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Glossary

FREQUENTLY USED STATISTICAL TERMS AND DIAGNOSTIC TOOLS OF
DATA PROCESSING IN CHEMOMETRICS

The following statistical terms and diagnostic tools are frequently used in computer-
assisted data treatment in chemometrics. They are explained in this textbook in detail,
and will be used throughout the book.

Absolute error. The difference between the true and measured values of the signal.
Abstract factors. The first (significant) eigenvectors of the data matrix, generally
without a scaling procedure.

Accuracy. The agreement between an experimentally determined value and the
accepted reference value. In chemical work this term is frequently used to express
freedom from bias, but in other fields it assumes a broader meaning as a joint index
of precision and bias.

Additive systematic error. Arises from imperfect or incorrect zero-point reading on
an instrument.

AFA reproduced data matrix. The data matrix reproduced without the noise from
the non-significant components or abstract factors.

Analytical signal. Physical quantity measured instrumentally, and characterized by
the signal magnitude and the signal position.

Autoscaling. Column centring followed by column standardization.

Bar chart (G13). A graphical representation of a grouped frequency distribution in
which all the elements in a given group are represented by the same value.
Barycentre. See Centroid.

Batch of data. A set of values of similar meaning, such as a set of measurements.
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Bias. A constant or systematic deviation as opposed to a random error. It appears
as a persistent plus or minus deviation of the method average from the accepted
reference value.

Bootstrap method. Distribution-free statistical technique based on generation of
Bootstrap samples and their analysis.

Box-and-whisker plot (G4). A box from the lower to upper quartile, barred at the
median, with ‘whisker’ to (a) the extremes, (b) the innermost identified values, (c)
adjacent values.

Centroid. A row vector with the values of the average of the variables.

Cluster. Group of objects (or variables) with relatively high similarity.

Clustering. A procedure to detect well-separated clusters of objects (or variables).
Coefficient of variation (C.V.) or Relative standard deviation is a measure of relative
variability; defined as the standard deviation divided by the mean and multiplied by
100 [%].

Column centring. The subtraction of the mean of the variable from each column of
a data matrix. The transformed variable has a mean of zero.

Column profiles. The division of the quantities in a data matrix by the column sum.
Column range scaling. Each element of a data matrix has subtracted from it the
minimum of the corresponding variable, and is divided by the range of the variable.
The transformed variable has a minimum value of zero and a maximum of one.
Column simplicity. The variance of the squares of the elements in a column of a matrix.
Column standardization. The division of each element in a data matrix by the column
standard deviation (standard deviation of the variable).

Communality of a variable. The sum of the square of the loadings. It is 1 when the
sum is computed over all the eigenvectors in the matrix of loadings.

Components. The eigenvectors of the data matrix, generally after autoscaling or range
scaling. :
Confidence interval or confidence limits. These terms (usually expressed as a percentage;
P% confidence limit), refer to that interval or range of values which will with a
probability of P/100 include the population parameter.

Confidence level. This term (usually expressed as a percentage; e.g., 95% confidence
level), is commonly used in establishing the probability of precision statements, and
means that there are, for example, 95 in 100 chances of being correct, and 5 in 100
chances of being wrong, in predicting that the population parameter will fall within
the specified limits or range.

Confirmatory data analysis. Stresses evaluating the available evidence.

Correlation coefficient. A measure of the degree of linear dependence between two
variables. It is equal to the covariance divided by the square root of the product of
the variances of the two variables. It can take values between — 1 and + 1.
Covariance. A measure of the joint dispersion of two variables in the same series of
objects. It is the sum of the products of the individual deviations of the first variable
from its mean and the deviation of the second variable from its mean, divided by the
number of degrees of freedom (generally the number of objects minus one).
D-value. A letter value at depth (1 + d)/2, where d is the integer part of the depth of
an E value; crudely, a sixteenth.
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Data matrix. A rectangular organization of quantities in rows and columns. Each
row is a data vector (see Object) and each column is a column vector (see Variable).
Degrees of freedom (D.F.) Generally equal to the number of observations minus the
number of parameters calculated from it. For example, variance is the average squared
deviation about the mean of n observations. The variance can be calculated only
after the mean has been calculated and this uses up one degree of freedom. No other
parameters are necessary to estimate the variance. Hence, the estimate of the variance
has (n — 1) degrees of freedom.

Depth. Lesser of upward rank and downward rank.

Differential guantile plot (G9). A comparison of the actual distribution with the normal
one on the basis of quantile comparison.

Distribution function. A function describing the statistical behaviour of a random
variable. On the y-axis are the cumulative probabilities corresponding to the value
on the x-axis.

Dot diagram (G2). Univariate projection of the quantile plot onto the x-axis.
Double centring. Column centring followed by row centring, or row centring followed
by column centring.

E-value. A letter value at depth (1 + ¢)/2, where e is the integer part of the depth of
a quartile; crudely an eighth, sometimes called one.

Eigenvalues. The variances in the space of the eigenvectors.

Eigenvector rotation. An orthogonal rotation (generally around the centroid) in
Q-space (or R-space) that produces new variables, by linear combination of the
original variables. In the space of the new variables (eigenvectors) the variance-
covariance matrix is a diagonal matrix (covariances are zero). The eigenvectors are
numbered in order of decreasing variance (eigenvalue).

Ensemble. See universe or population.

Error. Any deviation of an observed value from the true value. When expressed as a
percentage of the value measured, it is called a relative error. Types of error include
instrumental errors, methodology errors, theoretical errors and data-treatment errors.
Another criterion classifies errors as (1) systematic errors, (2) random errors, (3)
personal errors, and (4) gross errors.

Error of the first kind. In hypothesis testing, this error is caused by false rejection of
the hypothesis when it is true.

Error of the second kind. In hypothesis testing this error is caused by not rejecting
the hypothesis when it is false.

Examining for independence of sample elements. Confirmatory data analysis tests for
poor stability of measurement equipment, inconstancy of the conditions of measure-
ments, neglect of some measurement factors, and false and non-random choice of
measurements in a sample.

Examining for minimum sample size. Confirmatory data analysis searches for
minimum samples size.

Examining for homogeneity of sample. Confirmatory data analysis searches for outliers
or clusters in sample.

Examining for normality of sample distribution. Confirmatory data analysis tests the
normality of the sample distribution.
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Exploratory data analysis. This provides the first contact with the data and serves to
uncover unexpected departures from familiar models. It emphasizes flexible searching
for clues and evidence.

Exponential distribution. This is a distribution of a random variable bounded on one
side. There are one-parameter exponential distributions, and two-parameter exponen-
tial distributions.

Extreme. The highest or lowest value of a batch. Since it has a depth of 1, it is often
labelled “17.

Fisher weights. Weights for classification problems, proportional to the ratio between
the intercategory variance and the intracategory variance.

Frequency polygon (G13). A graphical representation of grouped frequency distribu-
tion, with points joined by straight lines to form an open polygon.

Frequency ratio plot (G17). Used for distinguishing among various types of discrete
distributions.

Global centring. The subtraction from all the elements in a data matrix of the
generalized average of the elements.

Global standardization. The division of each element in a data matrix by the overall
standard deviation (standard deviation of the elements of the matrix around the
generalized average of the matrix).

H-value. A letter value, a quartile, a value with depth (1 + h), where h is the integer
part of the depth of the median; crudely, a quartile.

Heterogeneity of a cluster. The sum of the squares of the distance of the objects from
the barycentre of the cluster.

Hinge. A letter value corresponding to a quartile.

Histogram (G13). The oldest classical representation of grouped frequency distribu-
tions.

Hypothesis (or statistical hypothesis). An assumption made concerning a parameter
to provide the basis for a statistical test; usually expressed as a null hypothesis H,
or as an alternative hypothesis H ,. It is a statement about the population distribution
of some random variable.

Interval estimation. The interval which contains, with some pre-selected probability,
the population parameter (obviously of location, scale or shape).

Interquantile range. The quantile estimate of spread.

Jack-knife method. Distribution-free technique which uses the pseudovalues y; defined
byyy=nx0—(n-1)x @U, where 5(,.) is the estimate used from all elements except
the ith one. For large samples the pseudovalues y are assumed to be approximately
normally distributed.

Jittered-dot diagram. A univariate projection of a quantile plot.

Kernel estimation of probability density function (G12). A smooth nonparametric
estimate of probability density, based on kernel function.

Kurtosis. A measure of shape characterizing the peakedness of a distribution and its
tail length.

Kurtosis plot (G8). This indicates the asymmetry of a distribution.

Laplace Distribution. A symmetric two-tailed exponential distribution with higher
kurtosis than normal.
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Letter value. One of the values tagged ..., M, H,(or F)E, D, C, B, A, Z, Y, X, ...,
where the depth of each letter is half the depth of the next letter value, starting from
M for median and ending with 1 (the depth of an extreme).

Limiting error of an instrument. The highest possible error which, under given
experimental conditions, is not overcome by any other random errors.

Loadings. The scalars in the M-square (M is number of variables) orthogonal rotation
matrix used in eigenvector rotation. These are the cosines of the angles between the
original variables and the eigenvectors.

Location. The characteristic of a random distribution that measures the position of
the distribution on the x-axis.

Log-normal distribution. The logarithmic transformation of the normal distribution.
A two-parameter log-normal distribution and a three-parameter log-normal distribu-
tion can be distinguished.

M-estimator. This robust estimator represents the maximum likelihood estimate of
a population parameter for some special distributions.

M-value. A letter value, the median.

Mahalanobis distance. A statistical distance taking into account the variance of each
variable and the correlation coefficients. In the case of a single variable, it is the
square of the distance (between two objects, or between an object and the centroid)
divided by the variance.

Mean. The arithmetic average of a series of measurements.

Mean error. The limiting error of measurement for the 50% probability level.
Median of sample. For samples with odd numbers of items, the median is the middle
item when the items are arranged in order of magnitude. For samples with an even
number of items, the median is the arithmetic average of the two middle items when
they are arranged in order of magnitude. The median is an estimate of the location
and has a depth of (1 + n)/2, where there are n values in the batch.

Midsam. The most efficient estimate of location for the rectangular distribution.
Midsum plot (G6). Indicates symmetry of sample distribution.

Mode or Modus. The local maximum on the probability density function.

Modified Poisson plot (G19). A plot for examination of the Poisson distribution for
data sample.

Modified rankit plot (G16). A plot for examination of the normality of a sample
distribution.

Monte-Carlo simulation method for error propagation. The method for calculation of
propagation of errors when the probability distribution is replaced by the Monte-
Carlo simulation.

Multiplicative systematic error. An error which depends on the value of measured
signal.

Normal distribution. The most common symmetrical distribution with probability
density in the form of a Gaussian curve. Normality is assumed in classical statistical
methods.

Notched box-and-whisker plot (G5). An analogue of the box-and-whisker plot G4,
that allows examination the variability of the median.

5-number summary. Values of extremes, hinges, and median; values of IHMHI.
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7-number summary. Values of IEHMHE].

9-number summary. Values of IDEHMHED1.

Object. A sample (or molecule, individual, reaction, process, etc.) described by one
or more measured or computed quantities (variables). These quantities constitute a
row vector (or data vector).

Observation. A value that was measured experimentally.

Order statistic. When the sample values x,, ..., x, are sorted in order of ascending
magnitude, the order statistics x;, < x,, < ... < X, are obtained. The order statistic
X 1s the ith smallest sample value.

Qutlier. A value in a set of observations which is so different from the rest that it is
considered to be a member of another set or population.

Parameter of a population. The unknown ‘true’ value for the population distribution,
such as the mean and the variance.

Pivot halfsum. For small samples, a robust estimate of parameter of location.

Pivot range. For small samples, a robust estimate of parameter of spread.

Plot of logarithm of likelihood function (G21). Searches for suitable power data
transformation.

Poisson distribution. This discrete distribution relates to the number of events that
occur per given interval of time or space when the events occur randomly in time or
space at a certain average rate.

Point estimation. A single-value estimate of a population parameter computed from
a sample.

Population. Same as universe or ensemble.

Power of statistical test. Represents the probability of making a correct decision when
the hypothesis is actually wrong.

Precision. The degree of agreement between repeated measurements of the same
property. There are various types of precision such as:

Duplicability: the agreement between duplicate or other multiple determinations
performed by the same analyst at essentially the same time.

