculated by Eq. (7.15) is rather underestimated for p > 0. For

very small sample sizes (n < 15), the corrected correlation coefficient is used for
practical calculations. This is given by

. 1 - R?
R* = R[l + m] (7.49)

The square of the correlation coeflicient is strongly overestimated in cases when
the sample is not random. For larger intervals of sample values and more uniform
scaling, the R? value is more overestimated.

To improve the statistical properties of a distribution of the sample correlation
coefficient, many transformations which speed up convergence to normality are used.
The best known is the Fisher transformation [7] which takes the form

Z(R) = arctan (R)
1+R

This transformation stabilizes the variance. For n > 50, the distribution of quantity
Z(R) is approximately normal, with mean value E(Z) and variance D(Z) calculated
from

E(Z) = Z(p) (7.51a)

DZ) = % (7.51b)

More exact estimates of the mean, variance, skewness and kurtosis are given by

050  p(5+p%)  p(1 +2p% + 3p%
EZ)=2Z
O =Z0+ =T+ g2 T 16— 1)

i

(1.52)
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1 0.5(4 — p?) 1 p?

D(Z)—n_1[1+ i +...]~n_3—2(n_3)2 (7.53)
03

gl(Z)=(—nT)2/3+”- (7.54)

8(2) = n—% + ... (7.55)

For small sample sizes, the Sammiunddin transformation [8] is recommended

__R-—pyn-2 (7.56)
V(1 —=R)(1 - p?)

The quantity S has approximately the Student distribution with n — 2 degrees of
freedom for p # 0.

Kraemer [9] replaces the correlation coefficient p in Eq. (7.56) with the median p
of a distribution of the sample correlation coefficient, for which

N Gl 15)+...] (1.57)

p~ 1-p?
prp+( p)p[n_1+ 2400 — 1)

There are many other transformations [6] which are recommended for small or large
sample sizes.

Problem 7.11. Examination of the correlation coefficient between the degrees of
polymerization of cotton in two solutions

Suppose that if the correlation coefficient between the degrees of polymerization of
cotton in CUEN and CUOXAN solutions is not smaller than p, = 0.85, a significant
linear association between the results exists. Examine the null hypothesis Hy: p = 0.85
against alternative H,: p < 0.85, with the use of various transformations.

Solution: (a) Fisher transformation (7.50) leads to the test criterion

up = |Z(R) — Z(po)l x /n—3

with approximate distribution N(0, 1). From Eq. (7.50) we get

Z(R)=0.5 ln[i—t%i—:—g:l =0.7156
and

Z(py) = Z(0.85) = 1.256
Then

ug = 10.7156 — 1.256|,/17 — 3 = 2.021

is higher than the quantile uy o5 = 1.64 and therefore the null hypothesis Hy: p = 0.85
cannot be accepted.
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(b) The Sammiunddin transformation (7.56) leads to the test criterion

[0.6142 — 0.85|,/17 —

\/(1 —0.614%)(1 — 0. 852)

is higher than the quantile #, ¢5(15) = 1.725, so the null hypothesis Hy: p = 0.85 is
rejected.
(¢} Kraemer modification (7.57) leads to the median

p~085+(1— 0.852)0.85[1—26 + :| = 0.879

The test criterion

10.6142 — 0.879| /17 ~2

- J(1 —0.879%)(1 — 0.6142?)

is higher than the quantile ¢, ¢5(15) = 1.725 and therefore the null hypothesis Hy:
p = 0.85 is rejected.

Conclusion: All three tests used show that the correlation coefficient p is significantly
lower than the value 0.85 and therefore the stochaastic dependence between the
degrees of polymerization is not very strong.

When the joint distribution of random variables is not normal and the sample
contains strong outliers, the normalized transformation is not valid and the correlation
coefficient is not suitable for expressing a stochastic association. We can then use
various robust estimates of correlation coefficients, which apply robust estimates of
parameters of location, spread and covariance. Some techniques have been described
[10].

The correlation coefficients should be interpreted very carefully. As a general rule,
a significant paired correlation is not the proof of a causal dependence. Sometimes
false correlations are formed when either &, or &, strongly correlate with some
unconsidered random variable 3, and a high value of p(¢,, &,) is the consequence
of high values of p(¢,, £3) and p(&,, &;). In the interpretation of correlation coefficients,
the partial correlation coefficients should also be considered.

7.2.2 Partial correlation coefficients
For calculation of partial correlation coefficients either the recursive formulae [Eq.
(7.35)] or the matrix method [Eq. (7.37)] can be used.

For statistical testing and building of the confidence interval, we use a rule that a
distribution of the partial correlation coefficient of the order (m — 1) is identical to
the distribution of the paired correlation coefficients for sample size (n — m + 1).
Thus, techniques described in Section 7.2.1, with modified sample size, may also be
used.
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Problem 7.12. Significance of the dependence between the organic nitrogen in soil
and the content of nitrogen in corn

For the data from Problem 7.8, examine the significance of the correlation coefficient
R, 32 as an expression of the association between organically bound nitrogen in
soil and content of nitrogen in corn.

Data: from Problem 7.8

Solution: To examine the significance of the null hypothesis Hy: R, 3(;) = 0 against
Ha: R, 3 #0 we use the above relationship. Because the partial correlation
coeflicient is of the first order, we have m — 1 = 1 and the reduced sample size is
n — 1. From Eq. (7.41) the test criterion

= Rusan/n =3 _ 597
AV - R§,3(2)

is smaller than the quantile ty 975(15) = 2.13, so the null hypothesis Hy: Ry 35, =0
is accepted. In calculation of tp, the partial correlation coefficient R, 3., = 0.05858
for n = 18 was used.

Conclusion: On the basis of the test of the partial correlation coefficient, it is concluded
that there is no significant correlation between the organic nitrogen content in soil
and in corn.

Partial correlation coefficients can be used to elucidate some false correlations.
Consider a case when the paired correlation coefficient between &, and £, is R, = H
where H — 1. Suppose there is a random variable £; which strongly correlates with
&, and &,, so that R,3 = H? and R,; = H. Then the multiple correlation coefficient

R1(2,3) =H
may be estimated, and the partial correlation coefficients are equal to
R1,3(2) =0

H

Ry g3 = ————
PO Ny H?

Despite the high value of the paired correlation coefficient (R,3 = H? is close to
one) the quantity ¢; does not contribute to the explanation of the variability of £,
and ¢&,. It is a typical parasite variable. When R,3 = R,3/R;,, the variable &; is a
parasite.

This situation can arise from the neglect of a significant variable such as, for
example, time or temperature. For example, at various time values during a
degradation process, the mechanical or optical properties of the materials will be
different. If time is ignored, a significant “false” correlation among these properties
appears. When time is included as a variable, the optical properties do not contribute
to explaining the variability of the mechanical properties. A high value of the paired
correlation coefficient is not always a guarantee of a significant association between
variables.

Similarly, there are cases when a low value of the paired correlation coefficient
leads to high partial correlation coefficients and a high multiple correlation coeflicient.
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When R{3 =0 and R, = ¢ (¢ - 0), but variables ¢, and &, are strongly correlated

ie.
Ry =/(1 = &%)

then Ry,3 = 1, Ry32) = —1 and R, 3y = 1. From this it follows that a zero paired
correlation coefficient does not mean automatically that a given random variable is
insignificant or parasite and may be excluded.

Moreover it is not valid that strongly correlated random variables are always
redundant. These examples demonstrate that often no conclusions can be made from
the paired correlation coefficients. It is because other variables are not considered
that a “false” correlation may be concluded.

7.2.3 Multiple correlation coefficient
The multiple correlation coefficient, denoted as Ry, ) is a measure of the overall
linear stochastic association of one random variable ¢, with the best linear
combination of the other components &5, ..., &, of the random vector & The sample
correlation coefficient R, ., may be readily calculated from Eq. (7.23) by replacing
the correlation matrix R by the sample correlation matrix R. For the sake of
simplicity, we refer to the multiple correlation coefficient of the population as R,
and its sample estimate as R,,.

Let us suppose that the vector £ has an m-multidimensional normal distribution

and that all its components have a normal distribution.

Case R, = 0:
The probability density of random variable R? is given by
SR2) = Ky x (RE)™=32 x (1 — RE)n=m=212 (7.58)

where K, is a constant dependent on m and n. The distribution defined by Eq. (7.58)
is a beta-distribution Be[(m — 1)/2, (n — m)/2]. Then the random variable given by

_ (n—m) xR

= = 7.59
R m— (- R2) 739
has the F-distribution with (m — 1) and (n — m) degrees of freedom.
For large sample sizes, the distribution of
Ck=mn—1)x R} (7.60)

is x* with (m — 1) degrees of freedom.
For the mean value of the sample squared multiple correlation coefficient, we have

52, m—1
E(R:) = p— (7.61)

and for the variances
Dmi)=2(n—m+2)(m~ 1) 2m-—1) (162)

M -hHin-1 = n?
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Equation (7.61) shows that for a small number of measurements and a large number
of explanatory variables, the quantity R2 will be significantly different from zero even
in cases when the population multiple correlation coefficient R2 is equal to zero. For
example, if n = 12 and m = 9, then E(R2) = 0.727 even though R2 = 0. This negative
effect may be removed by decreasing m or increasing n. A sample size higher than
Mmin = (1 + 100 x m) ensures that R? ~ 0.1 for uncorrelated random variables.

In the case of a multi-variable normal distribution, the null hypothesis Hy: R,, = 0
against the alternative H,: R,, # 0, with use of criterion Fy, is suitable as a test for
independence.

Problem 7.13. Significance of the relationship between the nitrogen content in soil
and in corn

In Problem 7.6 the multiple correlation coefficient expressing the relationship between
the nitrogen content in corn and a linear combination of organically bound nitrogen
and inorganically bound nitrogen in soil is equal to Ruz,a) = 0.6945. Examine the
null hypothesis Hy: Ry (3, 3) = 0.

Solution: According to Eq. (7.59), the test criterion

(18 — 3)0.69452
72 % (1 = 0.69452)

is higher than the quantile of the Fisher—Snedecor distribution F ¢5(2, 15) = 3.682,
and therefore the null hypothesis Hy: R;(, 3 =0 is rejected at significance level
o = 0.05.

Conclusion: The content of nitrogen in soil significantly affects the content of nitrogen
in corn. Inorganically bound nitrogen contributes predominantly.

Case R,, > O:

To calculate the sample multiple correlation coefficient, R,,, the complicated exact
expression or a convenient approximation may be used. Gurland [6] has proposed
a relatively precise approximation

= 6.988

n— 1)R2
R S
1 — ern ~ n—m X Fr,n—m (763)

where the quantity F,,_, has the F-distribution with r and (n — m) degrees of
freedom. Then

r=[Kn—-1)+m-—1)]/Z (7.63a)
where
z=-0 (n1)1<(11)(K++22n:_—(-ml) D (7.63b)
and
RZ
K = I —mR,z,, (7.63c)
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For large sample sizes, the square of the multiple correlation coefficient reaches
approximately a normal distribution with the mean value

E(RZ)=R2
and variance

4RZ%(1 — R2)?

D(R2) = —

The random variable

_y/n= 1Ry — Ry) (7.64)

“n = 2R, (1 — R2)

has the normalized normal distribution. Also, the Fisher and other transformations
for speeding up convergence to normality can be used.
For the mean value of the squared multiple correlation coefficient

1 ('n)

E(R2) = R% + ':—;1( —RY)— R(1 — R2) + ... (7.65)

The variance is given by
4R2(1 — R2)? x (n — m)? o 4R2(1 — R2)?
(n* — 1)(n + 3) - n

For smaller sample sizes, the estimate R2 is overestimated. The corrected multiple
correlation coefficient is expressed by

D(R%) = (7.66)

1?;;2=1i,2,,—n_ (1 —R,z,,)—[(z(" )3(1 - ,2,,)+...] (7.67)
It can be seen that R*? < R2. For small values of R2, the corrected R*? can even
be negative and therefore it should be restricted to the interval <0, 1>.

7.2.4 Rank correlation
In some cases, the classical paired correlation coefficient can be replaced by the rank
correlation coefficient, which is not very sensitive to the presence of outliers.

The rank of the ith element of a sample is equal to the index of the order statistic.
Let us write the sample ranks for variable £, as x,; and sample ranks regarding to
the variable &, as x,,;. The Spearman rank correlation coefficient is then expressed
by

Z)s =1- n(n _ 1)'Z (xlst x251) (768)

For p, = 0, the distribution of p, is symmetric with mean value E(p,) = 0 and variance

D(ps) = 1/(n — 1).
For n > 10, the quantity
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fg=— N (7.69)
V1-p?
has the Student distribution, asymptotically, with n — 2 degrees of freedom, if the
theoretical coefficient p;, = 0.

Problem 7.14. Correlation between the effective specific surface and the change of
surface energy of adsorption

For six different stearates, the effective surface &, and the change of surface energy
of adsorption &, were evaluated. Estimate the Spearman correlation coefficient and
examine its significance.

Data:

x; 26 33 44 42 6.2 6.5
x, 178 186 162 173 158 152

Solution: Table 7.1 lists the ranks of x,; and x,;.

Table 7.1. The order of quantities x, and x,

X1 1 2 3 4 5 6
X2s 5 6 3 4 2 1

From Eq. (7.68), we can calculate

po=1— s
667 — 1)

Then substitution into Eq. (7.69) leads to

. 0.943,/4 _ 566
*J/1-09432 7

Because the quantile ¢4 g75(4) = 2.776 is lower than 5.66, the null hypothesis Hy:
ps = 0 is rejected.

Conclusion: The nonparametric test used showed significant negative correlation
between the effective specific surface and the change of surface energy of adsorption.
For small sample sizes, the conclusion is of little consequence.

(42 +42+1+1+32+5%)=-0943

In practical problems, often several elements of a sample have the same rank. In
this case, these elements have the same mean rank as if they had different values,
and the Spearman correlation coefficient is then estimated from

nn® —1 "
e R
ﬁs = i=1 (7.70)

nn? — 1) n(n® — 1) 12
{2t -]
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where a and b are correcting coefficients for rank, expressed by

a= TIE; (a; — a;) (7.70a)

b= Ek:(b,? —b) (7.70b)

where j is the number of clusters of the same rank for x; and a; is the number of
values of the same rank in the jth cluster. The definitions for k and b, are similar.

The rank correlation coefficient p, lies in the interval —1 < p, < 1. If the sample
comes from a two-dimensional normal distribution and n > 30, then

Rys =p&1,82) =2 Sin(g‘ X Ps) (7.71)

When rank correlation coefficients are used, it should be remembered that
transforming data from x,; and x,; into x,; and x,; always causes loss of information.
Robustness and a decrease in sensitivity to deviations from normality are the
compensation.

7.3 PROCEDURE FOR CORRELATION ANALYSIS

The procedure of correlation analysis assumes some mutual relationships (bounds)
among the components of the random vector. Besides a pair correlation coefficient,
a partial correlation coefficient should also be computed, to enable deeper analysis
of mutual bounds. Interpretation should be made carefully, especially when the
sample size is not large.
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8

Nonlinear regression models

Nonlinear models are often used in the chemical laboratory. There are three main
ways in which nonlinear models are utilized in chemometrics.

(1) Construction of calibration models when the measured variable y is a nonlinear
function of the independent (adjustable, controllable) variable x.

(2) Construction of chemical models describing the stoichiometry, concentration and
equilibrium constants of all the products of chemical reactions at equilibrium,
or the kinetics of chemical reactions.

(3) Construction of empirical models based on a study of the nonlinear dependence
between the dependent variable y and independent explanatory variables x.

According to the actual type of task, an approach to building the regression model
f(x, B) is chosen. The regression model f(x, p) is a function of a vector of controllable
independent variables x and of a vector of unknown parameters B of dimension
(m x 1), p={B1, ..., B} Nonlinear regression considers the set of points {y;, X1 },
i=1,..., n, where y represents the response (dependent) variable.

The dimension of vector x; does not affect the dimension of vector . The regression
problem is formulated with regard to a regression triplet:

(1) the data set,
(2) a proposed model, and
(3) a regression criterion.

The regression problem consists of a search for the best model f(x, ) on a basis
of the data set {y;, x;}, i = 1, ..., n, such that the model sufficiently fulfils the given
regression criterion.

In chemometrics, the model f(x, ) is usually known, so the regression problem
consists of searching for the best estimates of unknown parameters f. In contrast to
linear regression models, the parameters B play a very important role in nonlinear
models. In linear regression models, the regression parameters have no physical
meaning but are just numerical coefficients; the parameters in a nonlinear model can
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X

Fig. 8.1—Regression model, y = f(x; p) at three stages of a search for unknown parameters
B: (1) for an initial guess of parameters b(®, (2) in the k-th iteration of parameters refinement
b®, (3) for the best estimates b.

have a specific physical meaning. Finding the numerical values is often the main
purpose of the regression analysis. Examples are equilibrium constants (dissociation
constants, stability constants, solubility products) of reactions, rate constants in
kinetic models, or unknown concentrations in titration curves. In the interpretation
of estimates of model parameters, it must be remembered that they are random
variables which have variance, and which are often strongly correlated.

Problem 8.1. Formulation of the parameters and variables of a regression model
The dependence of a rate constant for a chemical reaction, k, on temperature T is
described by the Arrhenius equation

k = ko exp(— E/RT) (8.1)

where k, is the activation entropy of the chemical reaction, E is the activation energy,
and R is the universal gas constant. Formulate the model parameters and examine
their correlation.

Solution: The rate constant k (response variable, y) was measured at various
temperatures, T(explanatory variable, x). The unknown parameters in the regression
model [Eq. (8.1)] are B, = ko and B, = —E/R. If the additive errors model is used

yi = f(xi, B) + & = By + exp(B2/x;) + & (8.2)

Here, b, and b, are estimates of B, and B, and are determined from experimental
data {k;, T;}, =1, ..., n, based on a regression criterion. When errors ¢; in Eq. (8.2)
are independent (values of y; are mutually independent) random variables of the same
distribution, and have constant variance o*( y). The regression criterion corresponding
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to the least-squares method may be used. That is
UB) = Y (3 —f(x: B)’ (8.3)
i=1

The estimates b then minimize the criterion U(B).
It can be shown here that a strong correlation exists between estimates In b; and
b,. This correlation may be expressed by the paired correlation coefficient

r=./c2+cxIn{l + 1/c) (8.4

where ¢ = T, /(T,, — T;) is related to minimum (7} ) and maximum (7,) temperatures.
When T; = 300K and T, = 360K, then r = 0.9986 and In b, and b, are nearly linearly
dependent. This means that the ratio (Inb,)/b, is constant and hence, individual
parameters cannot be estimated independently. When parameters are correlated,
unfortunately a change in the first parameter is often compensated for by a change
in the second one. There may be several different pairs of parameter estimates
(Inb,, b,) which give nearly same values of the least squares criterion U(b). The
parameter estimates achieved by various regression programs may differ by some
orders of magnitude, but nevertheless apparently a “best” fit to the experimental
data, and low values of U(b) are reached.

Conclusion: Even a simple nonlinear model may lead to difficuities in the accuracy
of the parameter estimates and also in their interpretation.

Often, attempts are made to apply nonlinear regression models in situations which
are totally inappropriate. Models are often applied outside the range of their validity,
and generally, it is supposed that they can substitute for missing data. In chemical
kinetics, for example, attempts may be made to estimate parameters, from data far
from equilibrium. The calculated parameters then differ significantly from the true
equilibrium parameters, and should be interpreted as model parameters only.

The result of nonlinear regression depends on the quality of the regression triplet,
i.e. (1) the data, (2) the model, and (3) the regression criterion. Correct formulation
leads to parameter estimates which have meaning not only formally but also
physically.

In this chapter, we solve problems for which a regression model is known. For
solving calibration problems or searching for empirical models, the regression model
is appropriate. Some procedures are mentioned in Chapter 9.

8.1 FORMULATION OF A NONLINEAR REGRESSION MODEL

A linear regression model is a model which is formed by a linear combination of
model parameters. This means that linear regression models can, with reference to
the model functions, be nonlinear. For example, the model f(x, ) = B, + B, x sin x
is sinusoidal, but with regards to parameters it is a linear model. For linear regression
models, the following condition is valid

_0fx B)

o= = j=1,... .
g; 35 constant, j . (8.5)
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If for any parameter, f;, the partial derivative is not a constant, we say that the
regression model is nonlinear. Nonlinear regression models may be divided into the
following groups:

(1) Non-separable models, when condition (8.5) is not valid for any parameter.
For example, in the model

f(x, B) = exp(B1x) + exp(Bx).

(2) Separable models, when condition (8.5) is valid for one model parameter. For
example, the model

S(x, B) = By + B, exp(B3x)

is nonlinear only with regards to the parameter f;.
(3) Intrinsically linear models are nonlinear, but by using a correct transformation
they can be transformed into linear regression models. For example, the model

flx, B = B*x

is nonlinear in parameter 8, but the shape of the model is a straight line. With the
use of the reparameterization

y=p*
the nonlinear model is transformed into a linear one.

Reparameterization means transformation of parameters § into parameters y which
are related to the original ones by a function

y = g(B) (8.6)

By reparameterization, many numerical and statistical difficulties of regression
may be avoided or removed and non-separable models transformed into separable
models. The model of the Arrhenius equation (8.2) is separable, i.e. linear with regard
to B,, and by the reparameterization, f(x, y) = exp(y, + v,/x) is transformed into a
non-separable model, where y, = In f§; and y, = ,. Each regression model may be
reparameterized in many ways, one of which is described in Section 8.5.

In chemometrics, we often distinguish models that are linearly transformable,
which can, by use of an appropriate transformation, be transformed into linear
regression models. For example, the Arrhenius regression model (8.2), may be
transformed into the form (if random errors ¢ are neglected)

Iny =1y, + 7,z

where y; = In B¢, y, = B, and z = 1/x. The resulting model is a linear model with
respect to parameters y. For finite errors ¢, however, this transformation is not
correct, and causes heteroscedasticity. When the measured rate constants k; have
constant variance o2(k;), then the quantities Ink; have non-constant variance
o*(In k) = a?(k;)/(k;)% i.e. constant relative error. The linear transformation is useful
for simplification of the search for parameters, but it leads to biased estimates and
is therefore used to find a guess for initial estimates of unknown parameters (Section
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8.5). The derivatives g; in Eq. (8.5) are sensitivity measures of parameter f; in model
J(x, B).

From the sensitivity measures of individual parameters, a preliminary analysis of
nonlinear regression models can be made, classifying their quality and identifying
any redundancy caused by an excessive number of parameters. A model should not
contain excessive parameters and its parameters may be unambiguously estimated if
the sensitivity measures, g;, for given data are found to be linearly independent. This
means that it is not possible to determine non-zero coefficients v;,j = 1, ..., m, such
that the Eq. (8.7) is fulfilled.

j=1

However, if at least one non-zero coefficient, v; # 0, exists for which Eq. (8.7) is
fulfilled, the regression model is redundant and should be simplified by excluding
some parameters. If Eq. (8.7) is valid, all parameters may not be individually estimable.

Problem 8.2. Examination of redundancy of a regression model
Test for redundant parameters in the regression model f(x, f) = B, exp(B, + B3x).
Apply the sensitivity measures, g;.
Solution: We first compute sensitivity measures,
&1 = exp(B; + B3x)
g2 = By exp(B, + B3x)

and

83 = Pix exp(B; + f3x).
On substituting into Eq. (8.7), we get

(v1 + v2B1 + v3fix) exp(B, + f3x) =0
For v; = —f,, v;=1 and v; =0, Eq. (8.7) is fulfilled, so the model contains

redundant parameters.
To confirm the redundant parameters, reparameterization of the model may be
used i.e.

Sx,9) = exp(yy + 72x)

or
Sf(x, 8) = o, exp(d,x)

where y; =1n f; + B, y, = B3 or 6; = B, exp(B,) and 6, = f.
Conclusion: Parameters 8, and 8, cannot be estimated separately. Only their functions
Y1, Y2 O &4, 6, may be estimated.

Examination for redundancy in regression models should be part of the investigation
of any regression model. Some models exhibit redundancy for only some combinations
of parameters . The model cannot be simplified without knowledge of preliminary
estimates of some parameters.
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Problem 8.3. Influence of the magnitude of parameters on redundancy in a regression
model
Examine the redundancy in the regression model

f(x, B) = exp(B,x) + exp(B,x)

with regard to the magnitude of its parameters f; and f,.
Solution: The sensitivity measures

g1 = x exp(B1x)
and

g2 = x exp(B,x)

are substituted into Eq. (8.7), resulting in the expression

x(vy exp(B1x) + vy(B2x)) =0

There are no values for v, and v, that satisfy the equation, unless f/; = f,, in which
case v, = 1 and v, = —1 fulfils the condition.

Conclusion: When in a search for the best estimates of parameters #, and f,, estimate
b, is nearly equal to b,, the model is ill-conditioned, and if b, = b,, the model is
redundant.

There are models which exhibit local redundancy for selected points or values of
the independent variable x.

Problem 8.4. Examination of local redundancy of parameters of the Arrhenius
equation

Find the conditions under which the model of the Arrhenius equation (8.2) is
redundant.

Solution: The sensitivity measures substituted into Eq. (8.7) lead to

(v, + v 8,/x) exp(B2/x) = 0

For v, = —B;/x and v, = 1 this equation is satisfied. Local redundancy occurs when
the value B, is of the same magnitude as some of the experimental quantities x;, y;,
i=1,...,n

Conclusion: Redundant parameters in the Arrhenius equation occur when f; ~ x;.

Redundancy always leads to singularity of matrix J*J (cf. Section 8.4). This means
that algorithms for the inversion of this matrix by classical procedures will fail
(Section 8.5). The local redundancy of parameters may be avoided by using
pseudoinversion of matrix J7J.

Ill-conditioned nonlinear models cause problems when Eq. (8.7) is fulfilled only
approximately. It is analogous to multicollinearity in linear regression models.
Although parameter estimates may be found when J'J is ill-conditioned, some
numerical difficulties appear during its inversion. If we know the approximate
magnitude of the parameter estimates b(®), we may construct the matrix L = n~*(J"J)
with elements
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1 5fG b) 3 b)
L=y 2 =55, 5by b =b© (85)

Matrix L corresponds to the matrix (1/n) X™X for linear regression models. To
estimate the ill-conditioning, matrix L is transformed into the standardized form L*
with elements

[ (8.9)

Y VLl

The conditioning of matrix L* gives a guide to the conditioning of parameters b‘”
in a given model for a given experimental data set.

A simple measure of ill-conditioning is the determinant of matrix L*, det(L*).
When the determinant is less than 0.01, i.e. det(L*) < 0.01, the nonlinear model is ill-
conditioned and hence has to be simplified [1].

In many regression programs, the inversion of matrix (J*J) involves its eigenvalues,
Ay =>4, >...>4,. (An indication of redundancy is the zero values of some
eigenvalues.) For a measure of ill-conditioning the ratio 1 = 1,/4,, may be used. If
Ap > 900 the regression model is ill-conditioned [2].

Problem 8.5. Examination of ill-conditioning of the Arrhenius equation for a
chemical reaction in the solid phase

Examine the conditioning of a model of the Arrhenius equation (8.2) for a simulated
data set [3] of a chemical reaction in the solid phase. Guessed values of initial
estimate are (¥ = 10" min~! and B = —15047.

Data:

k,min™!'  0.0112 0.0120 0.0325 0.0535
TK 730 750 770 790

Solution: From Eq. (8.9), the elements of matrix L are estimated by

4
Ly =% Y exp2B%)/T;) = 1.105458 x 1017
i=1

289 _ -13
X, exp == = 1417623 x 10

OB E L 2B —9
L,, = q i; 72 exp T = 1.818692 x 10

By using a standardization procedure and Eq. (8.9), we get

| 1 09979
=lo9979 1



214 Nonlinear regression models [Ch. 8

The determinant of this matrix, det(L*)= 4.1182 x 10™%, shows significant ill-
conditioning.
Conclusion: Ill-conditioning is caused by the small range of experimental temperatures.

8.2 MODELS OF MEASUREMENT ERRORS

Suppose that the experimental data {x}, y;}, i=1, ..., n, and the regression model
are known. The response variable y is the variable measured and subject to various
kinds of errors. Common errors include measurement errors &, errors of model
formulation ey, errors of adjusting the independent controllable variable x, ¢, and
the random errors of the experiment &y. The total error, ¢, of the dependent variable
¥, is the sum of the individual errors. It is assumed that the total error of measurement,
for all values of y;, i = 1, ..., n, has a mean value equal to zero, i.e. E(¢;) = 0. When
E(g;) = constant, the intercept term in model is missing and when E(g;) # constant,
the model is falsely proposed. The general regression model can be expressed in the
form

yi=Zi(Xi’ &, ﬂ)’ i= la ey B (8.10)

where the function Z; depends on the type of errors and on the form of the regression
function.

When the data represent the results of experimental measurement, the additive
model of measurement errors is usually assumed:

Zi=f(x;, B+ & (8.11)

In many experiments, there are some restrictions on the measured variable y;,
i=1, ..., n. For example, y; may take only positive values, with non-constant
variance, o2(y;), but with constant relative error, ¢(y)/y. Such conditions are valid
in the multiplicative model of measurement errors

Z; = f(xi, B) exple;) (8.12)
In chemical practice, the combined model of measurement errors
Z; = f(x;, B) exp(v;) + ¢; (8.13)

is also used. The errors v; and ¢; in Eq. (8.13) are assumed to be independent.

In a chemical laboratory the measurement is usually made on just one experimental
system. For example, in the investigation of the equilibria of reaction products, the
voltage of the glass electrode cell (or absorbance) is monitored during a titration
after each addition of a volume of titrant. Cumulative errors can appear in such an
experimental procedure. Instrumental measurements are often subject to a constant
relative error

__9
W=7, B

so that the variance of measured variable y is proportional to the square of the value

N
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Fig. 8.2—Three models of measurement errors: (a) the additive model, (b) the multiplicative
model, and (c) the combined model.

of function f(x, p),
o*(y) = f3(x, B)

The total error ¢; is then expressed by
& = Z Uj + v; (8'14)

where v; represents the measurement error and u; is the process error. Process errors
are caused by fluctuations in experimental conditions such as temperature, pressure,
purity of reagents, etc., and they are cumulative. The total error ¢; expressed by Eq.
(8.14) is therefore additive.

In order to find a proper criterion for regression and to make a statistical analysis,
the distribution of the random quantities y; must be determined. This distribution is
closely related to the distribution of errors ¢; given by the probability density function
p.(e). This function depends on distribution parameters such as the variance g2, etc.

In chemometric problems, the error distribution is assumed to be unimodal and
symmetrical, with the maximum at E(g) = 0. It is often assumed, but falsely, that the
measurement errors g are mutually independent. The point probability density
function p,(g) is then given by the product of the marginal densities p,(g;)

pio) = [1 pde) (8.15)

Several distributions, including the normal, rectangular, Laplace and trapezoidal
ones may be expressed by the probability density function

pie:) = On exp(—l&;7/x) (8.16)
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where Qy is the normalizing constant and « is a parameter proportional to the
variance. If p = 1, the resulting distribution is Laplace. When p = 2, the distribution
is normal and when p — oo, rectangular. The disadvantage of describing distribution
p.(&;) by Eq. (8.16) is that for p < 2, in the neighbourhood of origin, the distribution
is not locally quadratic. Therefore, alternative probability density functions, such as
the generalized Student distribution, are used [4].

In some cases, the errors are not independent but are characterized by a covariance
matrix of errors C,. When the errors ¢ come from a symmetric and unimodal
distribution with the mean E(g) = 0, the probability density function is chosen from
a class of elliptic distributions

pe) = On+/det(B) h,/e"Be (8.17)

where Qy is the normalizing coefficient, B is the covariance matrix of errors C, and
h(-) is a positive function defined on the interval <0, co) with finite moments up to
(n + 1). The most widely used distribution is the multivariate normal distribution,
N(0, C,), which for h(x) = exp(—0.5x2) gives the probability density function

p(e) = (2m)""?*(det C,) ™12 exp(—0.5¢"C; '¢) (8.18)

It is also possible to use the multivariate Laplace, the Student or other distributions
[4].

The form of the covariance matrix of errors C, depends on the type of error
dependence. A simple example is the case of heteroscedasticity, when errors are
mutually independent but have non-constant variance E(¢?) = ¢%. The matrix C, is
then diagonal with the elements 2 on a diagonal and the probability density function
(8.17) is transformed into Eq. (8.15). For other types of autocorrelation, the matrix
C, is not diagonal and their off-diagonal elements C;; correspond to the covariance
between ¢; and ¢;, C;; = E(g; ¢;).

Problem 8.6. Covariance matrix of errors for a combination of measurement errors
and process errors

Derive the covariance matrix of errors for a case when the errors ¢; result from errors
of measurement v; and process errors u; according to Eq. (8.14). Make the following
assumptions:

(@) the process errors u; and errors of measurement v; are mutually independent,
E(u;v) =0;

(b) the process errors u; are independent, E(u; u;) = 0 for j # i and have constant
variance, E(u?) = ¢%;

(c) the measurement errors v; are independent, E(v; v;) = 0 for j # i and have non-
constant variance, E(v?) = o3 f*(x, ).

Solution: Equation (8.14) is rewritten as

g =61 +tu+v,=¢6_;+w (8.19a)

where w; is the total error on changing from the (i — 1)th state to the ith state. This
error has zero mean E(w;) = 0 but non-constant variance, 12 = 62 4+ ¢2f(x;, f). From
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Eq. (8.19a), the individual errors ¢; may be written in the form
&L =Wy,

£2=W1+W2

E,=Wi+ w4+ ...+ w,

and in matrix notation

&= Aw (8.190b)
where A is the lower triangular matrix of ones, on and under the main diagonal

1 00 . .0
110 . .0

Ao 1 11. .0
1111

The covariance matrix of errors C, is given by
C,=Ee ¢N=EA w w' AT)=AEww"AT = AVAT (8.20)

where E(wwT) = V is the covariance matrix of errors w.
With the given assumptions, the errors w; are independent so that V is the diagonal
matrix with elements on the diagonal V; = t2. Substitution into Eq. (8.20) results in

72 72 .. 72
T T i o 7 A = o 1
C, - (821)
-2
oti+d .. Y T
i=1

with the general element of this covariance matrix C;; = Y %, t% where k = min(j, j).
Conclusion: Knowledge of error composition is important in covariance matrix
building.

If we know the point probability density function of the measurement errors p,(e)
or the marginal densities p,(¢;) we can determine the probability density p(y) or p(y;)
from the expression for the probability density for a function of a random variable.

In the case of independent random errors &

0Z: (")
oy

where Z7!(-) denotes the inverse of the function Z(-). For the additive model
of measurements [Eq. (8.11)] the following function may be written

Z7'()=yi—f(xi, B)

p(y:) = pLZ7 (x5 s 8)]. (8.22)
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with the derivative

6Z7 (")

=1
0y;

Substitution into Eq. (8.22) gives
p(y:) = p(yi — f(xi, B)) (8.23)

Hence, it may be concluded that the additive model does not cause any deformations
of the distribution of the measured quantities with regard to the error distribution.

In the case of the multiplicative model of measurements [Eq. (8.12)], the equation
obtained is

Z7()=Iny,—Inf(x;, B)

with the derivative

8Z ()

oy

1
Vi

where only positive values of the measured variable y are allowed. Substitution into
Eq. (8.22) gives

py) = -ylfpe(ln yi — Inf(x;, B) (8.24)

The probability density obtained does not correspond to the probability density of
the errors p(-).

Problem 8.7. Distribution of the variable y for combined errors &

Determine the distribution of the vector of measured variables y, for a case of
combined errors (8.14) assuming that the errors & have multivariate normal distribution
N(0, C,) and the additive model of measurements is valid.

Solution: According to Eq. (8.23), the probability density function ps(e) is defined for
a general covariance matrix of errors C, in Eq. (8.18). It is necessary to evaluate
det(C,) and C;! for C, defined by Eq. (8.21). If C, = AVAT, then its inverse is

Col=(A"Y)IV-IA™Y (8.25)
From Eq. (8.20), the matrix A™' is
1 0o . . 0 0
-1 1 .. 0 0
aci_| 0 -t .. 000
0 0 .. -1 1

The bidiagonal matrix A~ ! is a matrix with one diagonal and one underdiagonal
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band. Since the matrix V is diagonal, the matrix V™! is also diagonal with elements
772 on a diagonal. Substituting into Eq. (8.25) leads to

(72 + 1% —152 . 0 0
-1 (2?4 13?)
-2
cot= 0—13 . .o - . (8.26)
. . .o T,51 .
: : =17 1,2
0 0 . 17, 2 7, 2

This matrix is a tridiagonal matrix. Its determinant det(C,) is calculated from Eq.
8.21)

det(C,) = det(A) det(V) det(AT) = det(V) = [] =2
i=1

Conclusion: The joint probability density function of a vector y is, according to Egs.
(8.18) and (8.23), given by the expression

" -1/2
py) = (271)_"/2[ I1 r?] exp[—0.5(y — DA™Y VIA T (y - )] (827

i=1
where the vector f contains the elements f(x;, ), i = 1, ..., n. The variable y also has
a multivariate normal distribution with the same covariance matrix of errors as C,.

From a survey of error models, it follows from experimental conditions and
assumptions about various types of errors, that the distribution of the measured
variable y can be derived. In the measurements made in a chemical laboratory, most
of the observed errors have the normal distribution, and follow the additive model
of errors. Any differences are characterized by the covariance matrix C,, which may
contain only diagonal elements, or off-diagonal elements in addition.

83 FORMULATION OF THE REGRESSION CRITERION

For the vector of measured values y = {y,,..., y,}", the joint probability density
function is denoted by the likelihood function L(#). This function depends on the
vector of parameters, 6, which contains the model parameters, f, and distribution
parameters, 6. The maximum likelihood estimates of parameters, , are determined
by maximization of the logarithm of the function

In (@) = In piy) = 3 In () (828)

The maximum likelihood estimates § have an asymptotic variance equal to the
inverse of the expected Fisher information matrix
D@) =176 (8.29)

The elements of matrix I(#) are given by
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_ [#m uo)]
;= - E[W (8.30)

For practical purposes, the Fisher information matrix I(#) is replaced by the
estimated information matrix 1(0) with elements

~ [&mLe)
L= _[ 56,50, }o .y ®.31)

The estimated information matrix can be used to construct confidence intervals
more conveniently. For maximum likelihood estimates, some important properties
may be derived:

(1) The estimates 8 are asymptotically (n — oo) unbiased. Therefore the bias

h=0—-E@=0 (8.32)

is the zero vector. For a finite sample size n, the estimates @ are biased and the
magnitude h depends on the degree of non-linearity of the regression model.

(2) The estimates @ are asymptotically efficient and the variance estimates are
minimal of all unbiased estimates. The covariance matrix D(f) lies on the lower limit
of the Cramer—Rao inequality [5]. For finite samples, this property is generally not
fulfilled.

(3) The random vector \/ n(@ — 0) has, asymptotically, the normal distribution
N(0, I 1!) with zero mean and variance equal to the inverse of the Fisher information
matrix. When the error distribution is approximately normal, the normality of
estimates is valid for finite samples.

For sufficiently large sample sizes, many interesting properties of the estimates 8
may be used. For finite sample sizes, some difficulties arise from the bias estimates
0. If the probability density function p(y) is known, the maximum likelihood estimates
or a criterion for their determination (the regression criterion) may be found.

Problem 8.8. Regression criterion for additive errors

Derive the regression criterion for the case when measurements errors are independent,
with zero mean, constant variance, and the normal distribution N(0, 6?E); and with
the assumption that the additive model of measurement errors (8.11) is valid.
Solution: Let f; = f(x;; p) and 0" = (87, ¢?). If the distribution of measured variable
y; is normal, N(f;, 6?), then

X exp[M] (8.33)

202

1

The logarithm of the likelihood function, ln L(6), has the form

in L(0) = ._il In p(y;) = 129111 (2no?) — x U(B) (8.34)

2
(20)*

where U(B) is the least-squares criterion or the residual sum of squares of deviations
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defined as
Uup =y (vi—f9 (8.35)
i=1
Analytical maximization of In L(f) according to o2 leads to
é In L(6) n 1
=~ 4+ UMB=0 8.36.
502 357 T 358 V) (8.362)

and therefore

6% = —U(ﬂ ) (8.36b)
n
The estimate 62 is biased for a small number of measurements. The unbiased form
is

52 = UB (8.37)

n—m

On substituting from Eq. (8.36b) into Eq. (8.34), the concentrated likelihood function
In L(B) is formulated as

InL(p) = — 3(1 + In (2m) — 0.5 In U(B) (8.38)

The maximum of In L(8) corresponds to the minimum of the regression criterion
U(B) which is, in fact, a condition for the least-squares method (LS). That is, the
method of maximum likelihood is identical to the least-squares method.

On the basis of Eq. (8.29), the covariance matrix of estimates D(f) is given by

a2 It 0
where J is the (n x m) Jacobi matrix of the first derivatives of the model, with elements
_9f(xi, B
Jij = 58, (8.40)

From Eq. (8.39), it follows that the estimates 6* and b are independent and the
parameter covariance matrix is D(b) = a(J7J) " L.

Conclusion: The maximum likelihood method enables either the formulation of a
regression criterion or the determination of the covariance matrix of estimates. It
may be concluded that with the use of the properties of the maximum likelihood
method, we can simplify the construction of the confidence intervals and carry out
statistical hypothesis testing.

Maximization of the likelihood function leads to the problem of nonlinear
optimization. When the covariance matrix of errors C, is known, we can for the
additive model of measurement errors and normal error distribution, ¢ ~ N(0, C,),
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find the maximum likelihood estimates b of parameters g by minimizing the criterion
of the generalized least-squares

Up) =y—N'C;y-H=Tr[C;' & &] (8.41a)

where & = y — f is the deviation and the symbol Tr(A) denotes the trace of matrix
A. If the matrix C, is diagonal, the situation is much simpler. The least-squares
criterion [Eq. (8.41a)] transforms into the relationship

n

UB) =Y wiyi—f) = X wiyi — f(xi, B’ (8.41b)
i=1 i=1
where w? = 1/C;; is the weight equal to the reciprocal value of the elements of
covariance matrix. If the variables y* = w;y; and f* = w,f(x;, B) are introduced, Eq.
(8.41D) takes the form of the classical least-squares method

vp) = 3 0 117 (8:410)

When the weights are known, a weighted least-squares problem can be converted
into a classical least-squares problem with modified variables. This procedure can
also be used for the unknown matrix C, when its elements are estimated separately,
for example, because of heteroscedasticity.

For an unknown matrix C,, the technique of consecutive maximization is used.
First, the estimate C, is computed and substituted into the likelihood function. The
resulting concentrated likelihood function contains only the parameters B. Bard [6]
derived the following derivatives

d In det(C,)

5C =(C,) ! (8.42a)
and
-1, 4 al

o TrC e I_ _(cnyretcn) (8.42b)

The derivative of the likelihood function is
n 1 1 AT~ — 1A

InL=— Eln 2n — iln det(C,) — ie C e (8.43a)
and since

C,=¢ee" (8.43b)
then

Tr[e¢ &"]7 '=TrE)=n (8.43¢c)

and the concentrated likelihood function has the form
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In L(B) = — g[ln 2n + 1] - %m det(@ &7) (8.44)

Maximization of the function In L(B) is the same as minimization of the criterion
Up(B) where

Up(p) = det(e eT) = det[(y — f)(y — )'] (8.45a)

When matrix C, is diagonal, matrix C, is also diagonal and Eq. (8.45a) converts into
the form

Unlh) = 3. L= flxi, B (8.450)

Hence, in the case of heteroscedasticity, application of the classical least-squares
method leads to unbiased estimates b but the estimates of the covariance matix C,
are biased.

Problem 8.9. Regression criterion for combined errors
Derive a regression criterion for a case of combined errors [Eq. (8.14)] assuming that
errors ¢ have the multivariate normal distribution and that

(1) the measurement errors v; are negligible in comparison to the process errors u;;
(2) the process errors u; are negligible with respect to the errors of measurement v;.

Solution: The joint probability density function p(y) is expressed by Eq. (8.27). The
logarithm of the likelihood function may be expressed as

In L(6) = —g—ln @n) — %zzl Inc?— %(y —HTA YTV iy — f) (8.46)

The last term in this equation can be expressed as

UdB) = Z 7 20y — yie1) — (f(xi, B) — F(xi- 1, )1k

i=

= ¥ oL - KB (847)

where y, =0 and f(x,, f) =0. Moreover, L=y, — y;—, and K;(f)=f(x; p) x
f(x;—1, B). Equation (8.47) corresponds to the weighted least-squares method for first
differences.

The maximum of the function In 1(0) generally corresponds to a minimum of

0= Info® + 02 x f(x;, B)] + U.(B) (8.48)
i=1

Maximization of Q in terms of 62, 2 and g may be achieved by general minimization
methods:

(1) Small measurement errors. For 62 » 62 x f(x;, B), 72 = 62 = constant and we
have a model of pure process errors. On substituting into the likelihood function (8.46)
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and differentiating with respect to a2, we get

T = - G L L K =0 (8.49)

On rearrangement, we find

5= 2o n(lf) (8.50)
Here
U8 = 3. [~ K@) .51)

is the regression criterion for the minimum of the sum of the squared first differences.
If estimate 62 [Eq. (8.50)] is substituted into the likelihood function (8.46), the
concentrated likelihood function is obtained

In L(B) = — 3[1 +1In2n] — %m U, (8.52)

The maximum of the function In L(f) corresponds to a minimum of U,(B). The
function U ,(B) [Eq. (8.51)] may be minimized by many nonlinear regression programs,
after a simple rearrangement of y; and f(x;, B) into variables L; and K;(B).

When the process errors (fluctuations of the system) are small in comparison to
errors of measurement, we have o2« o2 x f(x;,f), and the variance
72 & 02 x f3(x;, ). On substituting into the likelihood function [Eq. (8.46)] and
differentiating with respect to o2, we get

MIO) _ 2 223 -, AL~ KB =0 (853)

do? 262 ¢t 5

On rearrangement, we get
LR
6 = " > [ xi, B)(L: — Ki(B))? (8.53b)
i=1

and on substituting 62 into the likelihood function [Eq. (8.46)], the concentrated
likelihood function becomes

InL(f)= — g[l +Inn+In2n] — ) Inf(x;, p) — %ln U,.(B) (8.54)
i=1
where U, () is the criterion of the weighted least-squares method for first differences
: M—KWT
U, = —_ 8.55
#) i=21 I: fCxi B ( )

The maximum of the function In L() [Eq. (8.54)] corresponds to the minimum of
function U.(8)
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U = UuB]T] £ ) (8.56)

The criterion U,.(f) may be minimized either by general algorithms or by the
iterative method of weighted least-squares.