Repeatability: the precision of a method expressed as the agreement attainable
between independent determinations performed by a single analyst using the same
apparatus and techniques on more than one day.

Reproducibility: the precision of a method expressed as the agreement attainable
between determinations performed in different laboratories.

Principal components (PC). The components with high eigenvalues. These account
for the useful information and predictive ability.

Probability interval for random error. The interval in which the random error ¢ lies
with a preselected probability.

Poisson plot (G18). A plot to distinguish whether the actual distribution is of Poisson
nature.

Propagation of absolute errors. An approximate expression for calculation of the
overall variance when various operations are performed and each is loaded by some
absolute error.

Propagation of relative errors. An approximate expression for calculation of relative
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overall variance when various operations are performed and each is loaded by some
relative error.

Q-space. An M-dimensional space (M is number of variables) described by M cartesian
co-ordinates. Each point in this space describes an object.

Quantile or percentile of sample. The value below which P,% of the sample lies. The
order statistic x; is quantile X Xp, where P, is the order probablllty P, =if(n + 1).
Quantile plot (G1). This allows determlnatlon of the shape of a sample distribution,
which can be symmetrical, or skewed to higher or lower values.

Quantile-box plot (G10). A universal tool for examination of statistical features of data.
Quantile—quantile plot (Q—Q plot, G14). This allows comparison of the sample
distribution described by the empirical quantile function Q with the selected
theoretical quantile function Q.

R-space. An I-dimensional space (I is number of objects) described by I cartesian
co-ordinates. Each point in this space describes a variable.

Random error. The chance variation encountered in all experimental work despite
the closest possible control of all variables. It is characterized by the random
occurrence of both positive and negative deviations from the true value.

Range. The absolute value of the algebraic difference between the highest and lowest
values in a set of data.

Range scaling. See Column range scaling.

Rank. Ordinal number corresponding to the position of a value when values are
sorting into decreasing (rank up) or increasing (rank down) order.

Rank-and-depth technique. This is used for estimation of letter value.

Rankit plot or normal-probability plot (G15). This allows comparison of the actual
sample distribution with the normal one, by use of quantile functions.

Real factors. These contrast with the abstract, mathematical, factors. They are found
by linear combination of the original variables, and they have physical significance.
Real factors can be obtained by orthogonal or oblique rotation in the space of the
abstract factors.

Rectangular distribution. A symmetrical distribution of random variable with a lower
kurtosis than the normal distribution. It describes e.g. a distribution of errors caused
by rounding-off to k decimal places.

Re-expressed statistics. After calculation of statistics for transformed data, these
statistics are re-expressed to refer to the original data. As a rough approximation,
the re-expressed statistics represent a straight reverse transformation xg = g~ '(y).
More rigorously, re-expressed statistics can be calculated by the Taylor series of the
function y = g(x).

Residual. The difference between an actual data point, and the value calculated from
the statistical model (fit).

Response. Variable, or the value of a variable, as it is 1nﬂuenced by (or associated
with) certain factors or circumstances.

Relative error. See coefficient of variation.

Relative standard deviation. See coeflicient of variation.

Rootogram (G13). The square-root re-expression of a histogram.
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Row centring. The subtraction from the rows of a data matrix of the row mean.
Row profiles. The transformation of a data vector by division by the row sum. The
row sum of the transformed quantities is 1.

Row simplicity. The variance of the squares of the elements in a row of a matrix.
Row standardization. The division of each element in a data matrix by the row standard
deviation (standard deviation of the object).

Sampling. Impartial selection of sample to ensure that it is representative.

Scores. The co-ordinates in the space of the eigenvectors.

Selection nomogram (G20). A diagnostic tool which searches for a suitable data
transformation.

Shape parameters. Measures of shape peculiarities of probability density functions.
Similarity. An inverse measure of distance. The similarity between two objects is given
by one minus the ratio between their distance and the maximum distance among the
objects in the data matrix. The similarity between two variables is defined similarly.
Skewness. Measure of shape characterizing symmetry or asymmetry of the distribution.
Sorting. The process of putting a set of numbers into order.

Spread or scale or variability or scatter. The degree of variability of the measured
quantity.

Square row profiles. The division of the quantities in a data matrix by the square root
of the row sum of squares. The row sum of squares of the transformed quantities is
equal to one.

Statistic or statistical characteristic. An estimate of a parameter.

Standard deviation. A measure of the dispersion of a series of results around their
mean, expressed as the square root of the variance.

Stem-and-leaf display (G11). A generalized two-digit display, in which the left hand
portion of the values displayed is given by a stem value, and the right hand portion
makes up a leaf.

Test criterion or significance criterion. Hypothesis testing consists of comparing some
statistical measures which are called test or significance criteria. These measures are
deduced from a data sample and are compared with the values of these criteria that
would apply on the assumption that a given hypothesis is correct.

Tolerance interval for random error. The interval that contains P% of all errors with
statistical certainty (1 — a).

Transformation of data. Correct data transformation leads to a symmetrical distribu-
tion, stabilizes the variance and makes the distribution closer to normal.

Trimmed mean. A simple, efficient, robust estimate of location defined with the use
of order statistics. We may distinguish the symmetric trimmed mean, and for
asymmetric and strongly skewed distributions, the asymmetric trimmed mean.
Two-points estimate. The method of calculation of propagation of errors used when
the probability distribution is replaced by the two-points distribution with the same
mean and variance.

Two-way analysis of variances (ANOVA). Analysis of one response according to two
kinds of circumstances.

Universe or population or ensemble. Statistical reasoning employs the concept of a
sample of observations drawn at random from a universe of all possible events. A
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universe is generally characterized by a probability function with one or more
parameters, such as a mean and a variance. A finite sample can give only estimates
of these parameters.

Variable. A measured or computed quantity. The series of values of the same variable
measured for several objects constitutes a column vector.

Variance. A measure of the dispersion (or spread) of a random variable around a
mean. Given by the sum of the squares of the individual deviations from the mean
of the results, divided by the number of results minus one.

Variance about the origin. A measure of the dispersion of a series of results around
the origin (the value zero). It is the sum of the squares of the quantities in the series
divided by the number of results.

Variance—covariance matrix. An M-square matrix (M is the number of variables). The
scalar in the column m’ of row m (on the diagonal of the matrix) is the variance of
the mth variable. The scalar in the column m of the row m is the covariance of the
variables m and m'.

Weights. The multiplying coefficients for the autoscaled (generally) variables, required
to give to each variable an appropriate importance. Weights can be obtained from
the error in the measurement of the variance, or from the ability of the variable to
solve classification or correlation problems.
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Errors in instrumental measurements

Opbservations and experiments constitute the basis of all natural science. Observations
and experiments that provide numbers—the results of measurements—are of special
significance. A correct analysis of these observations leads to a theoretical interpre-
tation of the results and to the final goal of natural science, namely, the establishment
of laws that make possible the prediction of the future behaviour of the phenomena.
The analysis of observations refers to operations on numbers that are obtained directly
from observations. However, to develop a theory on the basis of computation of
quantities that are not directly observed but that are derived from the analysis of
observations, it is necessary to use various mathematical devices.

Chemistry, physics and other sciences deal with many quantities, some of which
are purely physical (time, mass, volume, temperature, electrical parameters). Others
are physical-chemical (pH, potential, viscosity), and some are connected with the
chemical composition of the system. A description of the chemical composition
requires the determination of a number of quantitative characteristics, the concen-
trations of the components.

A specialized analytical chemistry subsystem is necessary in every branch of
chemical research, to obtain data on chemical compositions. This subsystem consists
of the following operations:

(1) Sample preparation and treatment, including operations that are mostly carried
out outside the laboratory, to ensure that the sample is representative.

(2) Sample preparation for the measurement, including sample decomposition,
separation operations, procedures defining the chemical substance, and also the
actual instrumental measurement. In instrumental methods, there is an attempt
to combine operations necessary for forming a measurable quantity with the
actual measuring operation.
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(3) The measurement corresponds to monitoring of the analytical signal (or often
only the signal or measurement).

The analytical signal usually corresponds to a physical quantity and is measured
instrumentally. Two characteristics of the signal can be distinguished; the signal
magnitude (e. g., radiation intensity at a given wavelength) and the signal position
(e.g., wavelength). In identification analysis, the signal position is decisive, and its
determination assumes a certain minimal size; in quantitative analysis, on the other
hand, the signal magnitude is decisive.

The magnitude of the signal, S, is in general a function of the concentration of the
test component, the analyte, A, M, L, H, ... etc., and also of variable x; which can
be the reagent volumes, temperature, etc.; S = f(A, M, L, H; x,). The analytical method
is characterized by its sensitivity, defined as the derivative of the signal with respect
to the concentration of the test component

5]
oA M.L.H.x,

where parameters M, L, H, and variables x; are kept constant so that the signal can
be considered to be a function of a single variable 4. The corresponding dependence
S = f(A) is then termed the single calibration function.

Since all measurements of analytical signals in the chemical laboratory contain
errors from a range of origins, the results of calculation with the numbers corre-
sponding to these also contain errors. It is very important to be able to estimate both
the errors incurred in making the measurements, and the errors resulting from
operations on those measurements. Both the signal measurements and the calculations
must be organised in such a way as to minimize the errors in the results.

Among the errors of analytical signals a conspicuous place is occupied by random
errors; that is, errors with values that cannot be estimated before the signal
measurements. We might also note that they cannot be evaluated even after
observations, since the presence of random errors makes it impossible for us to
determine the exact value of the analytical signal measured. The analysis of analytical
signals containing random errors utilizes the theory of probability, which is also
necessary in statistical work. The measured analytical signal is treated according to
the following rules.

(1) There is always a limit to the precision of measurements. Even results obtained
with the best instrumental precision and experimental care are not precise, but
have approximate values.

(2) Only some of physical quantities can be measured directly, i.e., length, mass, and
time intervals. Most other quantities are measured indirectly. The relationship
between the analytical signal and the analyte concentration is derived from a
mathematical relationship and yields a mathematical model. The measured
results are approximate values, so the calculated analyte content must also be
an approximate value.
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(3) The arithmetic mean of repeated measurements corresponds to an estimate of
the true value of the measured quantity; however, the true value remains
unknown.

(4) Finding empirical model functions is the first step in finding more basic
relationships. In addition to the test quantities, the model also contains unknown
parameters that are estimated from the experimental data by regression methods.

This course of chemometrics begins with basic principles of statistical data treatment
and theory of errors [1], so that the student may become familiar with the system
of notation and terminology.

1.1 TYPES OF MEASUREMENT ERROR

The results of laboratory measurements of analytical signals are always approximate.
Therefore, all measurements contain errors of various origin. It is customary to classify
these errors according to their source in the measurement process into four types.

(1) Instrumental errors are caused by the construction of instrument used and are
usually known and specified by the instrument manufacturer.

(2) Methodology errors are caused by use of an inappropriate method. Examples
are inappropriate data acquisition, interference by some external effects, faulty
strategy of experimentation, etc.

(3) Theoretical errors are caused by the use of a false principle of measurement or
inappropriate physical model, etc.

(4) Data treatment errors are caused by inappropriate numerical methods of data
evaluation or statistical data treatment.

Another way to classify errors is according to their effect on the evaluation of the
results. Again, there are four types.

(1) Systematic errors. The most important systematic errors are instrumental errors
which are a result of incorrect instrumental settings, constant distortions, insufficient
chemical purity, and imperfect standardization and calibration.

Additive systematic errors (fixed bias errors) arise from simple instrumental errors
such as taking an imperfect or wrong zero point reading. As a result of such an error,
all signal measurements are distorted by the same amount, which may be positive
or negative.

The multiplicative systematic error (relative bias, an error of sensitivity) depends
in some definite way on other quantities, in particular, on the measured signal itself.
Systematic instrumental errors must be investigated and eliminated from the results
of measurements.

(2) Random errors. Experiment has shown that successive measurements of a single
fixed quantity, made with the greatest possible care, give different numerical values
even after all the known systematic errors are allowed for. This shows that many
causes have an effect on the results of measurements—causes for which we cannot
make allowance. A whole series of similar random causes may produce deviations
from an exact value. In each case, the deviation is slight: otherwise it would be noticed
and investigated. However, the total effects of all these causes can yield significant
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deviations. The theory of errors usually refers to the theory of random errors. For
the construction of such a theory, the nature of random errors suggests the application
of probability theory.