It is obvious that this situation is more complicated than the case of small
measurement errors. When the accumulated process errors are negligible then ¢; = v,
in Eq. (8.44) and the problem of heteroscedasticity has to be solved. The corresponding
regression criterion will have the form (8.56) but the function U, (B) is expressed in
terms of variables y;, f(x;, p) instead of L;, K;(B).

Conclusion: When the errors are complicated, a suitable regression criterion may be
derived by using the maximum likelihood method.

84 GEOMETRY OF NONLINEAR REGRESSION

Although some chemometric problems lead to criteria different from the classical
least-squares method (LS), the LS method is still the most commonly used method
in chemical practice. In Problem 8.8, it was shown that the LS method is really a
special case of the maximum likelihood method for an additive model of measurement
errors and the normal distribution of independent errors ¢ with zero mean and
constant variance. For the purpose of geometric interpretation, the least-squares
criterion U(p) in Eq. (8.35) is rewritten in vector notation as

up) = lly —fii (8.57)

where y = (y1,...,3,)% = (f(x1,B), ..., f(xn, B)T and the symbol |x| = ./x"x
means the Euclidean norm.

Examination of the shape of the criterion function U(B) in the space of the
estimators helps to explain why the search for the function minimum is so difficult.
In this (m + 1)-dimensional space, values of criterion U(B) are plotted against the
parameters B, ..., Bn.

For linear regression models, the criterion function U(B) is an elliptic hyperpara-
boloid with its centre at [b, U(b)], the place where U(b) reaches a minimum (the “pit
point”). For linear models, the criterion function U(f) has a quadratic form of type
BT (X™X)B, and the matrix X"X is positive-definite.

In some cases, the parameter space is used for interpretation of U(f). Parameter
space is an m-dimensional space with the components of vector g on the axes. The
value U(B) is a perpendicular projection of an (m + 1)-dimensional object into this
m-dimensional space. For the two estimated parameters §;, and f, where m = 2, the
criterion function U(B) for a linear model is drawn in the (m + 1)-dimensional (i.e.
3-dimensional) space, in Fig. 8.3.

Rather complicated shapes can occur in nonlinear models, as a result of the
nonlinear function f(x, f); there may be a number of extremes and saddle points.
Figure 8.4 is an illustration of a criterion function U(f) with two minima and one
saddle point.
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(a) B, (b)
U(B)

B4 B,

Fig. 8.3—Interpretation of the criterion function U(B) for a linear model (m = 2): (a) the
elliptic hyperparaboloid in the (m + 1)-dimensional space of estimators, (b) the concentric
ellipses as contours in the m-dimensional parameter space.

A
U(B)

Fig. 8.4—A criterion function U(f) with two local minima B and g* and one saddle point

Quantitative information on the local behaviour of the criterion function U(f) in
the vicinity of any point §; may be obtained from a Taylor series expansion up to
quadratic terms:

UGB) = UGB,) + ABjg, + 5 ABTH A, (8.59)
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where AB; = B — B; and g; is the gradient vector of a criterion function containing
the components

= k_l’”,’m 8.59a
4 Sﬁk ] ( )

The matrix H; of dimension (m x m), is the symmetric Hessian matrix defined by
the second derivative of the criterion function U(B) with components

_ ou -
Hy=jspsp  bk=L..m (8.60)

Equation (8.59a) is valid for any criterion function U(f). In the least-squares
method the gradient of the criterion function U(B) from Eq. (8.57) has the form

g =—2JTe (8.59b)
where e is the difference vector with elements
e=yi—fxi, B, i=1..,n

The matrix J of dimension (n x m) is called the Jacobian matrix with elements
corresponding to the first derivative of the regression model in terms of the individual
parameters at given points. These elements have the form

_5f(xi’ﬂ) i=1,-"9n
Jik_a—ﬁk’ k=1,...,m (861)

With the least-squares method, a similar relationship involving the Hessian matrix
may be derived:

H; =2[J"J + B] (8.62)

where B is a matrix containing the second derivatives of the regression function with
elements

L 8 f(x:, B)

B, = e——1"2, kj=1...,m (8.63

EP % A )

In the vicinity of local minima b, the gradient g is approximately equal to zero.
This means that

(1) the error vector & is perpendicular to the columns of a matrix J in m-dimensional
space;
(2) the criterion function U(B) is proportional to the quadratic form ABTH,AB;.

The type of local extreme is distinguished by a matrix H. When the matrix H is

(a) positive-definite, the extreme is a minimum and U() approximates to an elliptic
hyperparaboloid;

(b) negative-definite, the extreme is a maximum;

(c) indefinite, no extreme is present.

Definiteness of matrices is examined by the Sylvester conditions. For practical
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calculation, it is necessary that the positive-definite matrix is regular, has rank m and
has eigenvalues that are all positive. It is useful to compare the Taylor series expansion
of criterion function U(B) by Eq. (8.58) with the criterion function U(f) into which
the Taylor series expansion of a model function is substituted. With the use of Taylor
series expansion, the function f(x, f) in the vicinity of the point f; may be
approximated by

1
SO B) =1 (xi B)) + JiB — B)) +5(B — B)'G:(B — B) (8.64)
where G; is the matrix of second derivatives of a model function f(x;, p) with elements
62f(x'7 ﬁ) .
Gy =—1—, L k=1,...,m 8.65
Jjk 5ﬁ15ﬁk J ( )

and J; is the ith row of the matrix J. Generally, a vector f may be approximated by
the Taylor series expansion into quadratic terms

f~f(B,) + JAB; + %Aﬁ}_é,-A[}j (8.66)

where 6,. is an (n x m x n)-dimensional array with layers formed by the matrices G;.
Usually, a linearization of the function f is used:

f~ f(B;) + JAB; (8.66a)

Substituting Eq. (8.66a) into (8.57) we get the criterion for the “linearly-
transformed” least-squares method

UL(B) = e"e — 2ABT"e + ABT(JTI)AB (8.67)
The first term of this equation is equal to U(B;)

e'e = U(B)) (8.67a)
and the second one to Af’g,

—2AB3"e = ABjg (8.67b)

Equation (8.67) differs from (8.58) only in the third term containing matrix 2J7J
instead of matrix H. It follows from Egs. (8.62) and (8.63) that for small error values
e;, the matrix B may be neglected, making Eqs. (8.67) and (8.58) identical. This means
that the linearization of the regression model corresponds to the Taylor series
expansion of the criterion function U(f) into quadratic terms, assuming that matrix
B is negligible. From Eq. (8.67), it also follows that for nonlinear regression models
the matrix JTJ corresponds to X'X in linear models. If the linearization (8.67) is
sufficiently precise, the statistical analysis may be performed in a similar way to that
used for linear regression models.

(A) T geometry of linear least-squares
For the interpretation of the geometry of linear regression, n-dimensional gample
space is used. The vector of observations y = (),,...,¥,)" defines a line OY from
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the origin O to the point Y with co-ordinates (y,, ..., y,). The X matrix has m column
vectors x;, i = 1, ..., n, each containing n elements. The elements of the jth column
define the co-ordinates (x;q, X3, ..., X;,) of a point X; in the sample space, and the
Jth column vector of matrix X defines the vector OX ; in sample space. The m vectors
0X,, 0X,, ..., OX,, define a subspace of m dimensions called the estimation space
which is contained within the sample space. Any point in this subspace can be
represented by the termination of a vector which is a linear combination of the
vectors defining the space — that is, a linear combination of the columns of X, such
as Xp where B = (8, ..., Bn) is an m x 1 vector. Suppose the vector Xf defines the
point T. Then the squared distance YT? is given by

¥ — XB)'(y — Xp) = U(B)

as defined in Chapter 6. Thus the sum of squares U(B) represents, in the sample
space, the squared distance of Y from a general point T in the estimation space.
Minimization of U(f) with respect to g implies finding that value of B, say b, which
provides a point P (defined by the vector § = Xb) in the estimation space closest to
the point Y. Then, geometrically, P must be the foot of the perpendicular from Y to
the estimation space, that is, the foot of a line passing through Y and the orthogonal
to all the columns of matrix X. In terms of the vectors from the origin, we can write

y=§+00-9
=y+é

where e is the vector of residuals. The vector y is thus divided into two orthogonal
components:

(1) §, which lies entirely in the estimation space, and

(2) & the vector of residuals, which lies in the residual space. The residual space is
defined as the (n x m)-dimensional subspace, which is the remainder of the full
n-dimensional space, after the m-dimensional estimation space has been defined.
The estimation and residual spaces are thus orthogonal.

If T is a general point in the estimation space and YP is orthogonal to the space,
then

YT? = YP? + PT?

or
U(p) = U(b) + PT?

Thus, the contours for which U(B) = constant must be such that
PT? = U(B) — U(b) = constant.

In the sample space, then, the contours defined by U(B) = constant consist of all
points T such that PT? = constant; that is, points in the estimation space with the
form Xp which lie on an m-dimensional sphere centered at the point P defined by
Xb. The radius of this sphere is \/ U(B) — U(b).
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In order to illustrate the geometry of the linear least-squares, we will look at a
sample space with n = 3 (Fig. 8.5a) and m = 2. That is, there are three components
(y1, V2, y3) of the vector y, two parameters f; and 8, of the parametric vector p and
a three by two matrix X of the form

3

Fig. 8.5-—Geometrical representation of (a) linear least-squares, and (b) nonlinear least-
squares. Upper diagram shows the sample space and the lower diagram illustrates the
parameter space.

X11 X21
X=|X12 X2
X13 X23

The columns of X define two points P; and Pz_)with co-ogi»nates (%11, %12, X13) and
(X215 X225 X23), Tespectively, and the vectors OP ; and OP , define a plane which
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represents the 2-dimensional estimation space in which vector § = Xb must lie. The
point Y lies above this plane and the perpendicular YP from Y to the plane OP,P,
meets the plane at P. Thus YP is the shortest distance from Y to any point in the
estimation space, P, and is defined by § = Xb and U(b) = YP2. Then, from Pythag-
oras’s theorem:

OY? = OP? + YP?

If y = § + e, then the geometrical vector equation is oY = OP + YP. We recall
that, in general, contours with constant U(f) are represented by m-dimensional
spheres in the estimation space. Here, the contours must be circles on the plane
OP,P,. It is evident that if T is a general point Xb on the plane, U(f) = constant
means that YT? = constant, so that PT? = YT? — YP? = constant. Hence, we obtain
circles about P as shown in Fig. 8.5.

The parameter space is an m-dimensional space in which a set of parameter values
(B1,..., B defines a point. The minimum value of U(p) is attained at the point
b= (by,...,b,). We recall that

U(p) — U(b) = (B — b)'X"X(p — b)
All values of g which satisfy U(B) = constant = K are given by
(B — b)’X"X(8 — b) = K — Ul(b)

It can be shown that this is the equation of a closed ellipsoidal contour surrounding
the point b. When K; > K,, the contour U(f) = K; completely encloses the contour
U(p) = K, and b lies in the centre of these nested m-dimensional “eggs”. A 100(1 — a)%
confidence region for the true (but unknown) value of g is enclosed by the contour
given by

LU() — Ub)]/m
U(b)/(n —m)

only if errors are normally distributed, i.e. ¢ comes from N(0, 62). The equation can
be rearranged as

Fl-a(ms n— m)

up = U(b)[l + T Fi(mn — m)]

where the expression on the right-hand side is a constant value that defines the
contour. The outer contour shown in Fig. 8.5a is labelled as the 100(1 — «)%
confidence contour, defined by the above equation. In the 2-dimensional space
(B1, B2), the contours are concentric ellipses about the point (b, b,). Note that
contours of this type are obtained, irrespective of the value of n (the number of
observations), since the dimension of the parameter space depends on m alone.

(B) The geometry of nonlinear least-squares
When the model is nonlinear there is no X matrix as in the linear model. Although
there is still an estimation space, it is not one that is defined by a set of vectors and



232 Non-linear regression models [Ch. 8

it may be very complex. This estimation space is called the solution locus and it
consists of all points with co-ordinates of the form {f(x,, B).f(x3, B), ..., f(X,, B)}.
Since the sum of squares U(f) still represents the square of the distance from the
point of the solution locus, minimization of U(p) still corresponds geometrically to
finding the point P of the solution locus which is nearest to Y.

Figure 8.5b shows the sample space for an example involving n = 3 observations,
¥1, 2 and y;, taken at x;, x, and x5 respectively, and two parameters 8, and §,.
The curved lines f(B;), j = 1, 2, also called the estimation space curves, indicate the
co-ordinate system of parameters on the estimation space or solutions locus. It
consists of all points of the form { f(xy, By, B2), f(x2, B1, B2), f(x3, By, B2)}, as B, and
B, vary with x,, x, and x5 fixed. Generally, this co-ordinate system is formed by all
possible combinations of parameters values § in vector f, where f denotes f(8;) in
which all parameters f;, for k #j, are constant. The co-ordinate system of the
estimation space curves forms the estimation surface ® (the hatched part in Fig. 8.5b)
of all possible solutions. From Fig. 8.5b, it is obvious that the termination points of
all vectors f lie on this estimation surface. When a solution lies on the estimation
surface, a vector of parameter estimates b exists for which y = f(b) i.e. U(f) = 0 and
the regression model goes through all experimental points. The tangent plane 7 in a
location b denoted by the unhatched region, is expressed by Eq. (8.66a) when f; is
replaced by b;. From the geometry shown in Fig. 8.5b, the following conclusions are
drawn:

(1) The minimum U(B) corresponds to the minimum distance between a vector
y and the estimation surface.

(2) When the tangent plane 7 sufficiently approximates the estimation surface ®
in the vicinity of the point b, the vector f = [ f(x;, b), ..., f(x,, b)], called the prediction,
is a perpendicular projection of a vector y onto the tangent plane. The corresponding
projection matrix has the form

P = JUTI)IT (8.68)

(3) The residual vector & with components é; = y; — f(x;, b) is perpendicular to
the tangent plane 7. Therefore a condition for the existence of a minimum of U(B) is
the validity of the expression J'é = 0. It is then important to determine how precisely
the tangent plane approximates the estimation surface.

In the linear model, the contours of constant U(B) in parameter space consist of
concentric ellipses. When the model is nonlinear, the contours are sometimes banana-
shaped, often elongated. Sometimes the contours stretch to infinity and do not close,
or they may have multiple loops surrounding a number of stationary values. When
several stationary values exist they may have different levels or provide alternative
minima for U(B).

It is convenient to draw both the solution locus and the parameter space,
simultaneously (Fig. 8.6). From m-dimensional parameter space a projection is made
onto the estimation surface.

Estimation of the parameters b requires a matrix inversion:

b=1f"y) (8.69)
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1 (a)
1 5, }

Fig. 8.6—(a) The solution locus; (b) the parameter space for m =2 and n = 3. (I) f, well
determined but not B,; (II) B; well determined but not f,; (III) relationship between f; and
B.

A condition of unambiguousness is that each y value in sample space always
corresponds to just one point in parameter space. When the estimation surface is
nonlinear, the arbitrary straight line in the parameter space through g given by

B=B"+ (8.70)

where h = (hy, ..., h,)" is any nonzero vector, generates a curve or “lifted line” on
the solution locus given by

f, = f(B + Ih) 8.71)

In both Egs. (8.70) and (8.71), h represents the direction vector and ! is the parameter
of the straight line, and

Ap=1h
The tangent f}, to this curve f, at g, is found from Eq. (8.66a), to be

" = Jh 8.72)

The set of all such linear combinations is referred to as the tangent plane t at .
To express the curvature of the estimation surface, the vector of second partial
derivatives, known as the acceleration of the lifted line f,, may be shown to be

f, = h'Gh (8.73)

Each element of f, has the form h"G;h where G,; is the ith plane of the G array.
The acceleration vector fj, comprises three components: the first component ;N

determines the change in direction of the instantaneous velocity vector f, normal to

the tangent plane. The second and the third components, which can be added together
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to give f}F, determine the change in direction of f; parallel to the tangent plane and
the change in speed of the moving point respectively. From the projection matrix P
defined by Eq. (8.68) it follows that

f;N = Pf] (8.74a)
fi* = (E — P)f} (8.74b)

The acceleration components may be converted into curvatures, namely the intrinsic
curvature

KN=m

(8.75a)
€412
and the parameter-effects curvature
npP
Kf = il (8.75b)

€511

Only the latter depends on the particular parameterization chosen.

Interpreted geometrically, K} represents the reciprocal of the radius of a circle
which approximates the estimation surface in the direction h. This curvature depends
on the actual type of regression model and on the data used. It is not affected by
reparameterization.

The curvature K® corresponds to the nonparallelity of curves formed by the
projection of uniformly spaced points on parallel straight lines from the parameter
space into non-uniformly spaced points on the estimation surface. This curvature
may be removed by reparameterization.

For characterization of nonlinear behaviour of regression models, we look for a
value of vector h such that the value of K} and K} have maximum values. Thus,
both curvatures may be converted into response-invariant standardized relative
curvatures I'N and I'® respectively. Multiplication by the standard radius @ = &\/ m,
where & is the square root of the estimated residual variance 62, results in the
maximum intrinsic curvature

N = ¢./m max(K%) (8.75¢)
and the maximum parameter-effects curvature

I'* = ¢,/m max(K}) (8.75d)

85 NUMERICAL PROCEDURE FOR PARAMETER ESTIMATION

If a regression model f(x, f) is nonlinear in at least one model parameter f§,,
substitution into the criterion function [Eq. (8.57)] leads to a task of nonlinear
minimization. The application of maximum likelihood (Section 8.3) leads to the task
of nonlinear maximization. The application of any regression criterion leads to the
problem of finding an extreme, where the regression parameters f are “variables”.

m
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Y3

Y1

”

Fig. 8.7—Geometrical illustration of curvature; decomposition of the acceleration vector f},
into the components f;T and f3~.

This task can be solved by the application of general optimization methods to search
for a free extreme (if no restrictions are placed on the regression parameters) or a
search for a constrained extreme if the regression parameters are subject to certain
restrictions.

Owing to the great variability of regression models, regression criteria and data,
ideal algorithms that can achieve convergence to a global extreme sufficiently fast
cannot be found. Most algorithms for many numerical methods often fail, i.e. they
converge very slowly or diverge. The more complicated procedures for complicated
problems are rather slow and require a large amount of computer memory.

Any program for solving nonlinear regression problems should contain procedures
for

(1) searching for extremes in a given direction (one-dimensional optimization);
(2) inversion of matrices;

(3) numerical differentiation (in derivative methods);

(4) methods of overcoming local areas of divergence.

Programs that use the same algorithms may differ in practical applicability.
Comparison of individual programs requires special problems [8] which allows
testing under approximately similar conditions. Some typical programs for nonlinear
regression have been compared [9].

Even with recommended algorithms, the correct result may not be reached.
Kuesters and Mize [10] and Wolfe [11] have proposed schemes for solving partial
problems such as numerical differentiation, a search in a given direction, etc. Some
practical recommendations for the construction of optimization programs have been
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suggested by Gill, Murray and Wright [12], and Schmidt [13] has proposed a
program for minimization of the least-squares criterion.
For nonlinear regression, it has been recommended that a package of various
regression algorithms is applied either individually or in combination [14].
Nonlinear regression algorithms may be classified into the following principal
groups:

(1) Derivative-free optimization methods;

(2) Derivative methods for the least-squares method (LS);
(3) General derivative methods;

(4) Algorithms for special cases.

The selection of a particular group depends on many factors. Generally, when a
criterion function cannot be differentiated, the derivative-free methods should be
used. The derivative methds use a special form of the least-squares criterion (LS)
which are based on a quadratic approximation of the regression criterion. The general
derivative methods enable solution of the task of maximization of likelihood function,
for any regression model.

In this chapter we concentrate on the procedures of the first two groups. The
general derivative methods are the most commonly used today [10,12]. The algorithms
for special cases are determined either by other regression procedures, such as the
robust or Lp approximation methods, or by sums of exponential, etc. From our
experience, the first two groups of regression programs can solve most types of
chemometrics problems.

8.5.1 Non-derivative optimization procedures
Non-derivative optimization procedures allow a search for extremes in the general
criterion U(B) in terms of parameters . They use information about the form of
function U(B) obtained by “mapping” a parameter space. An extreme is selected
according to various heuristic rules. These procedures are, in practice, quite popular
for their simplicity, but a disadvantage is that most of the derivative-free methods
converge very slowly especially in the vicinity of an optimum and have complicated
forms of U(B). For example, in a skewed banana shape, the algorithms terminate
before reaching a minimum. These algorithms are more appropriate for functions
U(P) that cannot be differentiated.

From the various possible strategies and procedures, we select the following
methods:

(a) methods of direct search;

(b) simplex methods;

(c) random search techniques;

(d) special methods for least-squares.

Among the derivative-free methods are some that involve the numerical calculation
of the derivatives. Here, such methods are classed as derivative, since information
about the criterion function requires use of its derivatives.

From the statistical point-of-view, the main disadvantage of the derivative-free

Lo
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methods is the fact that after termination of the minimization process, no information
is available about the covariance matrix of estimates, determined from the matrix
JTn-1

In the next section, we concentrate on methods for searching for a minimum of

U(B).

8.5.1.1 Direct search methods
This group includes many heuristict procedures. One of the simplest is the Hooke—
Jeeves algorithm [16] which can be described by the following two-phase procedures:

(a) a step increment in the direction of the individual co-ordinate axes from the
estimate B in the ith iteration, then a search for an improved estimate B for
which U(B®) < U(B%);

(b) a step search for a local minimum B¢*% in the direction determined by points
B and BY. Such a search, for m = 2, is illustrated in Fig. 8.8.

By

Fig. 8.8—The procedure for co-ordinate search (dashed lines denote unsuccessful directions).

Individual variants of the Hooke-Jeeves method differ in their strategy for
shortening the step-increments in the first phase. The increments should not only
shorten but also elongate in the given direction when necessary. This is particularly
useful in applications such as inverse parabolic interpolation for points B@,
BY + B + 2(B — B®) (Section 8.5.2).

The Rosenbrock method [15], instead of involving a step-by-step search for a local
minimum in direction s defined by points ¥ and B, rotates the co-ordinate system
so that one axis is identical to the direction s = g¢*1 — B® In the next cycle, a co-
ordinate search in the new axis is performed. The advantage of this procedure is that
it works well even for cases when the function U(B) has a narrow skewed (banana)

Yheuristic means trial-and-error
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B4

2
2

uto

B%ﬂ

B,

Fig. 8.9—The procedure for Rosenbrock’s minimization.

shape. The procedure, when m = 2, is illustrated in Fig. 8.9.

The most effective methods in this group are procedures of conjugated directions
when, instead of a rotation of the co-ordinate system, the new direction to the local
extreme is conjugate to the original one (Powell method [16]).

8.5.1.2 Simplex methods

The simplex methods are the most commonly used optimization methods in analytical
chemistry, process engineering and applied statistics. The original non-adaptive
simplex method, proposed by Spendley et al. [17] is only rarely used now. The first
useful modification, by Nelder and Mead [18], led to a simple and widely applicable
algorithm. Further modifications have speeded up convergence and removed some
limitations of the Nelder and Mead algorithm.

The method starts from an initial guess of parameters g from which the simplex
is formed. The simplex is a polyhedron, having (m + 1) vertices constructed in
m-dimensional parameter space. For m = 2, the simplex is a triangle and for m = 3,
a tetrahedron (Fig. 8.10).

The process of minimization by a simplex method involves three steps.

(1) Construction of the initial simplex.
(2) Iterative search for a minimum.
(3) Identification of a search termination.

In the minimization procedure in each cycle, steps (2) and (3) are repeated. Step (1)
affects the speed of convergence.

(1) Construction of the initial simplex
The co-ordinates of the vertices of a simplex create rows of the matrix V of dimension
[(m 4+ 1) x m]. A regular simplex is defined by the magnitude of its edge ¢ and a
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Fig. 8.10—The simplex for (a) m = 2, two parameters, and (b) m = 3, three parameters. The
simplex ABC may be reflected into three possible positions CBE, ABE and ACE.

suitable location in parameter space. For a regular simplex, starting at the origin of
co-ordinates and with edges of equal lengths, matrix V has the form

000 .. .0
c aa . . . a

y_|@ ca . . .. (8.76)
a a a c

where

_ tm— 1)+ J/(m+ 1) 8.77)
my/2
_Uym+1-1) (8.78)
my/2

When an initial guess B is known, the initial simplex is constructed such that the
first row of the matrix V contains this initial guess as the co-ordinates of the
component. The jth row (j = 2,...,m + 1), is given by

Ay TR Ry e (Y (8.79)
m\/i

(o)
Vi= B + 2 5\”[ (Jm+ i=j (880)

Sometimes, it is more convenient to have the initial simplex constructed such that
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the initial guess B is in its centre of gravity or is suitably turned into a direction of
the steepest descent.

(2) Iterative search for a minimum

The principle idea of simplex methods is very simple: the direction to a minimum is
on the connecting line between the vertex Vy of a maximum value U(Vy) and its
reflection.

The procedure calculates the criterion U(B;) for all vertices of the simplex V i=B;
and enables the vertex Vy to be reflected through the centre of gravity of the other
vertices to form a new simplex. To speed up the search for an optimum, five main
operations are used: reflection, expansion, contraction, reduction and transfer. These
operations (for m = 2) are illustrated in Fig. 8.11.

(a g (b) g

\Jz

A 1
VC
C

Fig. 8.11—The simplex operations: (a) reflection, (b) expansion, (c) contraction, (d) reduction,
and (e) transfer.

>
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The numerical expression of these operations assumes that after (k — 1) steps, the
simplex has vertices g; =V,, i =0, ..., m with corresponding values of criterion
function U(V;) = U,. Let us say that d(V;, V;) is the distance between vertices V; and
V;, Uy = min U; for a minimum of the regression criterion at the vertex V;, and
Uy = max U for a maximum of the regression criterion at the vertex V. The
minimum and maximum are selected from all the vertices of the simplex. The centre
of gravity, of all vertices except the Uth (Vy) is calculated from
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m
\£

_i#U
P= - (8.81)

The vertex Vg, being a reflection of the vertex Vy, may be expressed in the form
Ve=P+ P —Vy) (8.82)

Whenever possible, the regularity of the simplex should be retained. When, for at
least one vertex V(i # L,i # U), U; > Ug > U, the vertex Vy is replaced by the
vertex Vg and the kth cycle is finished.

If, however, U > Uy, an expansion is made, to obtain point Vg:

Ve =P+ y(Vg — P) (8.83)

In practice, it has been found that the most suitable value of y is 2.9 or in general,
any value for which y > 2. If Ug < Uy, then Vy or Vg may be replaced by V.
Sometimes additional expansion to the point Vj is performed, that is

V,=(J + 1)Vg — JP (8.84)

where J =2, 3,4, ..., until Uy, { > U,. Then Vy is replaced by V; and a transfer of
another vertex V; into a new position VY is performed in order to keep the original
form of the simplex,

Vi=V,+J(Vg—P), i#U (8.85)

until the kth cycle is once again completed.
When Uy > U, for all i # U after a reflection, a contraction is performed by using
the point V¢ given by

Vo=P + O —P) (8.86)

Equation (8.83),0 = Vyif Uy < Ugor O = Vyif Uy > Uy. The shortening parameter
B < 1is usually set equal to § ~ 0.55. If Uc < Uy, Vy is replaced by V¢, completing
the kth iteration.

If, despite the contraction, U > Uy, the simplex is shortened around Vi with the
smallest criterion value. Shortening involves replacement of vertices V;(i # L) with
the new vertices V¥ such that

VE=VL + AV, —Vy) (8.87)

For this, A = 0.5 is usually chosen. This shortening procedure completes the kth
cycle. It is useful, however, to test whether the shortening process is not too excessive.
Later, enlargement of the simplex magnitude (A > 1) can be used to overcome the
local unevennesses of the surface of criterion function.

(3) Identification of a termination criterion

Nelder and Mead [20] recommend that at the end of each cycle, an examination of
the magnitude of the decrease of the criterion function and of the relative changes of
the simplex vertices be made by use of
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Uy — ULl <& (8.88)
and
m;ﬂ Z d[V®, VE-172 < ¢, (8.89)
i=0

The constant ¢; should have the value 10™* and ¢,, 10~ 8. The term V{ denotes the
ith vertex of the simplex in the kth iteration.
Sometimes [18] instead of Eq. (8.88), the criterion

(8.90)

is used.

Routh, Schwartz and Denton [19] have proposed a procedure called the supermodi-
fied simplex (SMS), which is an improved algorithm for an optimum search in the
directions Vy, and Vg, using the inversion parabolic interpolation. The procedure
starts with three known points (Vy, Uy), (P, Up), (Vg, Ug); a parabola is fitted through
these points and, by an analytical differentiation, its minimum is found. If the parabola
is concave and has a maximum, the simplex is contracted or reduced. The magnitude
of the coefficient, a, in Eq. (8.82) is selected according to the slope of the parabola.

Ryan, Barr and Fodd [20] devised a generalized simplex method in which, in an
attempt to retain the simplicity of the method, the vertex Vy is reflected in the
direction of the approximate gradient of the criterion function U(B). This procedure
is called the weighted centroid method (WCM), and uses the weighted centre of gravity
Py defined by

S (U - Ui
py-i0 (891)
S (Ui~ Uy)

This equation assumes that the gradient of the function U is close to the direction
of the line joining V; and Vy. The next procedure is identical to those described
above but, instead of P, the weighted centre of gravity, Py, is used.

The application of Eq. (8.91) in some cases leads to degeneration of the simplex,
i.e. an object of lower dimension than the original simplex is formed, because the
angle between the directions (Vi , V) and (Vy, Py) is very small.

The measure of the deviation of Py, from P is given by

[Py — P
SN AR 55
where ||x|| = \/Zx7 is the norm of vector x. When Py, is close to V, then V, — 1.
The reduced centre of gravity P¢ has the form

Pc = (1 — k)P + kPy (8.93)
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and should be used when the parameter x takes the value 0.3.

Another modification of the simplex method is based on the reflection of more
vertices in every iteration. Evans [24] separates simplex vertices in the kth iteration
into two groups. The first group contains vertices that have large values of the
criterion function, U;, and these are reflected. The second group contains vertices
with relatively small U values, and these remain unchanged in the kth iteration. Rules
for simultaneous changes of more simplex vertices have been proposed by Volker et
al. [22].

One modification [21] of the simplex method involves a random search for the
initial guess of parameters .

The simplex method is useful when the initial guesses of parameters are rather far
from the true values. Its disadvantage is a slow convergence in the vicinity of the
minimum. Therefore, simplex methods are often combined with derivative methods
for locating extremes. For example, in program FUNMIN [23] the simplex method
is combined with the Marquardt algorithm.

Spendley [24] proposed a simple procedure which combines the simplex with the
Gauss—Newton method (Section 8.5.2). The procedure starts from a linearized
function f(x;, B), defined by Eq. (8.64), for B = V; or § = V. It can be shown that

(V) —e(VL) ~ JiT(Vj — VL) (8.94)

where JT is the ith row of the Jacobian J and the symbol ¢;(V;) = y; — f(x;, V;)
denotes the ith residual for the estimate V. Similarly e;(Vy) denotes the ith residual
for the estimate, V. In matrix notation, Eq. (8.94) can be written as

T~JA (8.95)
where T is the (n x m) matrix with elements

T;; = e(V;) — ei(Vp), i=1,...,n, j=L....m (8.96)
and A is the (m x m) matrix with elements

Ap=Va—Vu, Jj=1L....,m(G#L) k=1,...,m (8.97)

If the simplex vertices in the kth iteration are known, the matrix J may be estimated
from Eq. (8.95). Let us assume that the criterion for the least-squares method (LS) is
valid. The increment vector, L, of the Gauss—Newton method (Section 8.5.2) for this
criterion may be calculated from the approximate expression

L=A-D"'w (8.98)
where elements of the matrix D are given by
Dy = Z LedV;) — e(Vi)I[e(Vi) — e(VL)], Jhk=1,...,m#L) (8:99)
i=1
and those of vector w by

wi= 3 [e(V) —eVleVe),  j#L (8.100)
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In the kth iteration of a given simplex optimization, the procedure determines L,
from Eq. (8.98) and calculates the criterion value, U(V, + L), from Eq. (8.57). This
value then determines whether the procedure continues according to the original
simplex method or replaces vertex Vy of the maximum value U(Vy) by a vertex
(VL + L), and then uses an approximate Gauss—Newton method. Programming the
combined procedures is complex because it involves an inversion of the matrix D;
on the other hand, it has the advantage that after the termination of the minimization
process and the determination of an optimum, the estimate of the matrix (J7J)~!
may be calculated from

J'J)"!' ~ AD!AT (8.101)

In the nonlinear least-squares method, statistical analysis may then be applied as for
derivative methods.

Problem 8.10. Search for a minimum by the simplex method
Estimate the minimum of the function

f(B) = 100(8 — B,)* + (1 — B,

using the modified simplex method with initial guesses ¥ = —1.2 and g’ = 1.
Solution: After 179 iterations, a minimum was reached with parameter estimates
by =0.9934 and b, = 0.987 and f(b) = 4.24 x 1075°. The values are b; = b, = 1.
Conclusion: In comparison with the derivative methods, the modified simplex method
is rather slow. However, the values found for the estimates are quite close to the true
values.

8.5.1.3 Random optimization

Random methods are convenient for complicated polymodal criterion functions when
other algorithms fail. They are very simple and do not require knowledge of good
initial guesses of parameters . We restrict ourselves to a few selected procedures of
adaptive random optimization which are simple and sufficiently effective.

CRS Algorithm (controlled random search) was originated by Price [25]. It uses
a combination of controlled random search and the simplex method. It starts from
the matrix p of dimension (Z x m), where Z = 10(m + 1). The individual rows of this
matrix comprise randomly selected points B; in the parameter space. The minimization
procedure consists of three steps:

(1) The estimation of points B = min U(;) and By = max U(B ;) where the
minimum and maximum are searched for over all the rows of the matrix .

(2) A random sample of (m + 1) rows V4, ..., V, ., is taken from matrix B
[except the row corresponding to (B.)] and V, is set equal to fy.

(3) Vectors V,;,i=1,...,m+ 1 form the vertices of the simplex. A new test point,
Vg, is searched for as a reflection of vertex V,, ., over the centre of gravity P of the
other points. Similarly, as in the classical simplex method, we have

m V.
Ve=2P—V,, =2) ;’—V,,,H (8.102)

i=1
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If U(VRy) = U(Vy), the procedure goes to the 2nd step, otherwise Vy is replaced by
Vr. When a minimum is not reached, the procedure returns to step (1).

GSA Algorithm (Generalized simulation annealing) [26] is based on a simulation
of the behaviour of physical systems with many degrees of freedom and which lead
to a state of minimum energy. An example of such a system is the annealing of metals
at different rates of cooling. The procedure starts with the construction of a random
point, V, on the surface of an m-dimensional sphere of radius Ar, followed by a
calculation of the criterion function U(V).

The point V is selected with a certain probability which depends on the
difference between U(V) and the current lowest value of criterion function U(V,). If
AU = U(V) — U(V,) <0, point V has the probability of acceptance of Pp =1.
Otherwise, the probability of acceptance is determined from

Py = exp(—«AU) (8.103)

where k is a positive constant affecting the convergence rate. The acceptance of V is
decided from a pseudorandom number R from a rectangular distribution R[O, 1]. If
R < Py, point V is accepted as the centre of other m-dimensional spheres.

The minimization procedure requires a preliminary value for the global minimum
U min- A method for selection has been described in [26]. The function, U(8) — U p;n
is minimized when it reaches a global minimum zero value.

The algorithm GSA consists of the following steps: (the values g and U(B®) = U;
are known)

(1) A search in a random direction S, with the use of m random numbers N; from
the normalized normal distribution N[0, 1]. The components of the vector S are
defined by the normalized expression

s ——Ni j=1..,m, (8.104)

j ’
S 2
2 Ni
i=1

(2) Determination of a random point V on the surface of the hypersphere, with
the centre at the point B and radius Ar, (a value of Ar = 0.15 is usually selected)
according to

V =ArS + @ (8.105)

(3) IfAU = U(V) — U; <0, BV take the value of V, and the ith step is complete.

(4) If AU > 0, the probability Py is estimated [Eq. (8.103)] where usually x = 3.5.
Then a random number, R, is generated from the rectangular distribution R[O, 1]. If
R < Py, point V, is accepted, i.e. B¢+ =V, and the ith step is completed. If R > Pp,
then point V is rejected and the procedure returns to step (1) i.e. to generation of a
new random vector.

This minimization procedure can usually identify a round cluster of accepted points
V, around the global minimum.

Adaptive Random Search Technique Algorithm [27] is one of the simplest available.
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Random vectors V are generated around the point B, with values that depend on
the earlier rate of convergence. The vectors V correspond to a special probability
distribution. The procedure for search in the ith iteration may be expressed by
following steps:

(1) Locate point V from

DR — 1)K

V=p"+——F¢

(8.106)
where D is the magnitude of the increment (usually D ~ 0.5) and R is a pseudorandom
number from a rectangular distribution R[0, 1]. The parameter K determines the
type of probability distribution of the second term in Eq. (8.106). When K = 1, the
distribution is rectangular. The higher the value of K, the more peaked the distribution
and the smaller the variance.

(2) Calculate U(V). If U(V) < U(B"), the substitution p¢*Y =V is performed,
which completes the ith iteration. If U(V) > U(B?), the value of K is adapted, then
the procedure returns to step (1). The following strategy is recommended for
adaptation parameter K:

(a) Start with K = 1;

(b) After five successful steps K is increased to 3;

(c) After another 15 successful steps, K is increased to 5;

(d) After a further 10 successful steps K is increased to 7;

(¢) 'When convergence becomes slow, K is halved until K = 1 is reached.

Adaptive Random Search Algorithm. Pronzato et al. [28] have proposed an improved
version of the last algorithm, applying the principle of adaptation. This also begins
with the generation of random test points

V=39+7Z (8.107)

Random vectors Z, are generated from an m-dimensional normal distribution with
zero mean and a diagonal covariance matrix C.

Each step consists of two parts. In the first part, optimum values of variance C;,
in a covariance matrix C, are searched for. In the second part, using around 100
opimum values, V are generated such that they have minimal values U(V) less than
U(BY). The search is terminated when five consecutive iterations produce the same
estimates of the variance 6;.

Adaptive search for the optimum variances is based on set upper By and lower B,
limits determining the acceptable range of parameter estimates. Five vectors of

variances 67, ..., 62 are estimated from the equations
o1=PHus— B
6;=019"0g,  j=2,345 (8.108)

For each vector ¢}, the point V from Eq. (8.107) is calculated f; = 100/j times, for
Z = o;N, where N is the vector of independent random quantities of the normalized
normal distribution. If U(V) < U(B?), the replacements % =V and C; = C; + 1 are
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made. The value of &; for which C has a maximum is taken into stage 2 as the
maximum.

In cases where the initial guess of parameters B is used, the vector o, is calculated
from

6, =103+ 2/ (8.109)

where I is unit vector.
Generally, these algorithms are simple and lead to global extremes. However, they
involve lengthy computations, and hence they are rather time-consuming.

8.5.1.4 Special procedures for the least-squares method (LS)

Some non-derivative procedures are based on the assumption that the criterion
function U(f) may be approximated in the vicinity of a given point by an m-
dimensional hyperparaboloid. This is in accordance with the definition of the criterion
function U(B) of the least-squares method by Eq. (8.58). Two algorithms commonly
used in chemistry are, LETAGROP and DUD.

LETAGROP algorithm. The principle of “pit-mapping” (in Swedish leta-grop)
originated by Sillén and Ingri [29, 30] is the approximation of the criterion function
U(B) in the vicinity of B® in the ith iteration by an m-dimensional elliptic hyper-
paraboloid. The coefficients of this hyperparaboloid, which in derivative methods
are expressed by components of matrices J and H [Eq. (8.58)], are calculated from
(m + 1)(m + 2)/2 points {B;), U(B;)}. Substitution of these points (called “shots” in
LETAGROP) into the equation for an m-dimensional hyperparaboloid leads to a set
of (m + 1)(m + 2)/2 linear equations for the estimation of their ceofficients. If these
coefficients are found from analytical differentiating, a minimum of the “approxi-
mate” paraboloid may be calculated and hence the vector p¢* ! is established.

Fig. 8.12—Geometric illustration of the search for a minimum in U(f) by the LETAGROP
method.
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Problems 8.11. Equations for the minimum of a parabola

Derive the equations for the minimum of a parabola approximating the criterion
function U(p) in the vicinity of the point B, if a regression function f(x, ) contains
only one parameter.

Solution: The first step involves linearization of the function f(x, B) in the vicinity of
point B?. On substituting into Eq. (8.66a) we get

9/ B)
op

If A = p — B, then substitution of this approximation into the least-squares criterion
function gives,

[ B~ f(x, B + =28 — BY)

n

2
szZ[n—ﬂ%ﬁ%—Aﬁﬁﬂ]sz+mA+K¢2

j=1 o8
where
K, = 21 [,Vj _f(xj’ ﬁ“’]z
K, = - ;?ﬂ”J) s~ 105, BO)]
j
and

n . 2
- 55

i=1

For estimation of the coefficients K, K; and K, of an elliptic hyperparaboloid,
knowledge of three values §,, f, and f; and their corresponding values U(8, ), U(8,)
and U(B;) are necessary. The desired coefficients are a solution of the set of three
linear equations:

UB,) =Ko + Ki(By — B9 + KB, — BD)?
U(B,) = Ko + K (B2 — B?) + Ky(B, — BP)?
U(B3) = Ko + K1(B3 — B?) + Ky(B3 — B?)?

The minimum of the “approximate” parabola is given by

Ky

2K,

Conclusion: With knowledge of suitable points 8, j =1, ..., (m + 1)(m + 2)/2, the
coefficients and the minimum of the parabola approximating the criterion function,
U(B) are easily found.

LETAGROP can also be modified for cases when U(p) has the shape of a skewed
narrow valley, such as when a strong correlation exists between parameters. In this
case, the co-ordinate axes are rotated so that the axes of one co-ordinate lies along

B = 41 — O = —
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uip)
(b)

B1 [32

Fig. 8.13—Grapbhical illustration of a search for the minimum of an elliptic hyperparaboloid
in the cases of (a) well-conditioned parameters without any correlation between f; and f,,
and (b) ill-conditioned parameters with a strong correlation between f; and f,.

the axis of the valley.

LETAGROP is effective when there are a small number of parameters to be
estimated. With increasing m, the number of evaluations of the criterion function
U(P) increases and the search for coefficients of the approximate paraboloid becomes
more laborious. A major disadvantage of non-derivative methods is the absence of
the matrix (J™J)~!, which is useful for the statistical analysis of the parameter
estimates. For the calculation of (J*J)~?, the same procedure as in the Nelder-Mead
simplex algorithm can be used. The Peckham method [31] uses a similar principle.

Algorithm DUD (Doesn’t use derivatives). Procedure DUD is a nonderivative
analogy of the Gauss—Newton algorithm [32]. Where linearization of the regression
model is performed in the Gauss—Newton method, the function f(x, p) is replaced
by an affine function I(«) which is consistent with it at (m + 1) preceding points g%,
k=i—m, ..., i, ie. the results of previous iterations. Geometrically, this can be
represented by drawing the function f(x, ) in the second hyperplane instead of the
estimation space.

To simplify the notation, let us renumber results of the previous iterations %,
k=i—m,...,i,as pP,j=1,...,m + 1 where j = i — m — 1 + k. The affine function
I;(@) for the ith point {x;, y;} may be written in the form

Li@) = f(xi, B0 + i o Lf(xi, BD) = f(xi, B i=1,..um (8.110)
j=1

After substitution of /;(«) into the criterion function, the unknown coefficients «;,
j=1,..., m may be found in the form
a=(F'F)~'Fi(y — ) (8.111)

where F is the matrix of dimension (n x m) with elements
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Y1

Fig. 8.14—Replacement of the estimation space by the secant hyperplane for n = 3 and
m=2.

F; = f(x;, ﬁ(j)) — f(x;, ﬂ(MH))

and the vector f has elements f(x;, B™* V). If vector « is known, a better evaluation
Bx of B¢V may be calculated from

Bn=B""" + La (8.112)
where the jth column of the matrix L has the form
Li=B9—gm*Y,  j=1,...m

If U(Bx) < U(B™* Y, the ith iteration is completed and the substitution gy — g™+
is made. In the reverse case, the distance between By and p™* 1) is shortened by

ﬂN = psz + (1 - pz)ﬂ(m+l)

where p, =1 for z=1 and p, = —(—1/2) for z=2, 3, 4 and 5. The stepwise
regression can be used [32] for selecting a suitable vector a.

8.5.2 Derivative procedures for the least-squares method

Algorithms of this group are very commonly used, not only because the least-squares
method is a frequent regression criterion but also to provide information necessary
for subsequent statistical analysis of the regression results.

These algorithms are useful for all model functions which are twice differentiable.
They have the disadvantage that the local convergence depends on the choice of the
initial guess B®. All algorithms of this group are of iterative nature. In the ith
iteration the procedure starts from the estimates 8 to which a suitable increment
vector A; is added by




Sec. 8.5] Numerical procedure for parameter estimation 251

BUtD = B 4 A,
Generally, the procedure which searches for a minimum of U() consists of four steps:

(1) Determination of an initial guess p©.

(2) A search for a convenient directional vector V.

(3) Determination of scalar «; satisfying the condition, A; = o;V;.
(4) Examination of the minimum obtained.

The vector A, is usually considered to be acceptable if
UB? + A;) < UBY) (8.113)

Some algorithms also allow equality of U(B“* V) and U(B®), or even a small increase.
Individual algorithms differ in the realization of steps (2) and (3). Let us discuss each
of the four steps:

(1) Determination of the initial guess

For many algorithms, this step is decisive for success of the minimization procedure.
With a good initial guess, p©), even simple unsophisticated methods usually converge.
With a poor initial guess, either a minimum can not be found at all or the minimum
obtained is a local one. When the regression model can be linearly transformed, the
initial guess B may be found by the linear least-squares method. In some cases, the
initial guess may be obtained from physical or geometrical characteristics.