(3) Personal errors. The results of measurements depend to some degree on the
physical peculiarities of the observer (under otherwise equal conditions). For example,
in recording the instant of a phenomenon, one observer may regularly notice a
phenomenon somewhat sooner than another. Repeated study of the personal errors
of different observations has shown that these errors can be both systematic and
random. Some amount of personal error is associated with an observer, and this
error should be considered to be systematic and taken into consideration in the
analysis of observations. Often observations can be made to determine the personal
error, and the results of these observations are analysed in much the same way as
for random errors, in order to obtain their average value.

(4) Gross errors. In the analysis of observations, we need to allow for the possibility
of blunders or external influences that cause completely inaccurate results. One of
the simplest of these will be for an observer to read 20.0 and write down 30.0, for
example. The presence of gross errors is detected by the fact that in a succession of
comparatively close results only one or only a few values will differ appreciably from
the general level of values: that is, these results stand out. If the discrepancy is great
enough for us to be sure that it is result of an error, the signal measurement can be
disregarded.

Let us suppose that a certain signal quantity has a definite numerical value p that
remains unchanged during the entire process of signal measurement. Let us suppose
also that the repeated measurement made of this signal quantity yields the values x;,
i=1,..., n. The difference between the exact and each actual value of signal

A=x—p (1.1)

is called the absolute error. This definition is convenient in that the concept of an
absolute error coincides with the concept of a criterion since x; = u + A;; that is, the
absolute error is the number that must be added to the exact value u in order to
obtain the approximate number Xx,.
When no gross errors are present in a set of n repeated observations, the average
value
A= A,

i

(1.2)

SR
M=

i=1
represents the systematic error found in observations and the difference A — A, is the
estimate of random error.

1.2 PRECISION AND ACCURACY OF INSTRUMENTAL
MEASUREMENTS

In instrumental metrology [3] the terms accuracy and precision are considered as
characteristics of the measuring process. Accuracy refers to the typical ‘closeness of
n measurement results x;, (or their average X) to the true value y’ while precision
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refers to the typical ‘closeness of n measurement results x;, together’ for the
conceptually large population size n of results that might have been, or could be,
obtained. When measurements of the same quantity are repeated, the dispersion of
the results can be seen by examining the data. A set of data that shows little variation
may be said to have greater precision than a set of data showing larger variation.
It is instructive to distinguish between random errors and systematic errors, and
between precision and accuracy, in some cases typical of different measurement
processes. Figure 1.1 shows four drawings, each of which depicts a distribution of
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Fig. 1.1—Classification of repeated measurements: (a) accurate and precise, (b) accurate but not precise,
(c) not accurate but precise, and (d) not accurate and not precise.

measurements x;. In case (a) each of the observations x; is relatively close to the true
value u (accurate) and each other (precise). In case (b) the individual observations do
not have good accuracy, but their mean x would be reasonably accurate. The precision
is relatively poor as indicated by the wide spread of data. In case (c), none of the
observations is relatively close to the true value u. The observations are close together
and it can be said that the measurement process is precise but not accurate. Here
the distinction between accuracy and precision is quite clear. In case (d), although
one of the observations happens to be near the true value, the accuracy exhibited by
most of the individual measurements is relatively poor, the accuracy exhibited by the
mean of the set is relatively poor, and the precision of the set is relatively poor.

Only in case (a) can the measurement process be called accurate. In case (b) the
accuracy can be improved by improving the precision. In case (c) the accuracy of the
measurement process can be improved by correcting the systematic error, and in case
(d) both factors need to be improved.

1.2.1 Absolute and relative errors
The calibration of an instrument requires that for known values of the input quantity
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x; (e.g., the concentration of hydrogen ions, [H*], in solution), the corresponding
values of the output analytical signal y; (e.g., the em.f. of a glass electrode cell) are
measured. Repeated signal measurements are made for each of several values of x;,
so that the dependence y = f(x) can be found. An approximate graphical interpretation
shows the uncertainty band in the plot. (Fig. 1.2).

The middle curve in the uncertainty band is called the nominal characteristic y,
(or x,,m) and it is usually declared by the manufacturer of instrument. The nominal
characteristic y,., (or x,,.) differs from the real characteristic y,,, or x,., by the
error of the instrument, A* =y, ., — y,.... For any selected y the error due to the
instrumentis A = x_.,; — X,om- LWe will use errors A which are in units of measurement
quantities (e.g. pH)].

y y
14
nom Ynom “Yiaom
X X X
A
A =0
)
A
A 6s'X‘l
o
X X4 x X4 X

Fig. 1.2--The uncertainty band and three types of instrumental errors: (a) additive, (b) multiplicative, and
(¢) combined error.

The absolute error of signal measurement A is not convenient for expressing an
instrument’s precision because it is given in the specific units of the instrument used.
More convenient is the relative error defined by

0=100 x A/x [%] (1.3)
or the reduced relative error defined by

Sg = 100 x A/(x,,, — X ) = 100 x A/R  [%] (1.4)

max

where R is the range of measurements.

The limiting error of an instrument, A, (absolute) or d, (relative) is, under given
experimental conditions, the highest possible error which is not obscured by any
other random errors.
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The reduced limiting error of an instrument, J, , (relative) for the actual value of
measured variable x; and given experimental conditions is defined by the ratio of the
limiting error A, and the highest value of instrumental range R, d,x = A,/R. Often,
the reduced limiting error is given as a percentage of the instrument range, [see Eq.
(1.5)]. :

From the shape of the uncertainty band, various types of measurement errors can
be identified, whence some corrections for their elimination may be suggested.

(a) Absolute measurement errors of an instrument are limited for the whole signal
range by the constant limiting error A, that corresponds to the additive errors model.
The systematic additive error is a result of incorrect setting of an instrument’s zero
point. However, nowadays instruments contain an automatic correction for zero and
so systematic additive errors rarely appear.

(b) The magnitude of absolute measurement errors grows with the value of input
quantity x and for x = 0, it is A = 0. This is a case of the multiplicative errors model.
Such errors are called errors of instrument sensitivity. Systematic multiplicative errors
are caused by defects of the instrument.

Real instruments have errors that include both types of effects, and are expressed
by a nonlinear function y = f{x).

Problem 1.1 Absolute and relative error of a pH-meter

A glass electrode for pH measurement has a resistance of 500 MQ at 25°C, and the
input impedence of the pH meteris 2 x 10'' Q. Estimate the absolute (A,) and relative
{6,) error of e.m.f. measurement when the voltage measured is U = 0.624 V.
Solution: U, = 06242 x 10'" +5 x 10%)/2 x 10'") = 0.6254V; A, =

0.6254 — 0.624 = 0.0016 V; 3, = 100 x 0.0016 / 0.624 = 0.25%
Conclusion: The absolute error is 1.6 mV and the relative error 0.25%.

1.2.2 Classification of instrument precision

To express some metrological properties of the instruments the limiting errors of
measurement are used. These upper bounds of error will seldom be exceeded, and
they also express the class of an instrument precision.

The class of instrument precision is an important precision parameter of an
instrument. It describes the highest absolute value of reduced limiting errors found
under given experimental conditions for the whole range of the instrument. To express
the class of instrument precision for additive, multiplicative and combined errors, the
following limiting errors are used:

(1) For the additive errors model, the class of an instrument precision J, is equal
to the limiting reduced relative error o,y defined by

Sor = 100 x Ay/(x ) =100 x Ag/R [%] (1.5)

max — *min
where R is the instrument range. The relative error § decreases hyperbolically with
increasing value of x. The sensitivity limit x_ is the input value x for which the limiting
absolute error A, is equal to x_, i.e. Ay = x, or d(x,) = 100%. When the class of
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instrument precision d, and the range R are known, the sensitivity limit can instead
be calculated from

X, = 8y x R/100 (1.6)

To ensure that the relative error of the instrument is sufficiently low, the lower
limit of the working interval x, is defined such that the relative error is kept equal
to p (%), usually 4% or 10%. The lower limit of the working interval is defined as

x, = 100 A,/p = 100 x,/p (1.7

When instrument errors are additive, the range of use is limited to the region of low
values of the input quantity x.

(2) In the case of the multiplicative errors model, the class of instrument precision
0, is expressed by the relative error of sensitivity calculated by

5, =100 x Ay/x [%] (1.8)
s [0)

and reaches a constant value in a limited range of instrument scale; this will be
declared by the instrument manufacturer.

(3) In the case of the combined errors model, the absolute error A may be written
as a sum of additive A, and multiplicative d_x parts by the expression

A=Ay +dx (1.9)

The combined uncertainty band is then formed by addition of the two separate
uncertainty bands. The limiting reduced relative error expressed by

Sor = 0o + 6, X X/R (1.10)

grows monotonically with increasing x. The growth of J,y starts later for larger
values of the ratio 9,/0,. To express the level of instrument precision in this case two
quantities are used:

(a) the reduced relative error d,,
(b) the relative error at the upper limit of the measurement scale J, expressed by

g = 0o + 0, (1.11)

Instruments can be classified according to the level of precision in the series: 6%,
4%, 2.5%, 1.5%, 1.0%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, 0.01%, 0.005%, 0.002%,
0.001%, with the error type indicated by J, (for a multiplicative error), 4, (for an
additive error) or /0, (for a combined error), as follows.

(1) For pure multiplicative errors the level of instrument precision is expressed by
the relative error of the sensitivity J,, and is usually written as the number in a
circle, e.g. d, = 1.5% is written {3

(2) For pure additive errors the level of instrument precision is expressed by the
reduced relative error 4, and R = x,_,, is the upper end of the scale range
Xpmaxwhen x. =0, e.g., g = 1.5% is written 1.5.
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(3) When the instrument has a strongly nonlinear scale the level of instrument
precision is expressed by a relative error and the associated scale range
R = X_,. — Xmins €& \5/, 10 means 6, = 1.5% and R = 10.

(4) For combined multiplicative and additive errors the level of instrument precision
is expressed by the ratio d,/d,, e.g., 1.5/1 means dx = 1.5% and §, = 1%.

On the basis of the instrument precision it is possible to compute the maximum
deviation hkely to be caused by instrumental error (Table 1.1).

Table 1.1—Relative and absolute errors of an instrument expressed for the actual measured quantity x
and the level of instrument precision p or p,/p,

Type of Class of  Scale Relative Absolute
error precision  range error J (%) error A
.. xmax
Additive p 0 X/ X) p X x,../100
‘(min =
N PAX may — Xpmin) P(Xmax = Xpmin)
x 100
Multiplicative X max
@ p p x x/100
Xmin = 0
Combined pi/ps Xmin =0 Py P2 X Xpu/X) — Py
Xenax Pi X X 4 polXpay — X)
100

Problem 1.2 Determination of ammeter precision

If an ammeter with range R = 60 mA gives a mean reading x = 49.6 mA when the
true value of the electric current is 50mA, what is the level of precision? Use the
limiting absolute error and the limiting reduced relative error. Also calculate the
sensitivity limit.

Solution: Ay = 50.0 — 49.6 = 0.4mA

0o = 100 x 0.4/60 = 0.67% rounded off to the nearest larger value in the series of
allowed values of instrument precision, i.e. 1%; [(Eq. (1.5)]

x, = 0.67 x (60/100) = 0.402 mA [(Eq. (1.6)]
Conclusion: The class of instrument precision is 1% and the sensitivity limit 0.402 mA.

Problem 1.3  Limiting and reduced values of errors for ammeter

The manufacturer claims the following data for the ammeter: 2, R = 60 mA meaning
that 6, g = 2%, x,,;, = 0 and x,,,, = 60 mA. Estimate the limiting absotute error A,
the reduced relative error at x,, , i.e. do(x,,,,) and the reduced relative error at x
i.e. 0g(Xmin) for this instrument.

Solution: Ay, =2 x (60/100) = 1.2mA;

dolx

max min>

min) = 00 for x = 0mA;
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So(Xomay) = 2 (60/60) = 2% for X, = 60mA.

max)

Conclusion: The relative error is not useful for expressing the error in a value close
to zero. The minimum value for the reduced relative error is equal to the instrument
precision, i.e. here 2%.