A transformation into stable parameters expressing geometrically defined character-
istics of a regression model may be made, with, for example, function values or their
derivatives at selected points, etc. With a personal computer, the path of the function
f(x, b®) with given data may readily be tested and therefore the quality of the initial
guess examined.

(2) Determination of a directional vector
The derivative of a criterion function U(B) at a point A = § + aV, has the form

su) _[ou) |38
S [ o | oo ®.114)
For o — 0 we get, from Eq. (8.114), the directional derivative,
_oup T
Sp = Sa a__)O—gV 8.115)

where g is the gradient for which Egs. (8.59a) and (8.59b) are valid.

From Fig. 8.15, it is evident that the gradient vector is the vector perpendicular to
the tangent vector t. All directional derivatives Sp, of the hatched area are acceptable
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B,

(2)
b2

(1)
by

Fig. 8.15—Geometrical illustration of the gradient of a criterion function U(B) for m = 2.
Hatched areas denote admissible directional vectors.

because they do not cause an increase in U(f).

The steepest decrease of the criterion function is in the direction —g. The condition
of acceptability of a given directional vector V requires the directional derivative not
to be positive. Any direction for which g'V > 0 is unsuitable.

Moreover if the directional vector V is admissable a positive definite matrix R
exists such that

V= —Rg
The directional derivative S, is then
Sp= —g'Rg (8.116)

For a positive definite matrix R, the quadratic forms are positive so that Sp, in Eq.
(8.115) is negative.

(3) Calculation of an optimum increment

In searching for an optimal increment aV in the direction V, an approximation of
U(P) in this direction by the Taylor series up to the second order can be used. This
leads to the form

2
U(B + aV) ~ U(B) + g™V + %VTHV (8.117)
where H is the Hessian matrix defined by Eq. (8.62). Equation (8.117) is approximately
quadratic with respect to a, so that an optimal « may be estimated by setting the
first derivative with respect to a, U(B + aV), equal to zero. Hence, we get
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o i‘% / 52559’) — _g'"V[VTHV]"! (8.118)

After substitution from Eq. (116) we obtain the Raleigh coefficient

«* = gTRg[g"R"THRg] (8.119)

The Raleigh coefficient, a*, is restricted to a region in which an approximation of
type (8.117) can be used.

Another possibility in the search for an optimal o; value in the direction V; is the
one-dimensional minimization of the function U(f + «;V;).

(4) Termination of the iteration process

The natural criterion for an optimum b is a zero value of the gradient g of the
criterion function. Many methods terminate the iterative process searching for a
minimum when the norm of the gradient

Igl* =Y &
ji=1

is sufficiently small. It is possible to select a critical value e.g. 107%, at which the
point b is considered to be an extreme b. Often, an iteration is terminated when
the changes in the parameter estimates are very small. None of these criteria lead to
termination at a true minimum.

Minimization may terminate less heuristically if the residual vector & is approxi-
mately perpendicular to the columns of the matrix J. From Fig. 8.5, it follows that
JTé = 0. The angle, o;, between the residual vector & and the jth column J;; of matrix
J, is given by the following expression:

cos a; = e7J,;[JTJ 2Te] 12 (8.120)

When the maximum value of cos a; is sufficiently small (e.g. smaller than 1079 it is
assumed that a minimum of U(B) is found. Many other termination criteria have
been proposed [33].

We concentrate our attention on the following derivative algorithms for the least-
squares method:

(a) Gauss—Newton methods;
(b) Marquardt methods;
(c) the dog-leg method.

There is a wide spectrum of different improvements and modifications to these
methods, but we restrict ourselves here to some simple and efficient techniques.

8.5.2.1 Gauss—Newton methods

To determine a convenient directional vector V;, the quadratic approximation of a
criterion function U(B) from Eq. (8.58) may be used, and this also corresponds to Eq.
(8.117) for a = 1. From
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SUB+Y) _

A% 0

the optimum direction sector V; = N; can be computed. The result takes the form
N;=—-H'g=J"J+B)"1JT (8.121)

On substituting into Eq. (8.119), we estimate that a* =1 and N; is directly an
increment vector A;. This method is called the Newton method. When the criterion
U(P) is a quadratic function, (an elliptic paraboloid), the minimum b will be found
in one step. However, for other forms of criterion function U(f) and estimates g©
far from b, this method does not converge sufficiently fast. Moreover it requires
knowledge of the matrix of second derivatives G; for determination of the matrix B
in Eq. (8.63). Neglecting matrix B, which is equivalent to the linearization of the
regression model, is theoretically acceptable for a case when the residual vector & is
small. The corresponding direction vector L; has the form

L=J") )7 (8.122)

Methods applying the directional vector L, are called Gauss—Newton methods. The
methods are simple, and are the most frequently used procedure of nonlinear
regression. Substituting H ~ (J*J) into Eq. (8.119) leads to a* = 1. From a practical
point, the Gauss—Newton method works well if some of following conditions are
fulfilled:

(1) The residuals é; = y; — f(x;, B) are small.

(2) The model function f(x, ) is nearly linear, i.e. the Hessian matrix, H, has a
small norm and its elements are nearly zero.

(3) The residuals é; have alternating signs so that B is an approximate zero matrix.
This condition is valid in the vicinity of the optimum b.

It is possible to use other methods to extend the region of convergence of this very
simple method. The principle ones include:

(a) Inversion of the matrix J*J and solution of the set of linear equations
JTIL = JTe (8.123)

(b) Improving the matrix (J'J) in order to be close to the Hessian matrix H.
(c) Choice of the optimal length of the step .

We shall describe some successful methods which, on combination, lead to more
effective modification of the original Gauss—Newton method.

(a) Inversion of the matrix (J'J)

When the matrix (J*J) is well conditioned, the columns of the matrix J are linearly
independent. Then, for a solution to the set of linear equations (8.123), various
procedures may be applied. One of the simplest techniques, with minimal requirement
on computer memory, is Choleski decomposition. In many practical problems
(involving exponential and other nonlinear models), matrix J has some nearly
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collinear columns and therefore the matrix (J¥J) is ill-conditioned. The length of
vector L estimated from Eq. (8.123) is usually too large and its components have
“inconvenient” signs. When some columns of a matrix J are linearly dependent, the
matrix (JJ) is singular. These problems may be eliminated by pseudoinversion of
matrix J'J or generalized inversion of matrix J by the algorithm SVD.

Jennrich and Sampson [35] solved the set of linear equations in Eq. (8.123) by
stepwise regression. Components of a vector L are found and these significantly
decrease the function U(f).

In our programs, the matrix J'J is decomposed into eigenvalues and eigenvectors.
To invert matrix (J*J), we use the technique of rational ranks described in Chapter
6.

One of the most advanced procedures for searching for a suitable vector L was
devised by Schmidt [36]. Instead of the matrix J, Schmidt constructs matrix M
containing only those columns of a matrix J for which it is valid that

— they are not linearly dependent,
— they cause the largest decrease in U(B)
— at least one of them is not orthogonal to vector &.

This procedure protects the task against difficulties arising from ill-conditioning.

(b) Improvement of the Hessian matrix

This group includes methods of variable metric also known as the quasi-Newton
methods. Here, each step treats the matrix (J*J) so that it approximates the Hessian
matrix H. These methods are suitable for cases with large residuals, that is when
U(b) > 0. The main idea is simple, and comes from the fact that the Hessian matrix
is the derivative of the gradient with respect to a parameter vector, and this derivative
is approximated by the difference

Hipy ~ Bﬁ’jll)—_i;n ~ AgS =B, (8.124)
where S; is the increment vector and index i denotes the ith iteration. The matrix
B;. ; is an approximation of the matrix H;, ; calculated only from information about
gradients and values of the vector . The course of the procedure is that, instead
of B;, ;, the increment AB; = B, , — B; is calculated in the individual iterations. In
many cases AB; is calculated from [40]

_(Ag; — B;S,)CT + Ci(Ag; — B:S))" . ST (Ag; — B:S,)C;C]

AB; = 125
‘ CTs, (CTS,)? (8.123)

where Ag; = g;., — g; and the vector C; allows the choice of various strategies of
improving the Hessian matrix. From a theoretical point of view, the best option is
C; = g;. The process of improvement starts with the zero matrix B.

Instead of approximating all components of the Hessian matrix H, it is possible
to improve only the part B containing second derivatives. The matrix B;,; has the
form
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B =Jl1divt +Kiyy (8.126)
The matrix K;, ; is symmetrical and corresponds to the condition
Ki+1S;=YV; (8.127)

The choice of V; causes variable final results. The matrix K;, , is again improved in
each iteration according to the expression

Ki+1 = K; + AK; (8.128)

For determination of the matrix AK;, Eq. (8.125) may be used, but with B;, replaced
by K; and Ag; replaced by V;. The vector V; may be computed from the Broyden—
Dennis formula [37] where

VD = Ag; — J1+1di44Si (8.129)
or the Betts formula
VP = Ag; — JTJ S (8.130)

It is possible to use a linear combination of these two formulae or to use more
complicated procedures of adaptive improvement of the matrix H, described in detail
in the literature [40].

The adaptive improvement of the Hessian matrix, by applying Eq. (8.126), does
not automatically result in positive-definiteness of matrix B;,;. Therefore, this
technique should be combined with procedures of pseudoinversion.

A mixed strategy is sometimes used when, according to parameter o, a direction
Vs is selected between the linearization L and approximately Newton direction N.

Gill and Murray [38] propose calculation of an approximation of the Hessian
matrix by the difference formulae and then application of the SVD procedure
for determination of significant components of the gradient. Many authors [39]
recommend the method of variable metrics as a standard part of a library of programs
for the minimization of the criterion function U(f). It is best to restart the calculation
of matrix B;,; when matrix H, becomes unsuitable because of cumulated errors.

(c) Selection of step length

Many variants of the Gauss—Newton method use, for a selection of the optimal step
a*, the quadratic approximation U(b + aL)in the direction L. With values U(8®) = U;
and U(B? + L;) = U;,, and the direction derivative Sp

giL; = —2eJJTJ) " 1% = S5
the optimal step length of o* is estimated from

—-Sp
.* =
[ (®.131)

If |Sp| is small, the value a* is also small. Therefore a* = max(0.25, «¥) may be
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selected. There are various heuristic strategies for selection of convenient a values,
and these can speed up an iterative search for a minimum.

8.5.2.2 Marquardt-type methods
The obvious selection of a directional vector V; is the direction of steepest descent,
—g. From Eq. (8.119), an optimum coefficient a* is given by

a* = gT'g[g™Hg] ' ~ g"g[g"(I"J) " 'g]* (8.132)

The increment vector A; = —a*g corresponds to the gradient method.

The gradient method converges slowly in the vicinity of an optimum. On the other
hand, in cases when B is far from b, the direction leading to a minimum can be
found. It is effective to use a combination of directions of the Newton method N; or
the direction of linearization L;, together with the direction — g, to construct a more
robust algorithm. These procedures are called hybrid procedures. The best known
example is the Marquardt method, which calculates the directional vector V;(4) from

V,(4) = (3J + ADTD)"1J7e (8.133)

where A is the parameter and D; is the diagonal matrix which eliminates the influence
of various magnitudes of the components of the matrix J. Usually the diagonal
elements D;; are equal to diagonal elements of matrix (J™J). According to the
magnitude of A, the vector V;(4) has following properties:

(a) The length ||V;(4)| is a decreasing function of A. For A - oo, ||V;(4)|| = 0. The
parameter A operates similarly to the parameter «, i.e. it enables a change in the
length of the increment vector.

(b) The cosine of the angle between the vector V;(4) and the negative gradient —g;
increases as a function of 4. As 1 — oo it approaches a value of one. It then
follows that for large A values, the directional vector V;(1) approaches the
directional vector of the gradient method.

(c) The cosine of the angle between the direction of linearization L; and the vector
V;(4) is a decreasing function of 4. When 4 = 0, it reaches value 1 and V;(4) is
identical with the direction of the Gauss—Newton method.

The curve V;(4) in parameter space begins at the point B + L; and ends at the
point B, where it has direction —g. However, the space curve does not lie in the
plane of vectors L; and —g. Appropriate selection of parameter 4 ensures:

(1) positive definiteness of the matrix R = (J'J + AD™D), which ensures that its
inverse can be found;

(2) a shortening step V;(4) moving from the direction of linearization L;;

(3) the possibility of choosing between the direction L; and approximate direction
-8

(4) restriction of the magnitude of the incremental vector V; to the “admissible”
region in the vicinity of g,

The necessity of repeated matrix inversion for each A is a disadvantage of this
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procedure, as it is rather time-consuming. Moreover, it may occur that a large A
results in a very small magnitude of V;. Therefore, the use of the maximum value of
the magnitude of A is limited. Individual modifications of the Marquardt method
differ, especially in the strategy of the adaptive setting of 4. The original algorithm
begins with iy = 0.01. After each successful step, the calculation 4;.; = 4;/10 is
performed, and after an unsuccessful step, 4;,; = 104;.

BD

i B + L;

By

Fig. 8.16—Schematic path of function V(1) for two parameters (m = 2).

In the Nash algorithm [40], with minimal need for memory for solving a set of
linear equations (i.e. determination of V;(4)), the Choleski decomposition is used.
The adaptive adjustment of A starts from A= 10"* and after a successful step
Ai+1 = max(107¢, 1,/10) is chosen. If a step is unsuccessful, 4;,, = max(10°, 44;) is
selected.

In another procedure [41], 4; is selected according to the magnitude of the maximal
diagonal element of matrix (J™J). Let us denote this element, J,,,. In each iteration,
the procedure begins with 1; = C,;,Jmay- If there is no decrease in U(), this coefficient
is increased according to

li+1 = )‘i(cmax/cmin)lm

This process of increasing A is performed until a decrease in U(B) occurs or until 4
is equal to J,,,,. Then another search method is used, where C,,,, = 1 and C,;, = 0.01
are chosen.

A very good and effective method was proposed by More [42]; this forms part of
the program NL2SOL.

Some authors recommend choosing the optimal value of 4., as the one which
leads to a maximal decrease in U(B). This local optimal strategy, in cases of narrow
curved-valley shape of U(p), causes a global deceleration of convergence.

One strategy for changing A, which ensures a global speeding up of convergence,
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concerns three typical situations which may appear in the course of minimization of
U(B), [43].

(a) 1Tt is possible to use the direction of linearization L, i.e. A = 0.

(b) When the criterion function U(f) has a curved-valley shape, the smallest
eigenvalue C; of matrix (J*J)~! is significantly smaller than the second smallest
eigenvalue C,, e.g. 10C, < C,. The direction of this valley is determined by the
eigenvector k, corresponding to the smallest eigenvalue. In this case, an
increment A, is chosen so that the criterion function U(B) remains approximately
unchanged. A search is then carried out on the hill-side of the valley [43].

(¢ In other cases, the curved valley is not so distorted and the quadratic
approximation is inappropriate. For these cases, a suitable strategy for the
selection of A; has been described [43].

Meyer and Roth [44] have proposed the method MDLS (modified damped least-
squares) for finding the vector V(4), which envolves a one-way minimization in a
specific direction.

Generally, Marquardt-type methods are included in standard program libraries
because of their robustness.

8.5.2.3 Dog-leg type procedures
The main disadvantages of Marquardt methods include:

(a) the need for an inversion after every change of parameter A
(b) the small length of vector V(4) for a large A.

Both these disadvantages are removed in the next hybrid methods, in which the
optimal directional vector V(u), a convex combination of vectors L and —a*.g;, is
searched for. Here a* is estimated from Eq. (8.132) and 0< p < 1. It follows that

V()= B2 + (1 — pLia, — po*g; (8.134)

The function V() for oy =1 and «; < 1 is shown in Fig. 8.17 as hypotenuses of
right angle triangles. The dotted line represents «; < 1 and the solid line a; = 1. The
classical strategy of the Powell dog-leg method estimates an optimal vector V;(x) on
the abscissa, TB, of a triangle defined by the vertices O = b, T =b® + L;, and
B = b — a*g;, where a* is defined by Eq. (8.132).

It can be seen that for u =0, the vector V(u) is identical to the linearization
direction L; and for u = 1, the vector V() is identical to the direction of the negative
gradient —g. The magnitude of the total increment in direction —g corresponds to
the optimal value a*.

Dennis and Mei [45] use the double dog-leg strategy in which, instead of the vector
L;, the “shorter” vector «,L; is used. The parameter «, is determined in the
linearization direction so that the increment corresponds approximately to the
Cauchly point [Eq. (8.119)]. Therefore, it can be shown [45] that

a; = 0.2+ 0.8]g:*[2f("I) " 'g:gl I I)g:]1 !

From Fig. 8.17, it is evident that shortening a,L; leads to a directional vector V¥(u)
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By

Fig. 8.17—Geometrical illustration of the dog-leg strategy. The circle shows the admissible
range of increments. The solid hypotenuse is V(y) for a; = 1 and the dotted hypotenuse is
V(p) for oy 1.

which is nearer to the linearization direction than vector V(u), calculated from Eq.
(8.134) with a; = 1. The actual strategy of these techniques differs in the admissable
range adopted, in the method of inversion for finding L;, and in improvement of the
Hessian matrix by variable metric methods.

The program MINOPT, described later in this chapter, is based on the Dennis
and Mei procedure [46].

8.5.3 Complications in nonlinear regression
In nonlinear regressions, many complications arise that are not found in linear
regression models.

(a) A minimum in U(p) exists for some regression models only
(b) There may be local minima and saddle points in U().

(c) Parameters may be inestimable.

(d) Parameters may be ill-conditioned.

8.5.3.1 Parameter estimability

Complications (c) and (d) may be identified by analysing the sensitivity coefficients
g; defined by Eq. (8.5). For practical purposes the normalized sensitivity coefficients
[47]

C - ﬂjéf(xi’ ﬂ) J = 19 ey m (8135)

Jo = ’ ] — .

op; i=1,...,m
are recommended. The ill-conditioning of parameters §; and §, is a consequence of
the approximate multicollinearity between parameters f; and f,. For a visual
interpretation of the examination of the conditioning of parameters in a model, the
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sensitivity graph is used. The sensitivity graph is a plot of C;;) and Cy; vs. x;, i = 1,
..., n. The dependence of the normalized sensitivity coefficients on the index i may
also be plotted.

Figure 8.18a shows several possible ill-conditioned models, where the sensitivity
coefficients C; and C, are linearly dependent. Figure 8.18b, on the other hand, shows
linearly independent sensitivity coefficients. More details of similar cases have been
presented in the literature [47]. From Fig. 8.18, it follows that for the examination
of the linear dependence of the sensitivity coefficients the location of points for C = 0
is important. The situation is more complicated when there are more parameters in
the model [47].
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Fig. 8.18—The sensitivity graphs for the sensitivity coefficients where they are (a) linearly
dependent, and (b) linearly independent.

To express the sensitivity of a regression model in terms of a change in parameter
B;, the total sensitivity function [1] C,; may be used. This function is defined by
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This sensitivity function has meaning only for the nonlinear parameters §; in the
regression model f(x, B). For the linear parameters f, in the regression model f(x, f),
the total sensitivity function C,, reaches a constant value. A graphical illustration
shows the sensitivity graph of parameters, which plots the dependence of C; on f; in
the vicinity of B or b;. If the sensitivity graph of parameters is nearly constant,
then the regression model has a low sensitivity to changes in the jth parameter, or
the regression model f(x, B) is linear with respect to the parameter §;.

8.5.3.2 Existence of a minimum of U(B)
If, in the vicinity of a minimum, the model function f(x, f) reaches an infinite value,
then U(B) — co. For example, for the model

Bo + Bixui
X p) ="
S0 B) Bax1i + Baxa;
with two independent variables x,; and x,; such that f,x,; = —f3x;;, then U(B) -

0.
Gallant [48] has given an example when, with a simulated data set and an
exponential model, for one parameter U(B) does not have a minimum, but a maximum.
Demidenko [49] has proposed a procedure for testing for the existence of a least-
squares estimate, and therefore a minimum in U(p), in which the regression criterion
is restricted (from below) to a limit value. Generally, the existence of a minimum is
connected with the problem of identifying the parameters b of the regression model
J(x, B) [50].

A given regression model is globally unidentified on a region Q, if, for any parameter
vector be Q, we can find another vector b* e Q for which

f(x,b*) = f(x, b) (8.137)

where the symbol f(x, f) means t e vector with elements f(x;, p).

When the columns of the Jacobi.\n matrix J are independent, the unidentifiability
is structural in nature, i.c. independent of the actual numerical values of parameters.
The cause of unidentifiability is symmetry of the parameters [51]. This means that
the model f(x, B) is invariant to a transformation of points in the parametric space.
The condition of invariance of this function, with respect to the continuous
transformation corresponding to Lie group, is given by [51]

of(x, B)
op

where h(p) is the tangent vector which unambiguously defines continuous transfor-
mations of parameters, and J f(x, B)/dp is the vector with components éf(x, B)/38;,
j=1,..., m If we compare Eq. (8.138) with Eq. (8.5), we find that they express the
same condition. This means that for unidentified models the sensitivity coefficients
are linearly dependent.

h(f) =0 (8.138)
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8.5.3.3 Existence of local minima

The existence of local minima is characteristic of overdetermined models. Local
minima exist in various models formed as a sum of partial nonlinear terms, sums of
exponentials, etc. Let us suppose, for example, that for the model

S(x, By = By exp(B2x)

a global minimum U(B*) with estimates, f and p%, were found by the least-squares
method. If, for the same data set, we use the model

f(x, B) = By exp(B,x) + B> exp(Bsx)

we will notice that behind a global minimum many local stationary points will satisfy
the condition, sU(B)/6p = 0. There are points for which

(@ By=p3=00rp,=p,=0,ie. the model is reduced to a simplified form;
(b) B4 = B3 = B% and all combinations of f,, f, for which 8, + f, = p%, once again
simplifying the model.

U(B) B,

Fig. 8.19—Existence of local minima (L) beside the global one (G).

For higher numbers of exponential terms, the number of local minima increases
sharply. Owing to the influence of measurement errors, the giobal minimum can be
determined for a model with fewer terms [52].

A decision about whether a minimum found is global or local may be made on
the basis of the Hessian matrix of the criterion function U(B). If the Hessian matrix
H is positive-definite at point b, a global minimum has been found [49]. For practical
purposes, instead of the matrix H, we examine the positive-definiteness of matrix
(JTJ). If both matrices H or (J™J), are positive-definite, a global minimum has been
found. Positive semi-definiteness indicates an overestimated or unidentified model.
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8.5.3.4 Ill-conditioning of parameters

Ill-conditioning of parameters in a model which causes approximately linear depen-
dence in the sensitivity graphs, depends not only on the type of regression model but
also on the location and the range of experimental data. Ill-conditioning of parameters
is indicated as ill-conditioning of the matrix (J™J). Algorithms used for matrix
inversion, such as pseudoinversion or the Marquardt type methods, are resistant
against this difficulty. Difficulties arise when Gauss—Newton type methods are used.
In many cases, ill-conditioning appears on application of numerical differentiation
instead of analytical, because there is a loss of precision in the construction of matrix
(JTJ). Numerical differentiation may cause even good algorithms to fail. For numerical
differentiation, the method of forward difference is often used.

0f(xi, B)
5[3]
where I is a unit vector, with the jth component equal to 1, and other components

equal to zero. The increment, h;, in many cases determines the quality of numerical
differentiation. If can be selected as

h; = |B;l + \JEP

where EP is the computer precision. For nonlinear regression, it is convenient to use
the algorithm written by Brown and Dennis [52], where h; is evaluated by

hy = min(U(B), &)
and the parameter J; is estimated by
5. = ~r107° if |B;| < 10~°
1T T3 107384 if |B;| = 107°
This technique is also used in our algorithm MINOPT [46].
Reparameterization [53] may cause significant improvement in the shape of the
criterion function U(B) and hence improve the conditioning of the matrix (J7J).

Suitable reparameterization procedures for some nonlinear models are described by
Ratkowsky [53].

_[f(xu hiL + B) — f(xi, B)] (8.139)

8.5.3.5 Small range of experimental data
In many practical problems, difficulties with overdetermination and ill- condmonmg
of model parameters are partly the consequence of a small range of experimental
data.

The application of the least-squares method leads then to a model which gives a
good description of experimental dependence, but the parameters have no physical
meaning. In these situations, it is possible

(a) to collect more experimental data;

(b) to examine the possibility of model simplification;

(c) toinvestigate the possibility of estimating some parameters on the basis of other
supplementary experiments, previous knowledge, experience, theory, etc.
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(d) to select suitable restrictions to be placed on the parameters so that their
estimates have physical meaning.
The actual procedure depends on the problem in question and on the experience
of the experimenter.

Problem 8.12. Search for a model of the Kohlrausch equation

The tension relaxation after a jump change of deformation on the value ¢ = 0.4 was
studied for laboratory-made fibres PADt-G. The RETEST apparatus monitored the
dependence between tension N, (MPa) and time t(sec) in range 0-500 sec; and 21
points were recorded. The proposed model was

N, =y + By — B2) exp[ —(Bat)*] (8.140)
where f, is the initial tension, f, is the equilibrium tension and 3, §, are empirical
constants. A graphical illustration of Eq. (8.140) is shown in Fig. 8.20.

N,

1P
\ﬁz

0
t
Fig. 8.20—The parameters of the Kohlrausch model.

The task is to estimate the parameters, by using five variants of calculation strategy.

Variant I: All parameters are estimated simultaneously.

Variant II: The model is simplified by assuming that f, = 0.

Variant ITI: The value for parameter §; = 69 MPa s fixed from previous knowledge.

Variant IV: The value for parameter #, = 12 MPa s fixed from previous knowledge.

Variant V: The values of parameters §;, = 69 MPa and 8, = 12 MPa are fixed.
Data: n =21

t,sec N, MPa t,sec N, MPa t,sec N, MPa

1 62.22 85 52.22 220 49.26
5 58.52 100 52.22 250 48.15
10 58.15 115 51.11 310 47.78
25 55.56 130 50.74 340 47.04
40 54.07 145 50.74 400 46.66
55 53.33 160 50.37 430 46.29

70 52.59 190 49.63 490 45.93
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Solution: Variant I: From the initial guesses of the parameters f{* = 65, p5» = 35,
B9 = 0.118, BL¥ = 0.811, refined values were found (Table 8.1). Parameter f, is
negative and therefore has no physical meaning. Another initial guess of parameters
leads to the refined estimates in column Ib of Table 8.1. The approximate singularity
of matrix J*J causes problems.

Table 8.1. Parameter estimates b and U(B) with & for the various variants of the model

Model variants

Parameter

estimates Ia Ib I I v A"
b,, MPa 71.32 72.11 58.80 69* 58.27 69*
b,, MPa —811.2 —4414 o* —38.69 12* 12*
bs 0.163 0.152 0.216 0.202 0.231 0.222
b, 0.0106 0.0227 0.106 0.0691 0.121 0.131
U(b) 1.665 1.775 1.750 1.718 1.792 1.818
& 0.09797 0.104 0.0972 0.0954 0.0966 0.957

*constant values

Variant II: The refined parameters are in column II of Table 8.1. The simplification
of the model leads to an insignificant increase in the minimum of the criterion
function U(f). However, the corresponding residual variance 62 shows that this model
is better than variant I. The matrix J*J is regular and well-conditioned.

Variant III: Even with the improvement in the model (lower &), the estimate of
parameter f, has no physical meaning so that knowledge of parameter 8, does not
help here.

Variant IV: Knowledge of parameter 8, leads to acceptable estimates of other
parameters and the degree of fit is still quite good.

Variant V: With two parameters, ff; and f,, known, the model becomes much
simpler.

Conclusion: The goodness-of-fit for various variants of the model was compared by
the residual standard deviation 6 = . /U(b)/(n — m). For a given data set, the individual
variants of the model do not differ significantly. Moreover, it may be concluded that

(a) The Kohlrausch equation is inappropriate for practical purposes, because the
quality of the results depends on the time units. After modification of the
exponential term, exp[ —(B,t)?3], the parameter B; is dimensionless and f, has
dimensions of reciprocal time. This modification does not solve the problem of
insufficient sample size.

(b) With regard to the physical meaning of model and knowledge about the data,
the best method is a reduced model with 8, = 0. Also, other physically acceptable
variants IV and V hardly differ in the estimates of 5 and f,.

(c) The estimate of parameter 8, varies markedly depending on the choice of model
variant.

From the results, it can be seen that without previous knowledge of the model
system, it is not possible to estimate the equilibrium tension f,. Also, estimate f§,
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becomes loaded by quite a high uncertainty which comes from the variants used.

The aim of Problem 8.11 was to demonstrate that numerical application of linear
regression does not guarantee finding a useful model. Statistical analysis of this
Problem is then necessary and is detailed in Section 8.6.

8.5.4 Examination of the reliability of the regression algorithm

In the literature, many regression algorithms and packages of programs for nonlinear
regression are described [54, 55]. To examine the reliability of a regression algorithm,
various test models are used. A good reliable algorithm should estimate correct
values of the regression parameters.

For six test models, with their typical data sets, the final results depend on the
initial guesses of the parameters. In comparison of the numerical results of these
models, no restart or other technique of repeated determination of new initial guesses
of parameters (if divergence occured) was used.

Six test models:

Model .  y = B, + B, exp(Bsx)

Model II.  y = exp(B,x) + exp(B,x)

Model III.  y = B, exp[B, /(B3 + X)]

Model IV. y = B, exp(B3x) + B, exp(B4x)
Model V. y = B,x#3 + B,xP*

Model VL. y = B[exp(—B,x;) + exp(B3x,)]

Test data sets {x, y} for
Model I: n = 10

X 1 5 10 15 20 25 30 35 40 50
y 167 168 169 171 172 174 176 179 181 187

Model II: n = 10

x 1 2 3 4 5 6 7 8 9 10
y 4 6 8§ 10 12 14 16 18 20 22

Model III: n = 16

X 50 55 60 65 70 75 80 85
y 34780 28610 23650 19630 16370 13720 11540 9744

90 95 100 105 110 115 120 125
8261 7030 6005 5147 4427 3820 3307 2872
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Model IV: n = 16
x 7.448 7.448 7.969 8.176 9.284 9.439 7.552
y 57.544 53.546 19.498 16.444 4.305 3.006 45.290
7.877 8.522 9.314 7.607 7.847 8.176 8.523
27952 11.803 4764 51.286 31.623 21.777 13.996
8.903 9.314
7.727 4.999
Model V:n =12
b 12 13 14 15 16 17 18 19 20
y 731 755 780 805 831 857 884 912 940
21 22 23
969 999 1030
Model VI: n =23
X4 0 06 06 14 26 32 08 16 26 40
X, 0 04 10 14 14 16 20 22 22 22
y 40 10 50 25 25 20 10 07 08 07
1.2 20 46 32 1.6 42 42 32 28
26 26 28 30 32 34 34 38 42
04 04 03 022 022 01 005 007 003
42 5.4 5.6 32
42 44 48 5.0
003 003 002 0.01
Table 8.2. Initial guess of parameters estimated for the six test
models
Modl B0 BP0 AP O UGB
I 20 2 0.5 - 2 x 1023
II 0.3 04 - - 4 x 10°
I 0.02 4000 250 - 1.7 x 10°
v 10° 105 —1.679 —1.31 1.12 x 10*
A% 100 0.1 2 10 2.68 x 10°
VI 12 1.0 25 - 2269
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Table 8.3. Best estimates of parameters of the six test models
Model by b, by by U(b)
I 15.67 0.9994 0.0222 - 5.98 x 1073
II 0.2578 0.2578 - - 124.34
I 0.005618 6180 345.2 - 87.9
v 8.315 x 107 5.088 x 103 —195 —0.7786 134
v 3.802 4.141 x 1073 0.223 2.061 298 x 1073
VI 31.5 1.51 199 - 1.25

Three regression methods, the method of modified simplex (MSM), the Gauss—
Newton method (GN) and program MINOPT were tested. Tables 8.2 and 8.3 show
the initial and final parameter estimates, respectively. Table 8.4 shows that program
MINOPT works verys reliably.

Table8.4. Number of iterations neces-
sary to reach a minimum U(p) for the
six test models (F means convergence
to a false solution, S means a slow
convergence)

Model MSM GN MINOPT
I F 55 22
II 179 S 10
11 2452 15 32
v F S 42
v F F 65
VI 387 12 16

Models I-V were used to compare the ability of well known statistical packages
to solve these problems. The packages tested were:

BMDP SOLO version 3.1
BMDP version 1987

SAS version 6.03

SPSS PC+ version 3.1
STATGRAPHICS version 4.2
ASYSTANT + version 1.0
SYSTAT version 4.0

abbreviation SOLO
abbreviation BMDP
abbreviation SAS
abbreviation SPSS
abbreviation STATGR
abbreviation ASYST
abbreviation SYSTAT

CHEMSTAT 1.1 (TRILOBYTE Ltd)) abbreviation CHEMSTAT
MINSQ 3.12 (MICROMATH) abbreviation MINSQ

For overall comparison, the performance index, PI, is defined as
PI = 100*(number of correct results)/(T*number of methods)

was computed. Here T is number of tests used. The greater PI, the better the package
at solving nonlinear regression problems. ‘Number of methods’ means the number
of optimization methods available in the packages. The possibility of combining
methods (as in MINSQ) was not tested. The results are summarized in Table 8.4a.
The best results were obtained with ADSTAT and SPSS. Program MINSQ is very
quick and can use a combination of methods. Other packages were not very
satisfactory for these test problems. This comparison will disappoint many users of



270 Non-linear regression models [Ch. 8

Table 8.4b. Comparison of various packages for nonlinear

regression
Package PI (tests I-1V) Number of methods
BMDP 25 2
SAS 25 4
SYSTAT 375 2
STATGR 50 1
ASYST 83 4
SPSS 100 1
ADSTAT 100 1
SOLO 20 1
MINSQ 80 1

the standard statistical packages, showing, as it does, that errors due to false optimum
location can cause failure of the whole regression analysis.

8.6 STATISTICAL ANALYSIS OF NONLINEAR REGRESSION

Statistical analysis in nonlinear regression depends on the model used, the model of
measurement errors and the criterion function. Let us limit ourselves to the method
of maximum likelihood when the estimates b minimize the logarithm of maximum
likelihood, I(B) = In L(P), as defined by Eq. (8.28).

In the construction of confidence intervals for parameters p or in the testing of
statistical hypotheses, three main approaches are used.

(@) The method of linearization is based on the asymptotic normality of the vector
\/ n(b — P) and an estimate of the variance D(b), defined by Eq. (8.29). As was shown
in Problem 8.8, for additive and normally distributed errors:

D(b) = *(JTJ)~!
This expression corresponds to a linearization of the regression model [Eq. (8.66a)].
Here, the same expression is used as in a linear regression but matrix J replaces
matrix X.

(b) The method of Lagrange multipliers is based on the fact that the quadratic
form

QF =UT"'U (8.141)
has asymptotically the y%(m) distribution, and the matrix I is defined either by Eq.

(8.30) or Eq. (8.31). The vector U, of dimension (m x 1), has components ol(B)/oB;.
(c) The method of the maximum likelihood ratio is based on:

L(p)
P(p) = Lb) (8.142)
The random variable, { —2 In[P(B)]}, has asymptotically the x*(m) distribution.
The method of linearization is, in practice, the most widely used one as it does not
involve additional calculation. The method of Lagrange multipliers and the maximum
likelihood ratio require a numerical search for the roots of nonlinear functions, but
lead to more accurate and more useful results.
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Statistical properties of the least-squares method (LS)

The LS method is a special case of the maximum likelihood method for an additive
model of measurement and an independent normal distribution of measurement
errors. Gallant [5] derived the following equations:

b= g% + (1)~ "I + term(1//n) (8.143)
T _ Tyy- 197
o2 = & (E ':,:(it:,:) Jt )8 + term(l/n) (8.144)

Here B* is the true value of the parameters in the model, J, is the Jacobian matrix
evaluated at the theoretical point g* and term (1/\/ n) denotes a random quantity
with its mean value equal to 1/\/ n. If in Egs. (8.143) and (8.144), the higher terms
are neglected, then from the theory of linear regression, it follows that the distribution
of the random quantity b is m-dimensionally normal

b ~ N[B, c*J*3)~1] (8.145)

The random variable, (n — m)é2/6, has a y*(n — m) distribution and b and 62 are
independent. In practice, the matrix J, is replaced by matrix J, evaluated at point b.
The asymptotic normality of estimates b, determined by the least-squares method,
does not require normality of erors g [5]. Application of Eq. (8.143) requires the
following conditions to be fulfilled:

(1) The regression model must be twice differentiable.

(2) The regression model must be identifiable; that is, the function

U(p®) = lim %Z [f (xiv B%) — £ (xi, BT

should have an unambiguous minimum at the point g% = B.
(3) The matrix Q = lim (1/n) JTJ, must be asymptotically regular.
n— 0

Practical examination of all these conditions is rather complicated [5].

For real experimental data, the estimates b and other statistical characteristics are
biased, and therefore the application of Eq. (8.145) is limited.

The usefulness of the statistical analysis of nonlinear regression models by least-
squares methods depends on the magnitude of the bias, and this depends on the
degree of nonlinearity in the regression model.

The covariance matrix of parameter estimates
From Eq. (8.145), it follows that the asymptotic covariance matrix of estimates b
obtained by the LS method is expressed by

D(b) = o2J7J)"! (8.146)

When errors are independent and identically distributed with constant variance,
it is possible to find a more accurate approximation, based on a linearization of
estimate b(g) as a function of &
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D(b) = 4¢*H '(JTN)H ! (8.147)
When (J7J) ~ 0.5H is simplified, a less accurate approximation is obtained:
D(b) = 26°H™! (8.148)

When the residuals & are small or the elements of matrix B in Eq. (8.62) are
approximately zero, then

H™ ! =05J73)!

The effect of the application of Egs. (8.146), (8.147) and (8.148) on the accuracy of
the estimate of the confidence regions of parameters b has been studied [57], and it
was concluded that the two more accurate relations, Egs. (8.147) and (8.148), are not
significant. For practical calculations, the asymptotic formula [Eq. (8.146)] is
obviously acceptable.

With a knowledge of the covariance matrix D(b), either the variance of individual
parameters D(b;) or the correlation coefficients r;; between estimates b; and b;, may
be estimated. From Eq. (8.146), we can write

D(b;) = o2V (8.149)

where Vj; are the diagonal elements of the matrix V = (J'J)™!. Similarly, the

correlation coefficient between the parameters b; and b; is

oY (8.150)

T ViV

Jj

If the value of r;; is close to unity, the estimates b; and b; are linearly dependent and
the model is overdetermined or ill-conditioned with respect to parameters b; and b;.

8.6.1 Degree of nonlinearity of a regression model

For characterization of nonlinear behaviour in regression models, the intrinsic
curvature K% [Eq. (8.75a)], the parameter-effects curvature K§ [Eq. (8.75b)] or the
maximum intrinsic curvature I'™ [Eq. (8.75¢)] and the maximum parameter-effects
curvature I'’ [Eq. (8.75d)] can be adopted. If I’ and I'? are sufficiently small [56]
for statistical analysis and for construction of confidence intervals, the linearization
of regression model [Eq. (8.145)] may be used.

From many practical experiments, it has been concluded that

(a) the influence of nonlinearity may be, in many cases, removed by a suitable
reparameterization when I'N is small and I'? high;

(b) the efficiency of reparameterization also depends on the data;

(c) in some cases, even for high values of I'™ and I'?, linearization may be applied.
There are cases, however, when even for small values of I'N and I'® the confidence
intervals estimated after linearization are not suitable.

The measures of nonlinearity based on a curvature are by no means universal.
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8.6.1.1 Bias of parameter estimates
For expressing the bias of parameter estimates,

h = E(b — %)

many approximations exist in the literature. For simplicity, we use the following
definition of parameter bias [58]

h=J7J)"1Jd (8.151)
where d is the (n x 1) vector with the components

4 =) 'G]

, > (8.152)

where tr(-) denotes the trace of a matrix and G; is the matrix of second derivatives
of the model function [Eq. (8.65)]. The vector d is the expected value of the difference
between the linear approximation [Eq. (8.66a)] and the quadratic approximation of
the model function. Equation (8.151) enables the bias h to be found from the
coefficients (parameters) of the linear regression model,

d=Jh (8.153)

It is obvious that the bias h will be small if
(a) the vector d is perpendicular to the tangent hyperplane, defined by columns
of matrix J, such that

Jd=0
(b) the vector elements d are small, i.e. the increment of the quadratic term will

be insignificant and the model f(x, §) will be well linearized.
Similarly, the bias of residuals is given by

é =y — f(x;, b).
The mean value of the vector of residuals,
E = E® (8.154a)

can be rewritten as
E=(E - PJd (8.154b)

where P is the projection matrix [Eq. (8.68)]. The mean value of the residuals is
called the residuals bias because it is assumed that E(e) = 0.
For practical calculation, we often use the relative bias of the parameter estimates
defined by
h,

by =3 x 100[%] (8.154c)

J

The bias of estimates is considered significant if hg ; > 1%. For such biased estimates,
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the statistical analysis based on linearization of regression model cannot be legitimately
used.

Problem 8.13. Calculation of the relative bias of parameters

Calculate the relative bias of parameters hg ; of individual variants of the Kohlrausch
model from Problem 8.12.

Data: from Problem 8.12

Solution: The values calculated for the relative bias of parameter estimates for all the
variants of Problem 8.11 are given in Table 8.5.

Table 8.5. Relative bias hy ; of the parameters of the Kohlrausch model

Variant of model

Relative

bias, % 1, I, 11 Jiss v A%
hg 1 —10x 107% —1.8 x 108 0.18 —* 0.163 —*
hg 2 —4.1 x 10° —6.0 x 108 —* 379.3 —* —*
he 3 8.62 x 10* 1.46 x 107 0.058 0.44 0.058 0.007
hg.a 4.12 x 10° 3.52 x 10° 1.49 —225 1.402 1.42

Conclusion: The original model (Ia, Ib) is very ill-conditioned and has high values of
bias, indicating the inadequacy of the proposed model. For variants II, IV and V,
the parameter estimates have physical meaning and the bias values are sufficiently
small. Therefore for these three variants, the statistical analysis based on linearization
of the model may be used.

To express the total bias of parameter estimates, Box [59] proposed the scalar
characteristic

h™JTI)h

e (8.155)

M=
and proved that the scalar M is related to the maximum parameter-effect curvature

caused by parameters, by following the inequality

P\2
<)

Similarly, for the norm of the residual bias, the following inequality applies
IE| < 0.5T/m

The bias of parameters is related to the curvature caused by parameters Kf and the
residual bias is related to the intrinsic curvature K.

Problem 8.14. Kinetic parameters of dyeing

A modified polyester fibre, Tesil 32, was dyed by a disperse dye, C.I. Dispersion Red
54, and the kinetics of the process were studied. The relative concentration of dye C;
on the fibre was measured as a function of time, ¢;. The kinetics of the isothermal
dyeing may be expressed by the Cegarra—Puente model
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C; = Bi/1 —exp(—B,t;)

where p, is the relative equilibrium concentration of the dye on a fibre and B, is the
rate constant. Estimate b, and b,. Calculate the correlation ry, between the
parameters f#; and f,, the total bias of parameters M and the norm of vector, ||Ef.
Data:n=56

t,min 200 400 600 80.0 1000 1200
C, % 435 536 641 66.5 72.0 76.5

Solution: From the initial guesses of parameters B{¥ =100, B = 10"* with
U(B'®) = 12300, the minimum found was U(b) = 12.88, and the best estimates
were b, = 82.37% and b, = 0.0147 min~'. The correlation coefficient r,, = —0.963
indicates strong multicollinearity. The values of the relative bias of parameters
hg,y = 0.46% and hy , = 0.5% indicate low insignficant bias. The scalar value of the
total bias of parameters M = 0.1316 and the norm of vector |E| = 3.58 shows low
bias also. '

Conclusion: Linearization may be used for the statistical analysis of this model.

Because the bias of parameters is related to the curvature caused by parameters,
it may be affected by reparameterization. Let us suppose that, instead of parameters
B, the transformed parameters y defined by Eq. (8.6) are used. Each new parameter,
7j» is a function of all components of the vector f such that y; = (). The bias of the
parameter estimates c; of parameters y;, is given by

2
hy(c) = I"h(b) + %tr[M(JTJ)- 1 (8.156)
where 1 is the vector comprising first derivatives of the transformation with elements
_ o)
I, = 55, (8.156a)
and the matrix M contains the second derivatives of the transformation with elements
S*I(B)
M, = 8.156b
"= 5,08, (8:1560)

The symbol h(b) denotes the bias, h, of the parameter estimates, b, calculated from
Eq. (8.151). If the actual reparameterization is known, the change of bias of the
parameters may be predicted. Another task is to select the reparameterization that
leads to the smallest bias.

Problem 8.15. Change of bias of parameters after model reparameterization
Determine the change in the bias of estimate b, in the model f(x, B) = B, exp(8,x)
by reparameterization, y, = In ;.

Solution: The model reparameterization of
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Sfx, B) = By exp(B2x)
leads to the function

f(x’ V1> ﬁZ) = CXp('yl + ﬁlx)
The vector 1 has elements, | = [1/b; 0] and matrix M has the form

_|{upt o
M ‘[ 0 0
On substitution into Eq. (8.156), we get

e < b0 _ 2 Vix _ ha(by) = 0.5D(by )by

! b, 2 b? b,
where V;, is the first diagonal element of the matrix (J*J) ™! and D(b,) is the variance
of by.
Conclusion: The decrease of bias, hy(b;) — h; (c), is bigger for big variances of estimate
by, and smaller for small values of b,. It is assumed that b, is always positive.