Problem 1.4 Determination of level of voltmeter precision

Determine the precision p for a voltmeter with a range from x;, = 0to x,,,,, = 40mV
and for which it is known that the error is a combination of additive and multiplicative
errors. It was found that for x = 10mV, §, x(10) = 2%, and for 40 mV, 3, z(40) = 5.2%
so that dx = 5.2%.

Solution: Since oy = 5.2%, 0, can be calculated from Egs. (1.10) and (1.11), i.e.
dp =(0gp(x) — 0¢ x x/R)/(! —x/R) where R =x_,, — Xpn,=40. Therefore
0y = 0.93%. The value ¢ is rounded off to the nearest higher value in the series of
instrument precision, i.e. 6%, and then d, to 1%.

Conclusion: The voltmeter precision, expressed by the ratio d,/d,, 1s numerically
equal to 6/1.

1.2.3 Estimating rounding errors
In practice, limiting relative error is very frequently expressed implicitly by reporting
only the number of significant figures that are known with certainty in an approximate
number.

Suppose that a positive approximate number contains s definitely known digits.
Then, its decimal expansion is of the form

a=n, x 100 +n, x 100" + ... +n, x 107

where n,, n,, ..., n, are digits in the decimal representation with n; # 0. The integers
r and p (with r > p) and the positive integer s are related by r — p =5 — L.

Suppose that the number a is obtained on rounding off. Then, ¢, = 10?/2, and from
the definition of limiting relative error we have 5, = 107/2a. In the expression for J,
the number a is replaced by its decimal expansion, keeping only the first term:

8, < 107/2n, x 107) = 10'~* x 10/2n,.

Here s is the number of significant digits in the approximate number and n, is the
first digit of the number. We should note that in accordance with the formula obtained,
the limiting relative error depends only on the number of known digits and n,, and
not on the position of the decimal point.

To get an approximate value for the relative error, we may take the average value
of the first digit; that is, we may set n, = 5. Then, J, < 10™* here has the value
8, < 1071, so the limiting relative error of a number with one definitely known digit
is a number of the order of ten percent. For a number with two definitely known
digits, it is one percent; for three, it is 0.1 percent, etc. We should note that in many
applied problems, a limiting relative error of the order of a tenth of a percent is
sufficient. The calculations in such problems can be made with three significant figures.
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We have just determined the limiting relative error from the number of digits
known. It is easy to solve the inverse problem too, namely, how many digits are
required for a given limiting relative error. Suppose we need to find a value for s to
make 8, = 107% From formula:

107° x 10/2n, < 1079, 107 < 10° x 2n,/10; 10° > 10¢ x 10/2n,

If we replace n, with the average number 5 (n, can take any integral value between
1 and 9), we get 10° > 107 and s = q. Consequently, on average, the number of known
digits must be equal to the absolute value of the power of 10 in the value of ,. For
example, if we need J, to have a value around one percent, the number must have
no fewer than two definitely known digits.

To obtain a better estimate than the average, we begin with the decimal expansion
of the number a:

n+1)x10>az=n x 10
and hence
8, =10 x 107%/[2(n, + 1)]

if a is an approximate number obtained on rounding off. If we want 5, = 1079, we
need a value for s such that §, will be less than §,; that is

10° > 1097 1/[2(n, + 1)]

For the necessary number of known digits, we need to take the smallest integer s
that satisfies this inequality. We can get something like the average value if we take
n, =4. Then, s = q.

We can make a simple rule: if the first digit does not exceed 3, the number of
known digits must exceed by 1 the absolute value of the power of 10 in the given
relative error. In other cases, these numbers are equal. The value of 0 for ¢ = 0 and
n, =4 to 9 means that there will be a 100% error if we do not know a single digit
in the number for certain but only that the first digit is less than 4. To see this,
suppose that the exact value of a one-digit number is 5. If an error of 100% is allowed
for the number, the absolute value of the error can attain the value of 5 and the
approximate number can have any value from 0 to 10; that is, the first digit will not
be known.

1.2.4 Decomposition of measurement error

The precision of instruments is expressed by the absolute error of the instrument A, __,,
which represents the first part of decomposed absolute error of the signal, Ay. The
second part of the signal error is the variability of measured material A,,, the square
of which is proportional to the variance 6. When the two parts of the error are
uncorrelated, the decomposition of signal error A, may be expressed by the equation

Ay = /ALy + Ay (1.12)
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(1) With the most precise instrument, the smallest error of signal A, will be
controlled by the material error Ay, alone, so that A, « Ay. The precision of the
signal can be increased by making a greater number of repeated signal measurements n.
(2) For an instrument with error A, &~ Ay/3, the signal error A, will be only

slightly higher than for a very precise instrument.
(3) For an instrument with A, ~ Ay, the error of the signal will be Ay, ~ 1.4 A,.

For n repeated signal measurements, the error of signal A, will be decreased by ﬁ,
and consequently the random part of the instrument error A, will also decrease.

(4) For an instrument with A; > Ay, the error of signal measurement A, will
be proportional to the instrument error A, ., ie. Ay =~ A,,. Repeated signal
measurement cannot bring any improvement in the precision of the signal. An
improvement of signal measurement is possible only with the use of a more precise
instrument.

It may be concluded that a suitable choice of instrument is one with an error A,
equal to A_/3 or less.

1.3 MODELS OF SIGNAL MEASUREMENT

Statistical analysis of errors involves the statistical treatment of repeated measure-
ments of the analytical signal S. One of the following models of signal measurement
is assumed.

(1) The additive model of signal measurement is the simplest one; the ith measured
observation of the analytical signal is expressed by equation

X;=p+ ¢ (1.13)
where ¢; represents the ith random error. It is obviously assumed that random errors
have a mean of zero, constant variance and are not correlated. This model corresponds
to the non-random signal i, measured by an instrument that causes only random
errors of measurement, ¢;; and the vanability due to the material is equal to zero,
Ay =0.

The additive model describes a measurement of a random signal variable £ by its
realizations x;, with an ideally precise instrument for which A, , =0. Here u
corresponds to the mean value.

A realistic approach involves a random variable ¢ with a probability density function
J:, measured by an instrument which introduces errors ¢ with a probability density
fimctionfv. For an additive model of signal measurement [Eq. (1.13)] the probability
density function f, of the measured signal variable x, may be expressed as

X

Jdx) = J Jdx — &) x f(e) de (1.14)

It may be concluded that

inst

(a) if f, is a probability density function with normal distribution N(u, a?), and f, is
a probability density function with normal distribution N(0, t2), the probability
density function f, will then also have a normal distribution, given by N{(u,
6% + t2);
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(b) by convolution of some unimodal symmetric distributions the bimodal distribu-
tion may be formed;

(c) if the variance of an instrument 2 is not constant, even for a normal distribution
offé, the distribution of results is rather complicated.

(2) The multiplicative model of signal measurement supposes that the errors have
the following effect:

x; = p X exp(e;) (1.15)

where error ¢; has the same properties as in the previous model. The variable In x,
has a distribution with mean In ¢ and variance ¢2. The variance of the measured
quantities x; is given by
6%(x) = x2 x g? (1.16a)
and the corresponding relative error by
X)) =o0(x)/x =0 (1.16b)

For the multiplicative model, the relative error is constant. When random errors ¢,
have a normal distribution, the measured (signal) variables x; have a log-normal
distribution.

(3) In the model with a systematic error, the measurement includes a systematic
error of the instrument. The simplest model of this type is expressed by

X;=u+e+a (1.17)

where a is the constant systematic error of an instrument. If measurements are made
at only one signal level (i.e., level of y) it is not possible to determine the systematic
error a. If n replicate signal measurements x are made at each of several different
signal levels u;, j =1, ..., m, the resulting model

X;=p+e;+a (1.18)

may be examined by one-way analysis of variance (Chapter 4). This model assumes that

(1) the mean error &; of repeated measurements is equal to zero;
(2) the variance of errors is constant;

(3) errors of repeated measurements are not correlated,

(4) errors at different levels y; are also not correlated [5].

To analyse a set of measurements it is necessary to know the error distribution.
Distribution determination needs a rather large number of signal measurements. We
will consider four main types of error distribution; these are illustrated in Fig. 1.3.

(1) The rectangular distribution occurs when measurements have errors that are
formed by rounding off the numbers.

(2) The normal distribution is observed for signal measurements when the errors ¢
result from a sum of partial errors and the measurements were performed at
constant variance.
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Fig. 1.3- -Selected distributions of random errors: (a) normal, (b) Laplace, (c) rectangular, and (d) log-normal.

(3) The Laplace (two-tailed exponential) distribution is observed for signal measure-
ments when the variance of measurements oscillates around a mean value.

(4) The log-normal distribution is observed for signal measurements when the errors
¢ result as a product of elemental errors. Measurements must be positive and
performed at constant relative error (coefficient of variation).

When the error distribution is bounded by some finite interval (e.g., as for a
rectangular distribution) the limiting error of measurement may be calculated as half
of the bounding interval. Because there is a need for exact expressions of error &,
various quantile and moment estimates of random errors are used.
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14 QUANTILE ESTIMATES OF MEASUREMENT ERRORS

One of the measures of the spread of a random variable ¢ is the interquantile deviation
K, _, which defines an interval containing 100(1 — )% of all random errors

Ky =Xy _g2 — Xy2)/2 (1.19a)

1—a

The x, denote the quantile of the given random variable (here errors). Suppose that
the errors ¢ have a mean of zero. On the base of the K, _,, the 100P = 100(1 — %)%
estimate of the limiting error of measurement is expressed by

Ap=K,_, (1.19b)

Outside the interval (—Ap, +Ap) there will be 100(1 — P)% of all the errors. To
calculate the estimate of a limiting error of measurement, g, , the following quantities
should be chosen. F

(1) For P = 0.5 (or 50%), the limiting error of measurement is called the mean
error o, .. For a normal distribution it is expressed by

Orps = 0.680(x) (1.20)

(2) For P = 0.683 (or 68.3%), the limiting error of measurement is called the
probable error Oag 689" For a normal distribution it is calculated by

Oag 650 = a(x) (1.21)

(3) For P =0.9 (or 90%), the limiting error of measurement is given, for various
symmetric distributions [4], by

Oppo = 1.650(x) (1.22)
The choice of P = 0.9 (or 90%) is convenient in cases where the error distribution is
unknown. When some limiting errors of measurement Ay, ;,i = 1, ..., n,are known,

the total error of a sum of quantile (limiting) errors of measurements A, , 1 may be
calculated as

Tag0.7 ™ i=zl vV 620.9,i (1.23)

For other values of P, Eq. (1.23) is not valid.

(4) Generally, when errors have a normal distribution, the limiting error of
measurement may be expressed with use of the 100(1 + P)/2 percentage quantile of
the standardized normal distribution u, , p,, by using the expression

Opp = U +py2 X 0(X) (1.24)
whereas for other distributions A, is expressed by
Oap = h x a(x) (1.25)

where the quantile 4 is a function of P and of the kurtosis g,. The quantile h may
be expressed by the equation [4]

h =162 [3.8(g, — 1.6)**)? (1.26)
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Fig. 1.4—Geometric interpretation of various quantile estimates of instrumental error: the numbers relate
to the area under the probability density curve.

where Z = log {log[1/(1 — P)]}, for values P chosen in the interval 0.9 <P < 0.99.
The kurtosis for the normal distribution is {g, = 3), for the rectangular distribution
it is (g, = 1.8) and for the Laplace distribution it is (g, = 6).

(5) For estimation of quantile estimates of errors (Fig. 1.4) the quantiles X, and
X, _p may be applied. The sample values x, x,, ..., x, (Where x; is now the ith error
of measurement) are first of all arranged in increasing order of magnitude so that
smallest is x,), the next smallest x,,, ..., and the largest x,,. The data now form the
set of order statistics. The order statistics divide the x-axis into (n + 1) intervals of
the same probability P, = 1/(n + 1) of occurrence of the random variable x. Therefore,
it is not possible from the data set of size n to determine quantiles of any value of
statistical certainty 0 < P < 1. The minimum size of a data set for a reliable
determination of the 100P% quantile (without x;, and x,) is calculated from

N > 4/(1 — P) (1.27)

For example, for P = 0.9 it is necessary to have a minimum of n,,;,, = 4/(1 — 0.9) = 40
measurements. If the error distribution is normal, the limiting error of measurement
0, May be calculated for size n < 30 as

O, = tn — 1) x s/\/n (1.28)

where ¢,(n — 1) is the a = (1 + P)/2 quantile of the Student distribution and s is the
sample standard deviation (Chapter 3.1). Quantile errors can not be directly added
but some approximate expressions can be used [4].