8.6.1.2 Asymmetry of parameter estimates

Nonlinearity of the regression model results in an unsymmetrical distribution of
estimates b. The measure of nonlinearity is a measure of the asymmetry of the
estimates. Ratkowsky [53] used n points generated as identically distributed quantities,
¢*, with mean value equal to zero and variance 62. Then, the random dependent
variables yt and y; are generated by

yi =f(x;,b) + & (8.157a)

Vi =f(x;,b) — & (8.157b)

Parameter estimates obtained by the least-squares method when using y*, instead
of y, are denoted b* and similarly, b~ when using y, instead of y. Linear models
are symmetrical, in that (b7 — p*) = —(b; — B*). For nonlinear models, there is no
such symmetry. A convenient measure of asymmetry is the expression,

b= 5167 — B0+ (b7 — B] .158)
The mean value, E(y;), is equal to the bias, h;, and the variance D(y;) is given by
D(y;) = 0.25D(b;") + 0.25D(b; ) + 0.25 cov(b;", b;") (8.159)
Nonlinearity is indicated by the ratio
_ D)
Ni — D(b,)

When Ay; < 0.01, the distribution of parameter estimates is nearly symmetrical. For
Ani > 0.01, the distribution of estimate b; is strongly asymmetrical and the model,
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with respect to this parameter, is strongly nonlinear.

Morton [60] published expressions relating the statistical measure, Ay;, to the bias
and other measures of nonlinearity. The great advantage of the measure Ay; is that
it is based on statistical arguments. For the determination of Ay;, Ratkowsky [53]
generated many estimates b* and b~ from various vectors of errors, g*.

8.6.2 Interval estimates of parameters

Point estimates b of regression parameters f are, from a statistical point of view,
worthless as they do not mention the intervals in which a true value g* may be
expected. The estimates b are random quantities estimated from a sample of size n,
{x;, yi}, i=1, ..., n. The confidence regions, simultaneous confidence regions and
confidence intervals for multivariate samples are constructed similarly. For their
elucidation, the same rules as for univariate data are applied (Chapter 3).

In nonlinear regression models for construction of confidence regions and intervals,
the linearization often used has elliptic confidence regions. However, linearization is
useful only when the model is not strongly nonlinear and the nonlinearity measures
of asymmetry and bias are small. More accurate confidence regions can be found by
using Lagrange multipliers or the likelihood ratio; these are non-elliptic and do not
have to be continuous.

8.6.2.1 Confidence regions of parameters
From the normality of estimates b, it follows that the quadratic form

Q = (B* — b)’™D(b)"'(B* — b) (8.159a)
has the y?(m) distribution. The corresponding 100(1 — «)% confidence region of
parameters B* is the m-dimensional ellipsoid with boundaries expressed by

(B* — b)"™D(b)~'(B* — b) = xi_.(m) (8.160)

where x3_,(m) is the 100(1 — )% quantile of y*(m) with m degrees of freedom. The
centre of this ellipsoid is at the point b.
For the least-squares method
TH—1
D(b) = Ub)(J™J)
n—m

After substitution into Eq. (8.159), the quadratic form can be formulated as

[AﬂT(JTJ)Aﬁ][ U) ] _ABTUTIAB (8.161a)

o’m é%(n — m) *m

where Ap=p*—b. This quadratic form has the distribution
¥ (m)/x*(n — m) = F(m,n — m), ie. the Fisher—Snedecor distribution with m and
(n — m) degrees of freedom. The confidence ellipsoid then has the boundary

ABYITI)"1AB = mé2F, _ (m,n — m) (8.161b)
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By

Fig. 8.21—Contours for various hyperparaboloid shapes in the vicinity of the minimum
(pit).

In some chemometrics programs, instead of confidence ellipsoids, the boundary of
the last contour of the least squares criterion is used. (Fig. 8.21).

When the bias of parameters, h, is calculated, the correction AB* =b — h — g*
may be used instead of AB. To express the geometry of the confidence ellipsoids, the
decomposition of the matrix (J7J)™?, the eigenvalues 4; and eigenvectors V; may be
introduced such that

TN =VvavT (8.162a)

where V is the matrix containing the eigenvectors in its columns and the diagonal
matrix 4 contains eigenvalues 1; > 1, > ... > 4, on the diagonal. For the correspond-
ing decomposition of the matrix (J7J), we have

) =Vvii~lv (8.162b)

The matrix 4~ ! is, once again, a diagonal matrix with reciprocal values 1!, j = 1,
..., m as elements. After substitution from Eq. (8.162a) into Eq. (8.161), we have

ABTVIATIVAR = YTA Y = ¥ 1

y? (8.163)
i=1 li

Here Y = VAB, which is the new orthogonal set of co-ordinates having the important
property that the axes of the confidence ellipsoid are identical with the axes of the
co-ordinate system. If we introduce the notation

p> = mé*Fy_,(m,n — m)

the confidence ellipsoid can be expressed by the simple formula
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B,

By

Fig. 8.22—Graphical illustrations of the projections A;; and A, ,.

IngE:

2
Z_ = p? (8.164)

i=1
The lengths of the half-axes of the ellipsoid are equal to p\/ A;. The projection Ay of
the jth half-axis into the axis of parameter f,, is given by

A = plVign/4)) (8.165)

where V,; is the kth element of the vector V; which is the jth column of matrix V.

Problem 8.16. Confidence ellipsoid for the parameters of the Cegarra—Puente model
Estimate the 95% confidence ellipsoid for parameters #; and f#, of the Cegarra—
Puente model given in Problem 8.13.

Data: from Problem 8.13

Solution: With use of Eq. (8.164) the co-ordinates of the confidence region in systems
Y, and Y, were calculated, then, by reverse transformation, ; and f,. The results
are shown in Fig. 8.23.

Conclusion: The elongated shape of the confidence ellipsoid and its orientation prove
strong negative correlation between parameters f§; and f,.

When the dimension, m, of the parameter vector is greater than 2, the partial
confidence ellipsoid is constructed for only two of the model parameters. Let us
assume that the vector g* = (B%, p%)" is known, and that the confidence region for
parameters B% is to be constructed. As for linear regression models, the boundaries
of the 100(1 — «)% confidence ellipsoid are found from

(B% —b2)"D (B5 — by) = g6°F, _,(q,n — m) (8.166)

where ¢ is the dimension of vector p%. The matrix D, is of dimension (¢ x g) and is
formed from the matrix (J'J)~! by omitting (m — q) rows and (m — ¢) columns.
Before constructing the confidence region, the parameters must be renumbered to
make the parameters for which the ellipsoid is constructed the last ones.
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0.0262 F

B,
0.0207 -

0.0163

0.0098

0.0044 I ! ! |
63.6 73.4 83.1 B, 92.9 102.6

Fig. 8.23—The simultaneous confidence region of parameters 8, and B, for the Cegarra—
Puente model.

For the method of Lagrange multipliers, the quadratic QF from Eq. (8.141) is
directly applied.

In the general case of the maximal likelihood method, the boundary of the
100(1 — )% confidence region is defined by

U U = 42_(m) (8.167a)

Various formulae can be derived, depending on the actual likelihood function. For
example, in the case of the least-squares method, the matrix I"! ~ ¢%(J*J) ! and for
vector U is given by

U=J% (8.167b)

where & is the vector with elements é; = y; — f(x;, B*). When o2 is estimated, the
boundary of the 100(1 — «}% confidence region has the form

eTJJITI) " 1Jé = m6*F, _(m,n — m) (8.167¢)

The boundary of the confidence region is determined as a set of vectors of parameters
B which fulfil Eq. (8.167c). These confidence regions [Eq. (8.167¢c)] do not always
have to be elliptic.

According to the likelihood ratio method, the boundaries of the 100(1 — a)%
confidence region may be defined as

In L(b) — In L(B*) = x{ _o(m)/2 (8.168a)

In the least-squares method, when both the parameter vector b and the variance 62
are estimated, Eq. (8.168a) may be expressed in the form
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U(g*) — U(b) = p* (8.168b)

where p? is defined by Eq. (8.164). For determination of the confidence region
boundaries, a numerical method should be used.

Problem 8.17. Confidence regions for a model describing the activity of sea-weed as
a function of temperature

To express the empirical dependence of the activity P, of sea-weed on the temperature
T at illumination level of 96 W.m ™2, the model proposed was

_alB-TY [ [ ﬂs—T]]

P Bz[ﬂa_ﬁl] exp| Z| 1 5 — B (8.169)
where Z = B*(1 + /1 + 40/R)?/400, B = In (8,)(83 — B.), B, corresponds to the
temperature with the maximum activity of sea-weed, Py, = B,, B3 is the temperature
at which the activity of the sea-weed is zero and f, is the shape factor. A graphical
illustration of the proposed model P = f(T, 8, B, B3, B4) is shown in Fig. 8.24.
Estimate all four parameters and determine the confidence regions for pairs of

parameters, f¥ — f3%, f% — p% and B} — B%.

P
B,

|
]
|
!
|
1
1
1
|
]
]
[}
|
|
|
|
1
]
¥

>

Bs T

Fig. 8.24—Graphical illustration of a model [Eq. (8.169)] and the individual parameters.

=

Data:n=17

T, °C 5 10 15 20 25 30 35
P 218 316 411 667 904 583 113

Solution: From the initial guesses of parameters B{* = 25, 5 =9, p{” = 36 and
B = 1.8, the corresponding value of the sum of squares function U($?) = 10.52.
The minimization process terminated at U(b) = 1.782. The parameter estimates b
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Table 8.6. Parameter estimates and their relative bias, for
the model in Eq. (8.169)

Parameter Best estimate b; Relative bias hg ;, %
B, 25.06 00114
B, 8.296 0.499
B3 37.23 2.551
Ba 2201 2.284

with their relative bias are listed in Table 8.6.

Figures 8.25, 8.26 and 8.27 show the 95% confidence region of pairs of parameters
b¥ — B3, % — B% and % — B%. The solid curve refers to Eq. (8.169) and the dotted
curve to Eq. (8.168).

12.00 r

B,

8.00 -

4.00 | }
18.0 25.0 B4 32.0

Fig. 8.25—The confidence region for parameters f} — f% for the proposed model, Eq.
(8.169), (solid curve) and with the use of Eq. (8.168) (dotted curve).

Conclusion: From the figures, it is obvious that for even a small bias, the differences
between the confidence ellipsoids and the more accurate confidence regions are highly
significant. The smallest difference is for the pair of parameters, ¥ — B%, where the
values of the relative bias are smaller than 1%.

For the construction of the confidence regions, a reparameterization limiting the
bias followed by a reverse parameterization, may also be used [61]. If a nonparameteric
technique is required, the Jack-knife or the Bootstrap methods are often used. The
principle involved is the same as for univariate samples (Chapter 3).

8.6.2.2 Confidence intervals of parameters
With the use of Eq. (8.161), the 100(1 — «)% confidence interval of parameter f; in
the form
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150.0 -

740}

-2.0 l 1
18.0 25.5 B4 33.0

Fig. 8.26—The confidence region for parameters fi§ — p% for the proposed model, Eq.
(8.169), (solid curve) and with the use of Eq. (8.168) (dotted curve).

6.37 -
Ba
3.39} ;
0.41 [ _
3.4 8.7 B, 14.1

Fig. 8.27—The confidence region for parameters f% — % for the proposed model, Eq.
(8.169), (solid curve) and with the use of Eq. (8.168) (dotted curve).

by — 6/ Vijt1—aa(n — m) < B < by + 6/ Vjjty ool — m) (8.170)

is a direct analogy of the confidence intervals of the parameters of linear models. The
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influence of other parameters is neglected. When all off-diagonal elements of the
matrix (J*J)~! are zero, Equation (8.170) may be used. However, the elements of the
vector b are often mutually correlated, so that the intervals of Eq. (8.170) are under-
estimated, i.e. they are too narrow.

A more suitable determination of the confidence interval of parameter f% is on the
basis of the maximal length A, of the projection A,; onto the parameter axis f;. In
the program LETAGROP, and the related system ABLET, the estimate of the
standard deviation of the kth parameter, ¥, is calculated from

A, = max (Ay;) (8.171a)
J
and the confidence interval of the parameter f, is estimated from

by — Ay < B < by + A (8.171b)

Instead of projections it is simpler to search directly for the co-ordinates of the
extreme points on the confidence ellipsoid in the directions of the individual parameter
axes [62]. The confidence interval of the parameter S is given by

by — p/ Vik < B < by + p/ Vix (8.172)

For m = 1, these confidence intervals are identical. When the number of regression
parameters m is increased, the confidence intervals in Eqs. (8.171) and (8.172) become
broader than those in Eq. (8.170). All confidence intervals are symmetrical.

U(B,)

Fig. 8.28—The estimates of the parameter standard deviations A, and A, by programs
LETAGROP and ABLET.
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Problem 8.18. The confidence intervals for the sea-weed activity model

Estimate the half-length of the 95% confidence intervals for four parameters of the
proposed model for the dependence of activity of sea-weed on temperature, from
Problem 8.17.

Data: from Problem 8.17

Solution: The half-length of the confidence intervals of the four parameters of the
model (8.169) calculated by three different approaches are shown in Table 8.7.

Table 8.7. Half-lengths of the 95% confidence interval of four
parameters of model (8.169).

Parameter by A, (8.170) A, (8.171) A, (8.172)
B, 25.06 2931 3922 5.541
B, 8.296 1.845 3.466 3.488
Bs 37.23 8.199 15.470 15.500
Ba 2.201 0.8984 1.160 1.690

Conclusion: Equation (8.170) leads confidence intervals that are false and too narrow.
The broad confidence intervals are the consequence of too small a sample size, n = 7,
relative to the number of unknown parameters, m = 4.

Asymmetrical confidence intervals of parameter estimates may be obtained when
Eqgs. (8.167) and (8.168) are solved numerically with respect to parameter ¥, when
estimates b are supplied for the other components of vector g*.

8.6.2.3 Confidence intervals of prediction
If the regression model can be linearized, the 100(1 — a)% confidence interval of a
prediction f(x*, b) at the point x* may be calculated. It then follows that

f(X*a b) -l —a/Z(n - m)&p(X*) Sf(x*a ﬁ) Sf(x*a b) +1 —a/Z(n - m)ép(X*)
(8.173)

where 62(x*) is the estimate of the prediction variance for which

62(x*) = J™D(b)J (8.173a)

The symbol J denotes the vector of derivatives of a model function at the point x*
with elements

o (x* B) (8.173b)

J, =2 F
J F ﬁj
The confidence intervals of prediction calculated for the whole range of the
independent variable x (if scalar) form the confidence bands. Accurate confidence
bands may be constructed with the aid of a suitable reparameterization [61].

Problem 8.19. Confidence bands of prediction for the model of the effect of
temperature on sea-weed activity

Calculate the 95% confidence bands of prediction for the model of activity of sea-
weed vs. temperature, Eq. (8.169).
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12.00

f(x; b) /\

6.00

9.0 18.0 27.0 x 36.0

0.00

Fig. 8.29—Confidence bands of prediction (dotted curve) with calculated regression line for
the model, Eq. (8.169) (solid curve) with experimental points.

Data: from Problem 8.17

Solution: Figure 8.29 shows the regression line (solid curve) and the 95% bands of
prediction (dotted curves).

Conclusion: Here, the width of the confidence band is negatively affected by the small
sample size.

8.6.3 Hypothesis tests about parameter estimates
Hypothesis testing is closely related to construction of confidence bands. If parameters
Bo lie in the 95% confidence range around b, the differences (B* — B,) may be
considered as statistically insignificant at the significance level & = 0.05. (The principle
of testing is described in Chapter 3.) We restrict ourselves here to the main tests.
To examine the regression parameters, the null hypothesis, Hy: g = B, is often
tested against the alternative H,: g ~ B, where B, is a given parameter vector. If a
regression model can be linearized, Eq. (8.161) leads to the test chracteristic

7 ® = Bo)' T Ib — Bo)

mé?

(8.174)

which, if the null hypothesis is valid, has the Fisher—Snedecor F-distribution with m
and (n — m) degrees of freedom. If T> F;_ (m, n — m) the null hypothesis H,, about
the equality of # and B, is rejected.

When the null hypothesis about one parameter, Hy: ; = fo, is tested against the
alternative, H,: f; # B, the criterion

g=@‘?| (8.175)
6 ..

J.
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may be used. When the null hypothesis is valid, T; has the Student distribution with
(n —m) degrees of freedom. If T;>t,_,,(n —m), the null hypothesis about a
parameter identity is rejected at significance level a.

When test criteria T and T; are used, the same restrictions as for the confidence
regions hold. If the error distribution ¢ does not differ from normality, the distribution
of the test criterion, T;, even for strongly nonlinear models. As in the construction
of confidence regions for parameter subsets f,, tests can be constructed for parameter
subsets B,. When B, = 0 is selected, the classical tests of significance of the regression
parameters result.

Problem 8.20. Tests of parameters
For the kinetic model in Problem 8.13, examine the following null hypotheses:

(1) Hy: p = 0 (which implies that the model is 1n81gn1ﬁcant) against H,: S # 0,

(2) Hg: py = 80 against H,: §, # 80.

Data: from Problem 8.13

Solution: The parameter estimates obtained by the least-squares method are
b, = 82.36, b, = 0.0148, the variance estimate 6> = 3.22. The matrix (J*J) has the
form

359 5330
Ty —
T = [5330 8.55 x 106]

and the matrix 62(J™J)~! = D(b) is equal to

1218 —0.00758
Db) = [—0.00758 5.11 x 106]

For testing, we select the significance level « = 0.05.
(1) From Eq. (8.174), we estimate b'(J™J)b = 3.91 x 10*. The test criterion
= 5081.9 is significantly higher than the quantile F, 45(2, 4) = 6.94 and therefore
the null hypothesis about model insignificance, f = 0, is rejected.
(2) From Egq. (8.175), the test criterion is

82.36 — 80|

V1218

In comparison with the quantile ¢y g75(4) = 2.776, the T; criterion is significantly
lower, and therefore the null hypothesis Hy: 8, = 80 cannot be rejected.
Conclusion: The statistical tests described are quite simple and do not require
complicated calculations.

T, = = 0.0675

For testing general parametric hypotheses, the tests of the likelihood ratio and the
Lagrange multipliers may be used. Any parametric hypothesis may be expressed as
Hy: pew against Hy: feQ — w, where Q is an admissible parameter space and o is
its subspace. Often the null hypothesis, expressing g relationships between regression
parameters, Ho: fi(B) =0, f,(B) =0, ..., f,(B) =0, is tested. Then w is given by
restriction conditions of the type f;(8) =0, =1, ..., q.
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For a test of the null hypothesis Hy, the likelihood ratio has the form

by - 22D Liby)
“" maxL(p) Lb)

where b, is the maximum likelihood estimate of parameters B, with the restriction
that it must be in a range w. The test uses the fact that —2In I(b,) has the x%(q)
distribution. Especially in the case of the least-squares method, when the residual
variance is calculated from Eq. (8.176), the test criterion has the form

_[Ub,) — Ub)](n —m)
qU(b)

This statistic has, if the null hypothesis is valid, the Fisher—Snedecor F-distribution
with g and (n — m) degrees of freedom.

(8.176)

TL

(8.177)

Problem 8.21. Tests of parametric hypotheses
For the Cegarra—Puente kinetic model from Problem 8.13, examine the following
hypotheses:

(@) Ho: By, = 80 vs. Hy: B, # 80,
(b) Hy: B, =80 and B, = 0.01 vs. H,: B, # 80 and B, # 0.01.

Use the TLtest criterion.

Data: from Problem 8.13

Solution: (1) For the model, y = 80./(1 — exp(— f,x)), the minimum U(f,) is reached
when U(f,) = 14.51. In Problem 8.13, U(B) = 12.88 was achieved. Putting these
values into the test criterion, we get TL= (14.51 — 12.88) x 4/12.88 = 0.506, which
is smaller than the quantile Fyo5(1,4) = 7.7. Therefore the null hypothesis Hy:
f1 = 80 cannot be rejected at the significance level o = 0.05.

(2) The criterion function U(b,) = 469.3 for #; = 80 and §, = 0.01, for the model
y= 80\/(1 — exp(—0.01x)). Equation (8.177) then gives the test statistic TL= 70.87.
This value is significantly higher than the quantile Fg ¢5(2, 4) = 5.94, and therefore
the null hypothesis Hy: f; = 80 and f, = 0.01 is rejected.

Conclusion: We have shown that application of the TL criterion requires two
minimizations, except when all values of parameters are known or assumed.

In some cases of a search for a minimum, overdetermined models are formed.
Galant [5] has proposed a special procedure for these.

8.6.4 Goodness-of-fit tests
The examination of residuals is useful, not only for the linear regression model
(Section 6.5.2.1), but also for nonlinear regression models and analysis of variance
models.

Residuals are defined as the differences

éi=Yyi— Ppi=1Yi — f(xi, b), i=1,..,n (8.178)

where y; is an observation and §p; = f(x;, b) is the calculated value, a “prediction”,
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i.e. the value found from the equation fitted.
We now use graphical and analytical methods for examining the residuals, in order
to check the quality of nonlinear models.

8.6.4.1 Graphical analysis of residuals

The principle ways of plotting the residuals ¢; have already been described in
regression diagnostics for linear regression models. The following plots are often used
in the examination of nonlinear models:

(1) The overall diagram gives an initial impression of the residuals. If the model is
correct, the residuals should resemble observations from a normal distribution
with zero mean.

(2) Plot type I (the index plot) is a plot of residuals é; against the index i in time
order.

(3) Plot type II (the plot vs. the independent variable) is a plot of residuals ¢; against
the independent variable x;,j =1, ..., m.

(4) Plot type III (the plot vs. the prediction) is a plot of residuals against the
predicted value pp ;.

Plot type II is usually adopted as the standard plot (Fig. 8.30). If the proposed
model represents the data adequately, the residuals should form a random pattern.
Systematic departures from randomness indicate that the model is not satisfactory.
To examine the normality of a residual distribution, the rankit plot, used in regression
diagnostics for linear models, may be applied.
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Fig. 8.30—Plot II (residuals vs. the independent variable x): (a) detection of an outlier, (b)

detection of a trend in residuals, (c) detection of sign changes, (d) detection of a false model,

(e) detection of heteroscedasticity, and (f) detection of an abrupt shift in level of the
experiment.
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8.6.4.2 Statistical analysis of residuals
The plots that have been recommended in the previous sections are visual techniques
for easy checking of some of the basic assumptions of the least-squares method and
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of the proposed model. Certain statistics provide a numerical measure for some of
the discrepancies previously described.

In many regression programs used in the chemical laboratory, the statistical
analysis of residuals represents the main diagnostic tool used to search for the “best”
model when more than one are possible or proposed. The goodness-of-fit test analyses
the set of residual and examines the following criteria.

(1) The arithmetic mean of residuals known as the residual bias, E(€), should be
equal to zero.

(2) The mean of the absolute values of residuals, |e|, and the square-root of the
residual variance (the estimate of the residual standard deviation), s(é), should both
be of the same magnitude as the (instrumental) error of the dependent variable
(observation, measured quantity y), Sing(y), i.€. [é] & Sins(y) and s(€) = Sina(¥).

(3) The residual skewness, g,(é), for a Gaussian normal distribution should be
equal to zero.

(4) The residual kurtosis, g,(é), for a Gaussian normal distribution should be
equal to 3.

(5) The residual variance is calculated from the residual sum of squares
62 = Ub)/(n — m).