Problem 1.5 Quantile estimate of limiting error for two different distributions
From preliminary experiments, the variance of the signal measurement of the
instrument was found to be ¢ = 0.5. Find quantiles estimates of the 95% limiting
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error g, for measurements having (a) a normal distribution or errors, and (b) a
rectangu(i'ar distribution of errors.

Data: 6* = 0.5

Program: Chemstat: Basic Statistics: One sample analysis

Solution: Equation (1.25) is used for estimation of the limiting quantile error of
measurement, o, ., and Eq. (1.26) for h, with Z = 1.14287. For (a) a normal
distribution g, = 3, and therefore h = 1.936 and Tpy o5 = 0-968; for (b) a rectangular
distribution g, = 1.8, and therefore h = 1.669 and Opy o5 — 0-835.

Conclusion: The error distribution has a great influence on the quantile estimate of
the limiting error of signal measurement: Oa, o5 = 0-968 for a normal distribution,
but for a rectangular it is 0.835.

1.5 SUMMATION OF QUANTILE ESTIMATES OF MEASUREMENT
ERRORS

The total error of measurement is estimated from known partial errors and their
known distributions. Generally, the quantile estimates of limiting error of measure-
ment cannot be added because they contain a quantile that is strongly dependent on
the error distribution [4]. The only exception is for P = 0.9, for which summation
of errors Org 0.1 i=1,...,n can be done by Eq. (1.23).

We limit ourselves to calculating the quantile estimate of the limiting error
aAp(x + y) of two independent and symmetrically distributed random variables x and
y with variance ¢ (x) and o*(y), and with kurtosis g,(x) and g,(y). To calculate
oAP(x + y) the variance of the sum is calculated first

o(x + y) = a%(x) + oX(y) (1.29)
and the kurtosis of the sum [4]

g2(x +y) = g5(x) x p*> + 6p x (1 — p) + g,(y) x (1 — p)? (1.30)
where p is the relative weight of variance defined by

p = o} (x)/a*(x + y) (1.31)

On the basis of known O’AP(X), aAP(y) and g,(x), g,(y) the resulting aAP(x +y)is
calculated as follows.

(1) The parameter k for both kurtosis is calculated from Eq. (1.26).

(2) The estimates of standard deviations o(x) and a(y) are calculated from Eq. (1.25).

(3) The estimates 6*(x + y) and g,(x + y) are calculated from Eqs. (1.29) and (1.30),
and then the estimates of h from Eq. (1.26).

(4) The quantile estimate of the sum of the two errors aAP(x + y) is calculated from
Egs. (1.31), (1.26) and (1.25).

When more than two errors are to be added, the procedure for two errors is repeated.
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Problem 1.6 Summation of quantile estimates of voltage errors

The instrument consists of three blocks. In block' A the errors are distributed
rectangularly with variance 6*(A) = 0.1, in block B the errors have arcsin distribution
with ¢2(B) = 0.05, and in block C the errors have a normal distribution with variance
%(C) = 0.1. Estimate the 95% quantile estimate of the limiting error of measurements,
by addition of all voltage errors, and assuming their independence. The kurtosis of
the three distributions are: g,(A) = 1.8, g,(B) + 1.5 and g,(C) = 3.

Solution: We calculate ¢%(A + B) = ¢%(A) + ¢*(B) = 0.15 and g,(A + B) = 1.88 x
0.66% 4+ 6 x 0.66(1 — 0.66) + 1.5(1 — 0.66)> + 2.299. In the next step the variance
oA + B+ Q) and the kurtosis g,(A+B+ Q) are calculated:
oA + B) + ¢*(C) = 0.25 and g,(A+B+C)=g,(A +B)+ g,(C) =
2.299 x 0.66% + 6 x 0.66(1 — 0.66) + 3(1 — 0.66)> = 2.75. The next step of calcula-
tion estimates h from Eq. (1.26): h = 1.62(3.8(2.75 — 1.6)*/3)!-1428 The resulting 95%
quantile estimate of limiting error of measurement for the three blocks is
Ony o5 = 1907 x {0.25)!/2 = 0.954. If the differences in the error distributions were
neglected an approximately normal distribution of all three block errors were assumed,
the answer would be o, = 1.96 x (0.25)"/? = 0.98.

Conclusion: The result of error summation depends on the distribution of the partial
errors.

1.6 MOMENT ESTIMATES OF MEASUREMENT ERRORS

For an additive model of measurement, x; = u + ¢, the measurement of spread is
represented by the standard deviation which is closely connected with the variability
of the material measured and with all errors of measurement. In the case of a normal
distribution of the measured variable x and of the errors of measurement, the
magnitude of the standard deviation o(x) is equal to the quadratic average of the
signal variance ¢ and the variance of measurement 2, i.e. 0%(x) = 6% + 1.

The standard deviation is a measure of precision and as such gives a measure of
the precision of the location estimate. More information about the variability of a
measured quantity x can be obtained from the intervals within which, with a given
probability, the random errors of measurement exist. Let us limit ourselves to the
case of a random error ¢ with mean equal to zero. When the standard deviation a(x)
of errors in measurement is known, Mandel [6] suggests calculation of the probability
interval for random error &. More frequently, only the sample estimate of the standard
deviation s(x) is known, and then a tolerance interval for random error ¢ is used.

1.6.1 Probability interval for random error

Let us assume a known distribution of errors, given by the distribution function F(x)
or its inverse i.e. the quantile function Q(x) = F~!(x). When the standard deviation
o(x) is also known, it is possible to determine a probability P with which random
errors will lie within an interval +k x o{x), where k is a selected number. If random
errors have a symmetrical distribution with zero mean, this probability is equal to

P=P(—k x o(x) <e <k x a(x)) = F(k x a(x)) — F(—k x a(x))
=1—-2F(—k x a(x))
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where F(k x o(x)) is the value of the distribution function at the point k x o(x). The
interval (—k x a(x), k x o(x)) may be said, colloquially, to “contain a proportion P
of the distribution”, in the sense that, in the long run, a proportion P of repeated
observations of ¢ would lie in the interval. If P is large (say 0.95 or 0.99) we are
“practically certain” that most realizations of ¢ will lie within the probability interval
(—k x a(x), k x a(x)).

When (—k) is a standardized a-quantile Q(x) of the given distribution and k a
standardized (1 — a)-quantile Q,(1 — ) of the distribution, the quantities +k x a(x)
represent non-standardized, original quantiles Q(x) and Q,(1 — «) of error distribution.
Because the quantile function is an inverse function to the distribution one, it follows
that

F[Q@)] =a and F[Q(1 — )] =1—«
and therefore P = 1 — 2. In the interval
Qo) x o{x) < e < Qy(1 — a) X o(x)

lie 100(1 — 2a)% of all errors.

If a normal distribution of errors ¢ is assumed and a standardized quantile of the
normal distribution is denoted as u,, the probability interval for random error may
be estimated as

—o(x) xu, <e<a(x)xu (1.32)

a

In this interval the random errors ¢ lie with probability (1 — 2x). The actual
probability value usually chosen is o = 0.025, so that P, ,,s = 0.95 means that 95%
of normally spread errors lie in the interval — 1.960(x) < ¢ < 1.960(x), and only 2.5%
of all possible random errors will be larger than 1.960(x) and 2.5% smaller that
—1.960(x). When the distribution of errors is unknown, it is recommended to use
thelevel P = 0.90, (or « = 0.05), for which u, 45 = — 1.64. Some unimodal symmetrical
distributions of random errors have 90% of all errors in the probability interval
— 1.640(x) < & < 1.640(x). For an asymmetric distribution of errors this interval
cannot be used.

Problem 1.7 Probability interval for the error of laplace and normal distributions
Estimate the 99% probability interval of measurement error for the Laplace
distribution and also for the normal distribution when o%(x) = 1.

Solution: Within the interval Qu(a) x o(x) <& < Q,(1 — o) x a(x) there will be
100(1 — 22)% of all errors. For the 99% probability interval the « = 0.005 standar-
dized distribution function of Laplace distribution with zero mean and unity variance
has for s < 0 the form

F(x) = 0.5 exp (ﬁs)
The corresponding quantile function Qy(x) for o = 0.005 is equal to Q%) =
In (2oc)/f = — 3.256. Since the distribution is symmetrical, Q (1 — «) = 3.256 and

the 99% probability interval is — 3.256 < ¢ < 3.256. For comparison, the 99%
probability interval for a normal distribution will be calculated. From statistical tables
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we take the value Qg = 0.005) = — 2.575, so the 99% probability interval will be
— 2575 <e<2575.

Conclusion: The Laplace distribution leads to a 99% probability interval significantly
broader than the normal one.

1.6.2 Tolerance interval for random error

In many practical cases the standard deviation o(x) is unknown and can only be
estimated by s(x). In this case we construct the tolerance interval which will contain
100P% of all errors with statistical certainty (1 — «). When the error mean is zero
the tolerance interval for random errors will be

—ky x 8(x) <& < kg x s(x) (1.33)
where k., for a normal distribution of error, is given by

n—1

—Xf(n -0 (1.34)

ky = uiipp

where 2 is the quantile of the y>-distribution. The tolerance intervals are always
broader that the probability ones.

Problem 1.8 Comparison of probability and tolerance intervals

An instrument with a declared standard deviation of signal measurement s(x) = 0.5
was used to make 15 measurements. Estimate the tolerance interval covering 90%
of all measurement errors with a statistical certainty of 1 — « = 0.95. Assume that
the standard deviation o(x) is known and equal to 0.5; then compare the two
probability intervals, and say which is broader.

Solution: From Eq. (1.34), ky = 1.64 /(15 — 1)/6.57 = 2.394. The tolerance interval
is then —1.197 < ¢ < 1.197. For a(x) = 0.5 and P =09 the value u, s is, from
statistical tables, equal to —1.64 and therefore —0.82 < ¢ < 0.82.

Conclusion: The tolerance interval is significantly wider than the probability one.

1.7 PROPAGATION OF ERRORS IN EXPERIMENTAL OPERATIONS

Direct results x; of instrumental measurements in a chemical laboratory are always
approximate, mainly because of the limited accuracy of measuring instruments. Results
of a chemical analysis y are calculated from several measured quantities x, ..., x
by the function y = G{x,, ..., x,,). We will formulate the following steps.

m

(1) the estimation of the results of the chemical analysis, i.e. the mean value y and
variance s%(y);

(2) the estimation of the total error of chemical analysis s(y) from known errors of
several measured quantities, s(x,);

(3) the reverse estimation of limiting errors of measured quantities s(x;) from the
allowed error of the chemical analysis, s(y).
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To express the absolute error of the ith variable x;, the standard deviation s(x,) is
convenient; for the relative error of x; the relative standard deviation (or coefficient
of variation) is used

o(x;) = s(x;)/x; (1.35)

For the first step the estimate of mean X,, variance s*(x;), skewness ¢, ; and kurtosis
g, calculated by the methods described in Chapter 3 are used.

For the second step the expressions for variance s2(y) as a function of individual
variances s(x;) are used. A simplification can be achieved by the use of relative errors.

For the third step the expressions for variance s*(y) or coefficient of variation
o(y) = s(y)/y are used, with an assumption that individual measured quantities x; have
the same relative effects.

To solve all three steps the mean y and its variance s*(y) of a function y = G(x,,

.., X,) must be known. The estimates y and s*(y) may be obtained by any of the
following methods:

(1) Taylor series expansion of the function y = G(x, ..., X,);
(2) two-points estimates;
(3) Monte-Carlo simulation.

Whereas the method of Taylor series requires a knowledge of at least the first and
second derivative of the function y = G(x,, ..., x,), the remaining two methods can
be computer-assisted, and can give more reliable results.

1.7.1 Method of Taylor series expansion

When a function of random variables is analysed, it should be realized that each
non-linear transformation of the random variable distorts its distribution, and
therefore changes the dependence of variance on the mean value. In the case when
the measured variable x has a constant variance ¢(x), the results of analysis y = G(x)
has a non-constant variance

a’(y) = (dg(x)>202(x) (1.36)
X

Moreover, the mean y cannot be estimated by direct substitution of mean X into the
function G(x), i.e.
y # G(X) (1.37)

To estimate the mean ¥, the variance s2(y), and higher moments, the Taylor series
expansion of function G(x) can be used.

Suppose that the function y = G(x,, ..., x,,) is known. Let G(x) be a differentiable
function. On writing the Taylor series expansion in the neighbourhood of the vector
of means X = (X, ...,X,)" we obtain

z 0G(x mo8%G(x
Glx) = o~ Z (2) = %)
i=1 i = X
m—1 m 52G(X)

+2 )

i=1 j>i

S, — X)X — X)) 4 (1.38)
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where all first and second derivatives are calculated for the vector of mean values x.
By using a mean value operator E{(.) at both sides of Eq. (1.38) the expression for the
estimate of mean y may be written as

_ _ 1 ™ 6%2G(x) 5 m-1 m 5G(x)
y = G(X) +3 i; 5 x s3(x;) + 121 Z:l Sxdx, X cov (x;, X)) (1.39)

where 3 = E(y) = E(G(x)), s*(x;) = E[(x; — X;)*] and where E[x; — x;] = 0. The sym-
bol cov(x;, x;) stands for the covariance which give “a measure of linear dependence™
between the two variables x; and x;.

Where the variance s*(y) is determined by an approximation [Eq. (1.38)], higher
moments (i.c., the skewness and kurtosis) are neglected. The resulting approximate
relation for variance is termed the rule of propagation of absolute errors and expressed
by

" [ 6G(x) m-1 m 5G(x) 62G(X)
+ 2 X, X
; |: l } LZI }gl 6A (ij o (x” ‘CJ)
m—1 m 52G(X) , 5
S°(X; s ; 1.40
+ i; ,Z:,- Sx0x, x s%(x;) X §%(x;) (1.40)

The third term of Eq. (1.40) is usually neglected. When the resulting error s(y) is
formed from m sources of errors and each source has its own variance o%(x;), the
following expression for the error estimate can be used[8]

m—1m

x)+2) ) cov( (1.41)

i=1j>i

s*(y) =

\»Ms

i

where cov (x;, x;) again is a measure of the lincar dependence between the two
variables x; and x;. There are two limiting cases of estimation of total error of
measurements, s(y):

(1) the sources of errors are quite independent, so that the covariance cov(x;, x;)} is

equal to zero. The resulting estimate of the error will be proportional only to
the quadratic mean of errors s(x;) coming from m sources,

) = | X sx) (1.42)

(2) the sources of errors are linearly dependent and the covariance cov (x;, x;) is
given by

cov (x;, x;) = 4/s%(x;) x 5%(x;)
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The resulting estimates of the total error will be proportional to the arithmetic
mean of errors s(x;} coming from all m sources

_i s(x;) (1.43)

1
m

For various experimental operations and signal measurements in a chemical
laboratory, the function G(x) can be expressed by a power-type relationship

y=GXx)=x{" x5 ....xpn= M x" (1.44)

i=1

where a; are known coefficients usually equal to + 1. The estimation of the absolute
error s(y) or s%(y) by Eq. (1.40) is then rather complicated. Simplification results from
the logarithmic transformation

In G(x Za x 1n x, (1.45)

i=1
Then

din G _ 1 dG

dx  Gx)© dx (1.46)

Substitution from Eq. (1.46) into Eq. (1.40) and rearrangement leads to a simplified
form for the relative error (variation coefficient)

m m—1 m
)& Y aidix)+2 Y, Y aar;o(x)s(x;) (1.47)
i=1 i=1 j>i

where r;; represents the correlation coefficient expressing the closeness of linear
dependence between variables x; and x;. Equation (1.47) is called the rule of
propagation of relative errors. The quality of the estimates y, s?(y) and 6%(y) is
dependent on the quality of the approximation of the function G(x) by the quadratic
function.

Although the estimate y is normally sufficiently accurate, some inaccuracy may be
found in the estimation s2(y) [9].

Equation (1.47) may be used for estimation of relative errors 8(x;) such that the
relative error of chemical results §(y) will not be greater than the selected value for
H in %, i.e 1004(y) < H. In solving this inversion problem, the independence of the
measured variables x; and the principle of the same relative influence

la,|o(x)) = ]a,|d(x) = . ... =|a,|dx,) = H/m

are assumed. Here a;,i = 1,..., m, are the coefficients of the function G(x) [Eq. (1.44)].
For other types of function G(x) the expression g; = |d In G(x)/dx;| is used. For
estimating the mean j, the second derivatives d2G(x)/dx? play an important role.

For the case of a ratio x,/x,, an estimate of the mean y is controlled only by the
variance ¢%(x,) and not by the variance o?(x,).
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Problem 1.9 Error in the isotope dilution method by Taylor’s formula

Arsenic was determined by the method of isotope ditution. The initial specific activity
was a, = 3.7 x 10*sec™!. After addition of the standard, m; = 5 x 1077 g of arsenic,
the specific activity was a, = 5.3 x 10%sec”!. Estimate the relative error of the arsenic
content in the sample when the relative error of weighing is (m) = 0.03%, and relative
error of activity measurement d(a,) = d(a,) = 1%.

Program: Chemstat: Basic Statistics: Error propagation.

Solution. The content of arsenic m, in the samples is calculated by the relation
m, = m,(a, — a,)/a,. Because this expression is not in the form of Eq. (1.44), Eq. (1.47)
cannot be used. The relative error will be estimates by Eq. (1.35). Assuming that the
quantities m,, a,, and a, are not correlated, substitution into Eq. (1.39) gives

m, ~ my(a, — a,)/a, + m,a,s*(az)
+ 7112 x 1075 +7.162 x 1077 = 7.113 x 10~ °g.
The variance is expressed by Eq. (1.40), after omitting the third term, as
s3(m,) = (a,/a,— 1)* x s¥(m) + (m,/a,)* x s*(a,) — (m,a,/a3)
s%(ay) = (a,/a, — 1’mi6¥m) + (m,a,/a,)* x (6%(a,) + 6%(a,))
=32x107'"% 4 1.0259 x 107 '2 = 1.0259 x 107 '2,
The relative error is

8(m,) = 100 s(m)/m, = 1.424%.

Conclusion: When an expression for determination of analyte content or concentration
is not in the form of Eq. (1.44), Eq. (1.35) should be used.

1.7.2 Method of two-point estimates

Manly’s procedure [7] of two-point estimates is based on replacement of the
probability distribution of function G(x) by the two-points distribution with the same
mean and variance. The estimate of the mean is then expressed by

¥ = (G(x + s(x)) + G(x — s(x)))/2 (1.48)
and the estimate of variance by
s2(y) = (G(x + s(x)) — G(x — s(x)))*/4 (1.49)

Both simple relations give better results than Taylor’s formula for a function of type
(1.44).

When the function G(x) is a function of m independent random variables x, ...,
X, the summation of Egs. (1.48) and (1.49) can be used

y= i (G(x; + s(x;)) + G(x; — s(x))/2m (1.50)
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and

(G(X; + s(x)) — Glx; — S(xi)))2/4 (1.51)

M=

S0~

L3

It

1

1.7.3 Monte-Carlo simulation method

The mean y and variance s*(y), as a function of random variables x, may be determined
by computer-assisted Monte-Carlo simulation methods. Schwartz [9] showed that
this general procedure is well suited for simulation of statistical behaviour of even
rather complicated systems. The following steps can be formulated.

(1) Selection of the function G(x): for many chemical problems the function G(x)
is usually known. The great advantage of the Monte-Carlo simulation method is that
the function G(x) need not necessarily be expressed in explicit form.

(2) Distribution of measured variables: in chemistry it is usually assumed that
measured variables are independent and have normal distribution. The Monte-
Carlo simulation method requires numerical values of the quantities x;, s(x,), i = 1,
..., monly.

When these values are not available, two limiting values of interval [ 4, B] in which
the variables x; are expected should be supplied. The approximate probability density
function is then expressed by the parabolic distribution

fix) = 6(x, — ANB — x)/(B — A)* (1.52)

for 4 < x; < B. The situation is more complicated when some correlation among the
input variables exists. Then the simultaneous distribution of all variables X, i=1,
.., m, should be specified; this will be simple only for the case of the normal
distribution.

(3) Generation of random numbers: most computer languages contain a function
that will generate pseudo-random numbers from rectangular distribution R(0,1). For
two independent random numbers, R » Rj+1, the Box-Miiller transformation is used
to generate two independent random numbers N;, N j+1

N;=/(—2In R) x sin (2nR,, ) (1.53)

N;jy1 =+/(=21In R) x cos (2nR;, ) (1.54)

which have standardized normal distribution. The jth simulated values of the ith
variable x; will be expressed by

x5 = Ns(x) + X, (1.55)

For the parabolic distribution (1.52), the simulated quantity x}; is the solution of
the cubic equation

XFA2—xt, = xtP3+a=R xf (1.56)
where « = 4° — A2 + 4 and f = 6/(B — A)>.
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(4) The choice of the number of simulations: the rules for the determination of
the necessary number of simulations are the same as for the determination of sample
size (Section 2.7.1). The minimum number of simulations for the requested 100(1 — «)%
confidence interval D of the mean is expressed by

Mein = [4U1 _ap8*(1)]/D? + 1 (1.57)

where u;_, is the quantile of standardized normal distribution and s3(y) is the
estimate of variance from the first 50 simulations.

(5) The display of results: this includes a listing of an empirical probability density
function of the distribution of simulated data {yf}, j=1, ..., ng, and then a
calculation of the estimates of location and spread, y* and s(y*).

Problem 1.10 Determination of the error of the measured viscosity

Calculate the viscosity of glycerol by the Stokes method, from the following
experimental data: the radius of the ball r = 0.0112 + 0.0001 m; density of the ball
d, = 1335 kg m™3, the density of glycerol d =1280 kg m~3, the trajectory
I =31.23 + 0.05 cm, the time t = 62.1 + 0.2 sec, and the acceleration due to gravity
g = 9.801 m.sec™ .

Program: Chemstat: Basic statistics: Error propagation.

Solution: Viscosity i determined by Stokes method is calculated from the expression
n = 2gr’(d, — d)t/(91). Because this expression is not of type (1.44), the relative error
cannot be calculated from a simple relationship. By the two-points method, the
following values are calculated: # = 0.0299 Pa.sec, s(n) = 5.422 x 10™* Pa sec and
the relative error 6(n) = 1.82%. By the Monte-Carlo simulation method # = 0.0299
Pa sec, s() = 5.387 x 10™* Pa sec, and ¢, = 0.038 and g, = 2.77.

Conclusion: The two methods, the two-point and the Monte-Carlo simulation, give
the same results. The viscosity distribution is approximately symmetrical and flatter
than the normal one.

1.8 SUMMARY OF DETERMINATION OF MEASUREMENT ERRORS

(1) The relative 5 and absolute A, errors of signal measurement are calculated by
using the expressions in Table 1.1. The sensitivity limit x, (1.6) and the lower limit
of working interval x_ (1.7) are also calculated.

(2) The absolute error of an instrument A consists of an instrument part A, and
a contribution from the variability of the analyte A, expressed by Eq. (1.12).
Measurement of signal may include the additive model of errors (1.13), multiplicative
model (1.15) or the model with a systematic error a (1.17). Errors come usually from
the rectangular, normal, log-normal or Laplace distributions.

(3) The measurement error may be estimated with the use of the interquantile
range (1.19) for a given value of statistical certainty P. For P = 0.5 the resulting error
o, . is termed the mean error (1.20), and for P = 0.683, the probable error o, ..
For P = 0.9 the limiting quantile error o, _ (1.22) can be added even it °the
distribution of partial errors g, . is not known (1.23), or (1.24)«1.31).
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(4) The moment estimate of error with the use of standard deviation enables
calculation of the probable error interval (1.32) which contains all random errors
with probability P = 1 — 2o or of the tolerance interval of error (1.33)—(1.34) which
uses the estimate of standard deviation.

(5) The total error of some analytical quantity (the concentration, the content,
etc.) is a result of a law of propagation of all kinds of errors concerning various
experimental and instrumental operations. In addition to the classical method of
Taylor series expansion (1.40)(1.47), two computer-assisted methods may be applied,
ie. the two-point method (1.48)-(1.51) and the Monte-Carlo simulation method
(1.52)H1.57).