(6) The coefficient of determination, D?, is calculated from:

U(b)

D*=1- (8.179)

(yi — }7)2

M=

i=1

n
where j = (1/n) ). y;. The coefficient of determination is equal to the square of the
i=1
correlation coeflicient, for linear models.
(7} In chemometrics, we often use the Hamilton R-factor:

R = Ub) (8.180)

Y v?

i

When j = 0, R2 = 1 — D?, so Eq. (8.180) may be expressed as

R= \/(1 —Dz)—% (8.181)

The Hamilton R-factor illustrates the difference between the two models, y = f(x, f)
and y = 0. This rule is not correct for models with intercept terms and the values of
the Hamilton R-factor are incorrectly low. It should be noted that D* and the
R-factor are continuous functions of the number of parameters. D? is an increasing
function of the number of parameters, whereas the R-factor is decreasing function of
this number. Therefore, both of these statistics are unsuitable as resolution diagnostics
for comparing models with different numbers of parameters.

(8) To distinguish between models, the Akaike information criterion, AIC, is more
suitable:
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AIC = —L(b) + 2m (8.182)

The “best” model is considered to be that for which this criterion reaches a minimum
value. For least-squares models and models that do not belong to the same class,
the AIC criterion may be expressed as

AIC =n x In [—@] +2m (8.183)
n—m

It should be noted that the diagnostic use of classical residuals is not rigorous but
rather approximate. Classical residuals do not have zero mean, they are biased and
they are a linear combination of errors &. Moreover, they depend on the true values
of parameters p*, and these are unknown. Therefore, it has been suggested [58] that
the projections of residuals are used, because this partly limits all these disadvantages.
Lyoness [63] proposed various approximate expressions for the determination of
different types of residuals for nonlinear models, for example, Jack-knife residuals,
recursive residuals and partial residuals, with applications similar to those for linear
models.

For more objective examination of residuals, all the statistical regression diagnostics
for linear models may also be used for nonlinear models. A difficulty may arise from
the distributions of some test criteria, which are affected by the nonlinearity of the
model. Some of the test criteria are derived from a general criterion

T =

p.q

M=

e Lf(xi, b)) (8.184)

i=1

As for linear regression models, the following conditions should be met:
(@) The test criterion T; ; should be approximately equal to zero since

& f(xi,b)=0

A high value of T; , indicates a false minimum or a false model.

(b) The test criterion T, ; indicates heteroscedasticity.

(¢) The test criterion T, , indicates that a false model has been proposed.

(d) The test criterion T, , should be approximately equal to zero. From Eq.
(8.154) it follows that the mean of the residuals E(&) is not equal to zero. Therefore:

n q
Tio=n Z [di - Z Pikdk]
i=1 k=1
Expressions for the variance and covariance matrix have been proposed [60].

The predictive ability of a proposed model may be examined by the mean quadratic
error of prediction, defined by

MEP = % Zn:l (yi — f(xs, b(i))2 (8.185)

The one-step approximation b{;), defined by Eq. (8.188), may be used instead of the
parameter estimate, b;,. The lower the values of MEP, the better the predictive ability
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of the proposed model.
The correctness of the proposed model can be examined by the White test [67].
The coefficient C, defined as

- 0f(xi,b)  Of(xi,b)| , U
X é; (8.186)

C=(n-1

P A "

should be equal to zero for a correct model only. The test procedure calculates
(m(m + 1)/2 — n) variables, and

Of(xi, B)  Of(xi B)
W = X 8.187
8 B, (8187
for s =1, ..., m (m + 1)/2. The test criterion represents the correlation coefficient of

regression of the variable é* on the vector of variables w. In the case of a correct
model, this test criterion has the y3_,(m(n + 1)/2) distribution.

8.6.4.3 Identification of influential points

For linear regression models (Chapter 6), all characteristics which aid the identification
of influential points are functions of residuals é; and diagonal elements H;; of the
projection matrix, H = X(X"X) 'X". Some diagnostics of influential points use
estimate by, calculated from all points except the ith one. For linear regression
models, the estimate by, is easily obtained from information on the matrix X"X™*
and quantities é; and H;;.

For nonlinear regression models, the situation is rather more complicated as the
parameter estimates and residuals cannot be expressed simply as a linear combination
of experimental data. When a Taylor-type linearization of the original nonlinear
model is used, all methods for identification of influential points in linear models can
be used. This starts with a one-step approximation of the parameter estimate

¢

by = b — ()i 5

(8.188)

where P; are elements of the projection matrix [Eq. (8.68)]. With the use of Eq.
(8.188), the test criterion DFS;; may be written as

1
b —bjy

DESy == vi

(8.189)
This criterion expresses the influence of the ith point on the estimate of the jth
parameter. Quality, §%,, is the variance estimate calculated when the ith point is
omitted, i.e.

42

el
a2 U(b) B 1-P ii

s.=
® n—m-—1

(8.190)

The symbol V;;, in Eq. (8.189), denotes elements of the matrix V = (J*J)~*. Applying
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the DFS;; criterion, the ith point is considered to be influential if DSF;; > 2/\/ n.
Influential points may be identified readily on the basis of a one-step approximation
of the Jack-knife residuals é;; expressed as,

é

— S (8.191)
f(i) 1 - Pii

€ =

To express the influence of individual points on parameter estimates, the quadratic
expansion of a regression model may be used. Often an examination of either the
changes of the vector of bias with the omission of the ith point, h;,, or changes of
the mean value of the ith residual with the ith point omitted, is suitable [66].

A nonlinear measure of the influence of the ith point on the parameter estimates
is represented by the likelihood distance,

LD; = 2[In L(b) — In L(b,)] (8.192)

In the case of least-squares, the likelihood distance is expressed by

LD;=nxIn [%J (8.193)

In Eqgs. (8.192) and (8.193), the estimates by, calculated by nonlinear regression, when
the ith point was left out, or the one-step approximation b{;, of parameter estimates
may be used. When LD; > x}_(2), the ith point is said to be strongly influential. The
significance level, a, is usually chosen as 0.05.

Some diagnostics for identification of influential points were compared [66], and
the following conclusions were reached.

(a) Influential points affect not only the parameter estimates but also the relative
bias hg, which is rather sensitive to the presence of influential points.

(b) Diagnostics based on linearization or quadratic expansion of a nonlinear model
do not always indicate the presence of influential points. They are not suitable
for strongly nonlinear models.

(c) The best identification of influential points is given by the likelihood distance
LD;. In some cases, groups of influential points can cause masking effects.

(d) For practical calculations, the approximation of LDS; is sufficient when the
quantity b{; from Eq. (8.188) is used in Eq. (8.185) instead of bg).

Problem 8.22. Identification of influential points in the dependence of the activity of
sea-weed on temperature

Determine the influential points in the data in Problem 8.15. Calculate the mean
values of residuals E(e;), the Jack-knife residuals é;; and the likelihood distance LD,
and LDS;.

Data: from Problem 8.15
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Table 8.8. The mean values of residuals and other
measures of influential points for the data in Problem

8.15
Point E; ey LDS; LD;

1 0.61 0.81 1.05 0.277
2 0.304 0.34 0.82 0.085
3 —0.661 —0.63 1.99 0.376
4 —0.343 —0.35 0.98 0.121
5 0.745 0.89 1.22 475
6 —-0.419 -0.89 0.93 136

7 0.181 0415 0.0216 1968

Solution: Diagnostics for the identification of influential points are listed in Table
8.8.

Conclusion: When the diagnostics for identification of influential points are compared,
only the nonlinear measure LD, lead to a conclusion that two points, 6 and 7, are
strongly influential, because they control the decreasing part of the curve. The other
diagnostics do not indicate obviously influential points. The mean values of residuals
E; show their bias directly.

8.7 PROCEDURE FOR BUILDING AND TESTING A NONLINEAR
MODEL

The quality of a proposed nonlinear model is examined in the same way as for linear
models, using the following criteria:

(1) The quality of parameter estimates

The quality of parameter estimates obtained is considered according to their
confidence intervals or their variances D(b;). The empirical rule that is often used is
that a parameter is considered to be significant when its estimate is greater than 3
standard deviations, ie. 3\/D(b;) < |b;|. High parameter variances are often caused
either by termination of the minimization process before a minimum is reached, by
inaccuracy of determination of matrix J, or high nonlinearity of the regression model.

(2) The quality of the curve fitting

Agreement of the proposed model with the experimental data is examined by the
goodness-of-fit test based on the statistical analysis of residuals. The following
statistical characteristics for a set of classical residuals are calculated: from the residual
square-sum U(b) reached at a minimum, the estimate of residual variance &% and
estimates of the determination coefficient D?, the regression rabat 100D*[%], the
arithmetic mean of the residuals E(é), the mean of the absolute values of the residuals
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le], the mean of the relative residuals &, the residual standard deviation s(é), the
residual skewness g,(é), the residual kurtosis g,(¢), and the Pearson y2-test of
normality of the residual distribution are carried out. In addition, the four test criteria
Ti,1, T4, Ty » and T o are calculated, for more objective residual analysis.

(3) The predictive ability of the proposed model

The predictive ability of a model is classified by the following procedure. Data are
divided into two groups, M, with indices i = 1, ..., int(n/2) and M, with indices
i =int(n/2) + 1, ..., n. Estimates of the parameters are calculated from points in the
subgroup M, as b(M, ). The predictive ability of the model is expressed by

U(b)
Y [y =S, B(M3)12 + Y Lyi — f(xi, B(M,)T?

ieM{ ieM,

K= (8.194)

The predictive ability of the model is higher as the criterion, K, tends towards a
value of 1.

The mean quadratic error of prediction MEP (8.185) is then calculated. The lower
the value of MEP, the better the predictive ability of the proposed model.

(4) The quality of the experimental data

For the examination of the quality of the experimental data, influential points are
identified by regression diagnostics. The most important diagnostics are the likelihood
distances LD; and LDS;. The test criterion DFS;; and the mean value of each residual
E(é;) are also useful.

(5) The correctness of the model proposed
The White test calculates the coefficient C to prove that proposed model is correct.
Some other tests of accuracy of the proposed model have been proposed [68].

(6) The physical meaning of parameter estimates

In chemometrics models, there are often restrictions from the physical meaning of
the parameters. For example, concentrations or molar absorptivities must be positive
numbers.

8.8 ADDITIONAL PROBLEMS

Problem 8.23. Estimation of the parameters of the extended Debye—Hiickel equation
Estimate the thermodynamic dissociation constant pK?, the effective ion-size
parameter d and the salting-out parameter C from the dependence of the mixed
dissociation constant pK, on the ionic strength, according to the extended Debye—
Hiickel law [65]. The dissociation HL? = L~V 4+ H™ is described by the thermo-
dynamic dissociation constant

T __ (z—1/,2z
K, =ay+ag /afiL
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or the mixed dissociation constant
K, = ag+[L¢~V]/[HL].

If the two ions L@~V and HL? have roughly the same ion-size d (in 10~ '° m) and
the overall salting out coefficient is C = Cf§;: — Cf=-1, then the extended Debye—
Hiickel law is expressed in the form

pK.;=pK] — Al L \_/Iiz) +CI (8.192)
+ Bd i

where pK,; is the dependent variable, I; is the independent variable; pK?, d¢ and C
are three unknown parameters to be estimated; and two known numerical constants
are A = 0.5112mol " 2112K32, B = 3.291 x 10'° mol~/2m~*1*/2K*/2 for aqueous
solution at 298.16K. We assume an additive model of measurements, and normality
of errors of the dependent variable pK,. The independent variable I, has a significantly
smaller experimental error.

Data: 20 points of the dependence, pK, = f(I) were generated for pre-selected
parameters pKT = 5.000, ¢ = 0.45 and C = 0.300 and an instrumental error of the
dependent variable of s;,,(pK,) = 0.005. The simulated data set {I, pK,} is:

I 0.01 0.04 0.09 0.16 0.25 0.36 0.49
pK, 4.8646 47752 47019 4.6661 4.6407 4.6145 4.6084

0.64 0.81 1.00 1.21 1.44 1.69 1.96
4.6318 4.6484 4.6726 47179 4.7769 4.8213 4.8896

225 2.56 2.89 3.24 3.61 4.00
49522 50424 5.1242 52178 53129 54196

Solution: With initial guesses of parameters (pKT )@ = 1,(d)® = 0, C¥ = 1, the sum of
squares U(b'?) = 325.7. With MINOPT, a minimum is reached at U(b) = 4.95 x 10™%,
The best values of the parameter estimates b, their half lengths of confidence interval
A; [Eq. (8.170)] and Ay ; [Eq. (8.172)] and the relative bias of parameter estimates
hg ; are given in Table 8.9.

Table 8.9. Estimates of the parameters of the Debye—Hiickel
law with their statistical characteristics

Parameter  Estimate, b; A; Agj hy j» %o

pK} 4997 0.0073 00106  —0.0002
a 0.452 0.0167  0.0245 0.0174
c 0.299 0.0051  0.0075 0.0036

Since the bias of the parameter estimates is very small, the confidence intervals of
the parameters are obtained either from the linearization b; + A; or b; + Ag ;.
The residual standard deviation, 6 = 0.0054, is close to the instrumental error




Sec. 8.8] Additional problems 297

Sinst(PK ) = 0.005. Good curve-fitting of the calculated regression curve through the
points is evident from the high value of the regression rabat, D = 99.96%, and the
low values of the Hamilton R-factor, R = 0.13%, the mean of the absolute residuals
E(é) = 0.0042 and the mean of relative residuals R(éz) = 0.087%. The correlation
matrix of parameter estimates shows some correlation between d and pK? or 4 and
C, as shown in Table 8.10.

Table 8.10. Correlation matrix of par-
ameter estimates.

pKT d C
pKT 1 084 0.612
a 1 —0.92
C 1

Conclusion: Because of the high precision of the data [s;,.(pK,) = 0.005], the
asymptotic expression coming from the linearization of the model function may be
used in statistical analysis.

Problem 8.24. Estimation of dissociation constants of two overlapping protonation
equilibria by analysis of the A—pH graph

Estimate three dissociation constants and four molar absorptivities for a dissociating
acid, H;L, by regression analysis of the A—pH curve [65, 91].

Data: The absorbance-pH graph for 4.18 x 107°M 3-CAPAZOXS was measured
at 470 nm in a cuvette of length 1.000 cm by a glass electrode—SCE cell (59.16 mV/pH
slope) at 25°C. The additive measurement model and normality of errors are assumed.
The measured values of pH and absorbance, A are:

pH 1.565 1.750 1.817 2,000 2058 2224 2500 2.550
A 0.660 0.666 0.653 0640 0631 0593 0547 2530

2750 2788 2956 3.000 3.185 3250 3364 3.518
0483 0471 0428 0420 0382 0366 0350 0.327

3772 4000 4082 4369 4872 5569 6266 6.691
0295 0273 0272 0257 0245 0238 0232 0222

6.750 7056 7295 7.500 7.740 8.000 8072 8250
0220 0205 0192 0180 0.164 0155 0153 0.147

8464 8915 9316  9.855
0.144 0.140 0.140 0.140

Solution: At different pH values, four species L3~, HL?~, H,L~ and H;L exist in an
aqueous solution of 3-CAPAZOXS, and can be described by the following mixed
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dissociation constants

aH+[L3_]

Ky =——_2

4™ [HL*7]
aH+[HL2—]
K,=""%*-""—_2

27 [H,L7]

and

_aH+[H2L_]

Kes =""r,11

When all four species absorb light at a given wavelength, the absorbance 4 in a
cuvette of length d cm is expressed by

J
s 2 PK,;—jpH
e+ Y .sH}.L10'=1 |
A =dcy,; =1 f |
3 Z pKa,i —J pH {‘
1+ Y 107!
ji=1

where ¢y, is the analytical concentration of 3-CAPAZOXS and the parameters
estimated are pK,y, pKuz, PKas, €1, &ups &u,1 and ey, (the charges on the ions are
omitted for the sake of simplicity).

0.7 ==

A

0.5

0.3

0.1

Fig. 8.31—Absorbance—pH graph for 3-CAPAZOXS.

With the initial guess of parameters of pK.Y = 7.3, pK(3 = 3.3, pK{3 = 2.55,
e® = 3300, &) = 5800, &) = 9800, &7} = 16800, the sum of squares reaches a
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minimum value of U(b®) = 5.04 x 10~*. By the least-squares method MINOPT, a
minimum value of U(b)=3.95 x 10™* was found. The estimates of the seven
parameters with their half lengths of the 95% confidence interval [Egs. (8.170), (8.171)
and (8.172)] and the relative bias of parameters are listed in Table 8.11.

Table 8.11. Estimates of seven parameters and their statistical characteristics

Half-length of confidence interval by

hR,'
Parameter  Estimate Eq. (8.170) Eq. (8.171) Eq. (8.172) "oj
& 3290 89 153 177 —041
ey 5731 126 177 249 —0.61
EH,L 7154 1754 3471 3471 —6.84
&y 16702 152 237 300 —0.25
plé,,l 7.338 0.101 0.124 0.199 0.33
pK,, 3.925 0.765 1.502 1.513 8.20
pK.s 2.720 0.111 0.214 0.219 1.36

It can be seen that the estimates of ¢y, , pK,, and pK,; are significantly biased.
For identification of any mutual linear association between estimates of individual
parameters, the correlation matrix of estimates was calculated.

éL EHL &H,L 8H3L pK., pPK.; PK.3

&L 1 0229 0.102 0.025 —-0.609 —-0.115 —0.086
&L 1 0469 0.120 —0.681 —0.528 —0.401
EH,L 1 0.522 -0309 —-0992 —0976
8H,L 1 —0.077 —-0476 —0.659
pK.,; 1 0.349 0.263
pK.» 1 0.950
pKa3 1

A strong correlation exists between the following pairs of parameters: &y, and pK,,,
ey, and pK,; and pK,, and pK,;.

The ratio of the maximum eigenvalue, with a value 4,,,, = 5408 x 10'°, and the
minimum eigenvalue, A, = 2.195, of the matrix (JTJ) ™%, is Apay/Amin = 2.5 % 101,
which implies very bad conditioning in the model.

Figure 8.32 illustrates the dependence of the sensitivity function Cj;),j=1,..., 3,
on pH. It is clear that three out of the seven parameters i.c. en,1, PK,> and pK,s,
are strongly ill-conditioned in the model and therefore their estimation is rather
uncertain.

Although three parameters are ill-conditioned, the model closely resembles the
experimental data. This is obvious from the A-pH curve fitting with the 95%
confidence intervals (Fig. 8.33).

The goodness-of-fit is proved by the low value of the residual standard deviation
s(4) = 0.037, which is close to the instrumental error of the spectrophotometer used,
Sinst(4) = 0.003, at 470 nm, and regression rabat D = 99.96% with the Hamilton
R-factor = 0.83%.
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Fig. 8.32—The sensitivity function for the three chosen parameters ey,1, PK,; and pK,;
proves their ill-conditioning in the model.
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Fig. 8.33—Regression curve for A-pH with the 95% confidence interval.

Conclusion: Even ill-conditioned models can from a numerical point-of-view (good-
ness-of-fit of the regression curve through experimental points) be quite acceptable.
The ill-conditioning of the three parameters ey,;, pK,, and pK,; is caused by
overlapping of the protonation steps, H;L =H,L~ =HL?",
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Problem 8.25. Estimation of parameters of the Freundlich adsorption isotherm

The relationship between the equilibrium amount of sodium hydroxide, y, g,
adsorbed on an active carbon and the concentration of NaOH, x, mmol dm ~3, was
investigated. The additive model and normality of errors are assumed. For adsorption,
the model proposed is the Freundlich adsorption isotherm

y = pyxP2

Estimate the two parameters, 8, and f,, and their correlation coefficient.
Data:n=16

x 774 3813 1848 8724 431 20.46
y 26.0 19.2 150 116 7.74 5.0

Solution: From the initial guesses of parameters b{® = 1, b{?’ = 0.1 and the sum of
squares U(b?) = 1212, the minimum U(b) = 2.072 was found. The parameter
estimates with their half-lengths of the 95% confidence interval A ;(8.170), Ag ; (8.172)
and the relative bias hg ;, % are given in Table 8.12.

Table 8.12. Estimates of the parameters of the Freundlich
adsorption isotherm with their statistical characteristics

Parameter  Estimate A; Ag,j hg.j, %
N 1.724 0.568 0.766 0.534
B, 0.4084 0.0552  0.0744 0.0572

Good agreement of the model with the experimental data is evident from the high
value of the regression rabat D = 99.3%, the mean of absolute residuals E(&) = 0.498,
the mean of relative residuals E(eg) = 5.44% and the residual standard deviation
s(y) = 0.72. The correlation coefficient, R,,, between B8, and B,, is —0.988. This
implies a strong correlation, so it is not possible to make an interpretation of the
two parameters separately.

Figure 8.34 shows the course of the regression curve through the experimental
points, together with the 95% confidence interval. The 95% confidence ellipsoid of
parameters f; and f, is shown in Fig. 8.35. Some regression diagnostics for
identification of influential points such as Jack-knife residuals é;, likelihood distance
LD and LDS are listed in Table 8.13. Two suspicious points are discovered, 4 and 6.
Conclusion: The Freundlich adsorption isotherm fits the experimental data. For the
small number of points, it is difficult to decide whether point 4 is an outlier or not.

Problem 8.26. Change of estimates of parameters of the Freundlich isotherm after
correction of one outlier in data

Point 4 of the measured data in Problem 8.25 is an outlier and the true value is
11.16 g instead of 11.60 g. Find out whether the change in one point causes any
significant change in the parameter estimates and their statistical characteristics.
Data: from Problem 8.25
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Fig. 8.34—Model of the Freundlich adsorption isotherm, together with the 95% confidence
interval.
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Fig. 8.35—Simultaneous 95% confidence interval for parameters f, and §,.

Solution: The residual sum-of-squares is U(b) = 1.422. Parameter estimates with their
half-length of the 95% confidence interval A; (8.170), Ag ; (8.172) and the relative bias
hg j, % are given in Table 8.14.

The confidence intervals are narrower and the parameter bias is smaller. The fitting
of the regression curve through experimental points is better than in Problem 8.25.
The residual standard deviation s(y) = 0.596, the regression rabat D = 99.53%, the

RN



Sec. 8.8] Additional problems 303

Table 8.13. Regression diagnostics indi-
cating influential points (* means a sus-
picious point)

Point & LD LDS

1 —0.258 0.051 0.015
2 -0.73 0.028 0.013
3 3.34 0.50 0.016
4 1.308*  0.036* 0.26*
5 —0.62 0.024 0.012
6 1.72* 0.53* 0.23*

Table 8.14. Estimates of the parameters of the Freund-
lich adsorption isotherm with their statistical character-
istics after correction of one outlier

Parameter  Estimate A; Ag; hgj %
B 1.669 046 0.62 0.374
B2 0414 0046  0.062 0.0397

mean absolute residual E | = 0.417 and the mean relative residual E(&g) = 4.54%.
The curve shape, the confidence interval and the parameter estimates are nearly the
same as in Problem 8.25. The regression diagnostics é;, and LD, for influential points,
are given in Table 8.15. The value of é, does not indicate any influential point in this
case.

Table 8.15. Regression diag-
nostics for influential points

Point éy; LD,
1 —0.00528  0.095
2 —0.0189 0.028
3 0.0518 0.102
4 0.074 0.144
S —0.0304 0.019
6 -0.21 0.81

Conclusion: The correction of one outlier caused a significant change in the statistical
characteristics.
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