1.9 ADDITIONAL SOLVED PROBLEMS

Problem 1.11 Limiting errors of ammeter

The class of ammeter precision is declared by the ratio 6/, (= 1.5/0.5) and its range
is R = 50 mA. Calculate the limiting absolute error A, and the limiting relative error
d, for an electric current of about 10 mA.

Solution: The limiting relative error (Table 1.1) is

do = 1.5 +0.5(50/10 — 1) = 3.5
1.e. 3% and the limiting absolute error
Ay = [1.5 x 10 4+ 0.5(50—10)]/100 = 0.35 mA

which is rounded off to 0.3 mA.
Conclusion: The value of electric current should be written in the form 10 + 0.3 mA.

Problem 1.12 Sensitivity limit of an ammeter

Calculate the sensitivity limit of the ammeter, x,, from Problem 1.11 and estimate
the working interval x, in which the relative error does not exceed 4%.

Solution: From Eq. (1.6), the value of x_ is

x, =2 x 60/100 = 1.2 mA

and this value is equal to the limiting absolute error. From Eq. (1.7), the lower limit
of working interval is

x, =100 x 1.2/4 = 30 mA.

Conclusion: The relative precision of the ammeter is 4%, and the instrument can be
used in the working interval from 30 to 60 mA.

Problem 1.13 Systematic errors of a pipette

A 5-ml pipette was calibrated by weighing the volume of water delivered, and 10
values were obtained. Calculate the relative and absolute systematic errors of the
pipette.

Data: the volume [ml], n = 10, « = 0.05: 4.969, 4.945, 5.058, 5.021, 4.945, 5.006, 4.972,
5.022, 5.013, 4986

Program: Chemstat: Basic Statistics: One sample analysis.
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Solution: The mean volume of the pipette X is 4.9937 ml with variance s*(x) = 0.00134.
The estimate of absolute systematic error, @ = X — , is — 0.0063 ml and the estimate
of the relative systematic error, 8(4/x), is — 0.13%. Since u = 5.000, the hypothetical
‘true’ value, is fixed, the variance s*(a) = s*(X) = sz(x)/ﬁ, is equal to 0.0004. If we
assume that the systematic error has a normal distribution (Section 3.3.2), then:

(1) The 95% confidence limit of the systematic error,
G —1505(10 — 1) x s(a) < a < a+ ty45(10 — 1) x s(a)

where the quantile of the Student distribution 1, 44(9) = 2.263. Therefore
—0.0325 < a < 0.0199.

(2) The 95% confidence limit of the systematic error with statistical certainty
(1 —a) =0.99 is equal to

A—krxsla)<a<d+ ke xsa
where ky is calculated from Eq. (1.34),
ky = 1.96(9/2.088)"* = 4.069

Therefore — 0.0534 < a < 0.0408.

(3) For the variance of random errors of the water weights, s*(x), the 95%
confidence interval of the variance s*(x) with statistical certainty (1 — a) = 0.99 is
given by Eq. (1.33) as

—0.1489 < ¢ < 0.1489
The limiting quantile error of the pipette
Oppo = 1:655(x) = 1.65 x 0.0366 = 0.0604.

Conclusion : Since the 95% confidence interval of the systematic error and the tolerance
interval of the systematic error cover the value zero, the systematic error of pipette
4= — 0.0063 ml and 8(¢/Xx) = —0.13% may be considered not to be significant. The
actual volume of the pipette is 4.994 + 0.060 mi.

Problem 1.14 Propagation of errors in solution preparation

Calculate the relative error of the concentration of Fe,O, in a solution which was
prepared by mixing V, = 5.0 ml of the first standard solution of concentration ¢, = 1.0
g/lof Fe, O, and V, = 5.0 ml of the second standard solution of concentration ¢, = 2.0
g/l of Fe,O,. The relative error of concentration of both standard solutions is the
same, 8(c,) = d(c,) = 0.2% and the relative error of pipetting is 6(V) = 0.1%.
Program: Chemstat: Basic Statistics: Error propagation.

Solution: The concentration of the resulting solution is

c=(V + 6, V)V + V)
and the relative error of this concentration will be, according to Eq. (1.35)

5(c) = 8(c,) x (3 + )" /(e + ¢;) = 0.149%
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Conclusion: When the relative error of a result is to be calculated, the summation of
relative errors cannot be used and it should be considered that these variables are
defined by Eq. (1.35).

Problem 1.15 Not exceeding a declared concentration error

Prepare V= 100 ml of Fe(Il) solution of concentration ¢, = 5.0 g/l. such that the
relative error of this concentration will not exceed the value d(c) < 0.1%. Calculate
corresponding relative and absolute errors of weighing d(m) and of standard flasks,
d(V). For the standard flask, the error A(V)is 0.07 ml; calculate the necessary precision
of weighing.

Program: Chemstat: Basic Statistics: Error propagation.

Solution: The resulting concentration is calculated by relation

¢ = 1000 x ¢/V

On the basis of the principle of the same relative influences

V) ~ o(m)
As

(V) = d(m) = 0.05%
then

A(V) =V x §(V)/100 = 0.05 ml
and

Alm) =c x V x §(m)/100 = 2.5 x 10"+ g,

For A(V) = 0.07 ml, (V) = 0.07 %, then
do(m) = d(c) — &(V) = 0.1 — 0.07 = 0.03%

and this corresponds to the absolute error of weighing
A(m) = (5/1000) x 100 x 0.03/100 = 1.5 x 107 * g,

Conclusion: So as not to exceed the required error of concentration of the solution,
o(c), the sum of partial relative errors of weighing and standard flasks, d(m) and §(V),
must be less than or equal to §(c), i.e. 8(m) + (V) < d{c).

Problem 1.16 Propagation of correlated errors in the preparation of solutions

A mass m = 0.1 g of zinc was dissolved in hydrochloric acid and diluted in a standard
flask with volume V' = 1000 ml. The volume ¥, = 100 ml of this solution was diluted
to volume V, = 1000 ml. The sample for analysis was prepared by taking vy = 5 ml
and diluting to ¥, = 25 ml. Calculate the concentration of the resulting sample and
its relative error when the standard deviation of weighing is s(m) = 0.3 mg, and for
the standard flasks s(V) = s(V,) = 0.2 ml, s(V;) =0.05 ml, s(V;) =0.005 ml and
s(V,) = 0.025 mlL

Program: Chemstat: Basic Statistics: Error propagation.

Solution: The concentration c is calculated from
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c=mx V; x V(VxV,xV,)

Errors in volumes ¥, and V, are strongly correlated with errors in volumes V; and
V. Consider first the ideal case when correlation coefficients

V) =rlV,) =1
while other variables are uncorrelated. From Eq. (1.47)
0%(c) = (s(m)/m)> + (s(V)/V)? + (s(V))/V))* + (s(V2)/Va)? + (s(V3)/V3)?
+ (V) V)2 = 2As(V)ViNs(Va)/ V) — 2s(V3)/Va)s(V)/ Va)
and numerically d(c) = 0.302%.
Then, consider that the correlation between V; and V, and also between V, and
V, is negligible, so that
HV V3 =rV35V,) =0
and then
d(c) = 0.336%.
Calculation of some derivatives in Eq. (1.39) allows the mean concentration ¢ to
be estimated
c=mx Vi x VI(Vx Vy, x Vy+mx Vy x Vy x [sS*(VIV; x V, x V)
+ S V)Vy x VX V) + sHV)Vy x VX V3)] —m x Vi x s(V))
x s(Vo)/(Vx V3 x V) — mx V, x s(V3) x s(V IV x Vy x V)

where the first termis 2 x 107 °, the second 2.16 x 107 '? and the third is 2.2 x 10 '2.
If the two smaller terms are neglected the mean concentration will be ¢ = 2 mg/l.
Conclusion: Correlation between volumes V; and V, and also between V, and V,
decreases the relative error of the resulting sample concentration.

Problem 1.17 Propagation of errors in gravimetry

Iron (III) oxide in iron ore containing about 50% of Fe, O, is determined gravimet-
rically with the use of an analytical balance with absolute error s(m) = 0.3 mg and
the sample weight m = 0.105 g. Estimate the error of gravimetric determination when
the sample weight m and the ash weight m, are related by m, ~ 0.5 m.

Program: Chemstat: Basic Statistics: Error propagation.

Solution: The relative mass of Fe, O, in the iron ore is calcuiated by R = 100 x mg/m.
Since the sample weight m and the ash weight m,, are strongly correlated, r(mgom) # 0.
From Eq. (1.47) it will be

O(R) = [6%(mg) + 6*(m) — 2 x d(mg) x &(m) x r(mem)]'/?
In case of linear dependence,
mg =k x m

and
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rimgm) = 1
and we will have
3(R) = [(0.3/52.5)*> + (0.3/105)% — 2 x (0.3/52.5) x (0.3/105)]*/*
= 0.286%
When the ash weight is not dependent on the sample weight and
rimom) =0
then
O(R) = 0.639%

For a partial correlation r(mym) = 0.5, 6(R) = 0.49%.
The mean ratio R and its variance are dependent on a correlation between m and
m,. When

s(mg) ~ s(m) ~ 0.3
and the measurement is repeated n times, then according to Eq. (1.39)
R ~ 100[my/m + s*(m)/m> — (r(mgm) x s(m))/m?*]

For0 < r(mym) < 1 the influence of the third term is always negligible and R ~ 50%,
and the variance of the ratio is

sHR) =~ 10*[s¥(my)/m? + my x s{m)/m* — 2 x my x r(my x m),
s(mg) x s(m)/m> + s%(mg) x s*(m)/m*]

When r(mym) = 1, then s*(R) ~ 0.103, and when r(mym) = 0, then s*(R) ~ 0.102.
For the case r(mym) = 0 the relative error §(R) = 0.64% and the same result is also

found for r(mym) = 1.

Conclusion: Positive correlation between sample weight and ash weight decreases the

relative error of the method. For sufficiently high sample weights relative to the error

of weighing, the estimates R and s?(R) do not depend significantly on the degree of

correlation.

Problem 1.18 Propagation of errors in photometry

A standard solution of iron (III) containing 0.1 mg of Fe,O; in 1 ml was prepared
by dissolving m = 0.4911 g of Mohr salt (ammonium iron (I} sulphate) in V' = 1000
ml water. In the standard flask, with volume V, = 25 ml, the volume V, = 5 mi of
this solution was diluted by salicylic acid. In the cuvette, length [ = 1.000 cm, the
absorbance A = 1.000 was measured by using a photometer with instrumental
precision s;,,(A) = 0.007. If the errors of weighing and of the standard flask are
sim) = 0.3 mg, s(V) = 0.2 ml, s(V;) = 0.005 ml, s(V,) = 0.025 ml, calculate the relative
error of the molar absorptivity.

Program: Chemstat: Basic Statistics: Error propagation,

Solution: Molar absorptivity ¢ is calculated from:

e=Alel = VV,A/mV,])
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If there is strong correlation between the volumes V; and V), i.e.
vv,)=1
Eq. (1.47) yields
6%(e) = (s(m)/m)* + (s(N/W? + (s(V)/ V) + (s(V))/V2)?
+ (Sinsi(A) AP = 2As(V)/ VISV V)
= 0.696%.
If correlation between V, and V, is ignored, i€,
V) =0
them
de) = 0.71%.

Conclusion: The relative error of the molar absorptivity depends mainly on the
instrumental error of the spectrophotometer used. Because d(4) = 0.7% the i(e) is
also equal to 0.71%.

Problem 1.19 Propagation of errors in the solubility of a silver salt

The solubility product of the silver(I) salt AgX is K, = (4.0 + 0.4) x 1078, Estimate
the error of the calculated solubility of silver(I) ions [Ag*] in water.

Program: Chemstat: Basic Statistics: Error propagation.

Solution: The solubility of silver(I) ions is calculated from the expression
[Ag*] = (K)"% [Ag*], s([Ag*]) and 8([Ag*]) can be calculated in various ways:

(1) The Taylor series: Eq. (1.39),
[Agt] =(K)"Y? —0.125K ¥*s%(K)=2x 107* ~25x 1077
= 19975 x 107¢
and from Eq. (1.40)
sH[Ag*] = 025K, 's¥K) = 10"1°
s([Ag*]) = 1073 and &([Ag*]) = 5%.
(2) Method of two-point estimates: [Ag*] = 1.997 x 1074,
s(TAg*]) = 1.001 x 107 ° and 8([Ag*]) = 5%.
(3) Monte-Carlo simulation method: [Ag*] = 1.997 x 10™4,
s([Ag*]) = 1.019 x 107%, §([Ag*]) = 5.1%, ¢, = 0.143 and g, = 3.

Conclusion: All three methods of error determination give the same results. The results
are illustrated in Fig. 1.5.

Problems 1.20 Propagation of errors in solution preparation
A standard solution of iron(I) ions was prepared by dissolving m = 0.5458 g of Mohr
salt (the error s(m) = 0.3 mg) in V= 100 ml (standard flask). Calculate the concen-
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Fig. 1.5—Histogram of the solubility of silver ions [Ag*] in water.

tration ¢ of Mohr salt in the standard solution and its relative §(c) and absolute s(c)

errors.
Program: Chemstat: Basic Statistics: Error propagation.
Solution: The concentration of Mohr salt ¢ = 1000m/V (g/l). Three computation

methods are compared here:
(1) The Taylor series: from Eq. (1.38)
¢ ~ 100m/V + 1000m V ~3s(V) = 5.458 g/l
From Eq. (1.40)
s%(c) = 105V 2s%(m) + 10°V *m?s¥(V) + 10°V~¢
+ s%(V)s*(m) = 1.377 x 1073

and s(c) = 0.0037 g/l, é(c) = 0.068%.

(2) The method of two-points estimates: ¢ = 5458 g/l, s(c)=0.0037 g/l and
d(c) = 0.068%.

(3) The Monte-Carlo simulation method: ¢ = 5458 g/, s(c)= 00036 g/,
o(c) = 0.0662%, g, = 0.053 and §, = 3.08.

Conclusion: All three methods of error estimation lead to the same results.
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2

Exploratory and confirmatory analysis of
univariate data

The main aim of exploratory analysis of univariate data is to isolate certain basic
statistical features and patterns of data. Exploratory data analysis (EDA) often
provides the first contact with the data and serves to uncover unexpected departures
from familiar models. An important element of the exploratory approach is flexibility
in responding to patterns that successive steps of analysis uncover. In brief, exploratory
data analysis emphasizes flexible searching for clues and evidence, whereas confirma-
tory data analysis (CDA) stresses evaluation of the available evidence. Four major
facets of exploratory data analysis stand out:

{a) Revelation through visual display meets the analyst’s need to look at the
behaviour of data, of diagnostic tests, of fits, and of residuals, and thus to highlight
the unexpected features as well as the familiar regularities.

() Resistance provides insensitivity to localized misbehaviour in data. Resistant
methods are influenced mostly by the main body of the data, and little by outliers.
Resistance ensures that a few extraordinary data values do not unduly influence
the results of an analysis. We distinguish between resistance and the related
notion of robustness. Robustness generally implies insensitivity to departures
from assumptions about an underlying model.

(¢) Residuals focus attention on what remains of the data after some analysis, after
a fitted model has been subtracted from the data; i.e. residual = measured
data — calculated data.

(d) Transformation with subsequent re-expression of data involves finding a scale
(e.g., logarithmic or square root) that can clarify the analysis of the data or
simplify the behaviour of the data. A transformation into another scale may
help to promote symmetry, constancy of variability, linearity, or additivity of
effect, depending on the structure of the data.

A
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2.1 SAMPLING, SORTING AND RANKING

In an ideal case, the known conditjons of a chemical experiment fully determine the
outcome. However, in practice some factors are usually not fully controlled and others
are random in nature. Observations (responses) resulting from experiments are then
random quantities. The complete collection of all possible outcomes from a chemical
experiment, if the experiment is repeated an infinite number of times, is called the
population space. Observations represent points in this population space. The
population is discrete when there are a finite number of possible outcomes, and
continuous when all real values are possible in a certain interval (finite or infinite),
or series of intervals. When in an experiment, only one variable is recorded, then the
actual observations form a univariate sample. If more than one variable is obtained
from a single experiment, a multivariate sample is obtained; e.g., if two values are
obtained, the sample is bivariate. The aim of data analysis is to make inferences about
population characteristics on the basis of a representative random sample of items from
the population. There are several reasons why it is usual to analyse a representative
sample from the population rather than the whole population:

(a) The population, although finite, may be large enough to make all possible
inspections too costly, or take too long a time.

(b) The experiment may involve a destructive process or consumption of expensive
chemicals.

(¢) The whole population may not be available for analysis.

(d) The population may be infinite.

In a common practice the observation could be the result of an experiment under
conditions which, for reasons outside the experimenter’s control, may vary each time
the experiment is repeated. The population in this case represents the set of
observations that would be obtained if the experimental were repeated an infinite
number of times.

A sample is said to be representative if it gives a sufficiently complete view of the
population involved. All sample members have the same probability of being selected
from the population, equal to 1/n. If the experimenter has no prior information about
the population, the only way to ensure representation is by random sampling or by
impartial selection which is given the statistical term randomization. From the
randomness of samples it then immediately follows that any judgment passed on the
population on the basis of a sample is also random as well.

The process of putting a set of numbers into order is known as sorting. Because
an ordered sample batch makes it easy to pick out the letter values, as well as to
detect possible stray values at either end, sorting is important in exploratory data
analysis. The sample values x, ..., x, can be sorted such that x;, < x,, < ... < x,.
More formally, x,,, X5), . .., X, are called the order statistics of the sample x, x,,

, X,, and x;, is the ith order statistic (see Fig. 2.1). On the basis of the sorting, we
can define the rank of an observation in either of two ways: we can count up from
the smallest value, or count down from the largest. The first of these yields the
observation’s upward rank
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Fig. 2.1—Sampling, sorting, ranking and depth of a sample. From the population of N = 59 values of the

melting point of wax (°C), m.p. = 63.00 + x/100, the random sample of n = 11 values is taken by selection

of every fifth value. The order statistic x,;), the upward rank R";’ the downward rank K,,i. and the depth
H, of the ith statistic, are shown.

RP,'ZI

that is x,, has upward rank 2 and, in general, x;, has upward rank i. Counting down
from the largest yields an observation’s downward rank

Kpi=n+1——i

X(,-1) has downward rank 2, and generally, x;, has downward rank Kpi =n+1-1
Considering both of these rankings together, we see that for any data value

Re + Kp =n+1

Sometimes it 1s useful to think in terms of the original observations. For example,
if, through the sorting process, the raw observation x; becomes the order statistic
X;» then the upward rank of x; is j.

Often we want to give equal attention to both ends of a sample batch. A convenient
way of handling this is to use the two ranks upward and downward, in defining depth.
The depth of the ith element in a sample is the smaller of its upward rank and its
downward rank.

Hi = min (RPia KPi)

The depth of each data value expresses how far it is from the low end or high end
of the sample.
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2.2 ORDER STATISTICS, QUANTILES AND LETTER VALUES

The method of exploratory data analysis (EDA) examines certain basic features of
the statistical properties of the observations (experimental data). Graphical treatment
of data is used to identify the type of sample distribution, to analyse and sometimes
also to re-express it. EDA is detective work which has a firm probability base and
uses quantile descriptive statistics, whereas confirmatory data analysis is judicial or
quasi-judicial in character.

The sample values x,, ..., x, are first of all sorted into ascending order to yield
X1y € X, £ -+ < X, the order statistics.

The P;th sample quantile (or percentile) is defined to be the value of x below or at
which 100 x P,% of the sample values lic. The P;th quantile is

Xp, = X5 where j=(n+ 1)P;

Parameter P, is usually termed the cumulative or rank probability and is given by

(2.1)

If index j is not an integer but lies between two integers m and m + 1, the Pth
quantile X'pi may be calculated by interpolating between x,,, and x,,, ,, according to
the formula

SCP,» = Xy t+ U- m)(x(m+ 1y — x(m)) (2.2)

For P = 25%, 50%, 75% the 25th, 50th, and 75th quantiles (or percentiles) are
called the first (or lower) quartile, the second quartile (or median) and the third (or
upper) quartile of the sample.

The method of evaluating P; depends on the nature of the sample distribution.
The order statistics x,;, divide the real x-axis into (n + 1) intervals, and any observation
x will have the same probability 1/(n + 1) of appearing in any one of them. The
cumulative probability is then given by

o
Tn+1

For a normal distribution the expression
P, =(i—3/8)(n+ 1/4)
is often used, but EDA uses

P,=({—1/3)n+1/3) (2.3)
The plot of order statistics x;, against the cumulative probability P;, when0 < P, < 1,
fori=1,...,nis called the quantile function Q(P). This is, in fact, an inverse function

of the sample distribution function. For any value « from the interval [0, 1] the
100ath quantile X, may be calculated by linear interpolation

- i
X,= x5y +(n+ 1)[& — m:|(x“-+ = X@) (24)




Sec. 2.2] Order statistics, quantiles and letter values 39

where
i i+ 1
<a< 25
I (2.5)
The variance of sample quantile X, for a sample size n is given by:
1 —
D) = —8 D 26

o x [f&x)1?
where f(X,) is the value of the sample probability density function at point X,. An
example of a quantile function is shown in Fig. 2.2

1.2 3.0
. . a b
Fix) aP)
0.6 0.0
0.0 - -3.0
o o X © o 0 P. o
cvli ' o 3] S o i -

Fig. 2.2—(a) The distribution function F(x), and (b) the quantile function Q(P) for the Laplace distribution
with a mean of zero and variance of 2.

Table 2.1—A survey of selected letter values

i ith cumulative symbol for normal
quantile probability letter value quantile Up,

1 median 271 =0500 M 0

2 quartiles 272=10.250 F or H —0.674

3 octiles 273 =0.125 E — 115

4 sedeciles 274 = 0.0625 D —1.53

Some methods of EDA are based on some selected quantiles Q being calculated
for selected cumulative probabilities P, = 271i=1,2,... These quantiles are termed
letter values (Table 2.1).




40 Exploratory and confirmatory analysis of univariate data [Ch.2

The symbol up, is used to denote the quantiles of the standard normal distribution
N (0,1), (Section 3.3.2). The median corresponds to i = 1, and for each i > 1 there is
a pair of quantiles, the lower (Q, ) and upper (Q) letter values. The lower letter value
is calculated for a cumulative probability P, = 27 and the upper one for P, = 1 — 27/,

Letter values are estimated by the rank-and-depth method. The rank of an
observation is defined by counting up from the smallest value (upward rank), or by
counting down from the largest (downward rank). The order statistic x;, has upward
rank R, =i and downward rank K, =(n+ 1—i). The depth H; of the ith
observation is defined as the lower value of the two ranks, Rpand K, , ie., H; = min
(Rpi, K,,'_), and the depth of median is given by l l

2.7)

If Hy, is an integer (i.e. n is an odd number), the median is equal to X, s = M = xy;
otherwise it is halfway between, x,,, and x,,,,- The depth of lower letter values
is calculated from

1 +int(Hg_,)
%:__TTLL

(2.8)
where Q stands for the letters F, E, D, ... and int(x) means the integer part of a
number x. If Q is F, then we would say that Q — 1 = M, etc. When H,, is an integer,
the lower quantile Q; is Xt while the upper quantile Qy is Xy, +1-p . When Hy, is
not an integer, the following linear interpolation is carried out

Xii + X
QL _ Mint(Hg)) (inttHgh + 1) (2.9)
2
Xin+ 1 —int(Ho) T X(n+2—in(Hg)
0= 2 2 (2.10)

For lower values of H, and quantiles near to x;, and x,, the procedure based on
Egs. (2.9) and (2.10) is more robust than that based on Eq. (2.4). The number of letter
values for a sample depends on the sample size. For a given sample size n, this number,
which includes the median, is given by

ng =144 1In (n + 1) (2.11)

The letters used as tags for the letter values start with M for median and F for
fourths (quartiles), E for eighths (octiles), etc. The extremes have no tag other than
1, their depth.

Letter values are used to provide a convenient summary of data, and the S-number
summary (1IFMF1) or the 7-number summary (IEFMFE1) provide about the right
amount of detail. More information is available in larger batches and we might use
a fuller set of seven or more letter values if necessary (Fig. 2.3).
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Fig. 2.3—Data summarization: (a) General construction of the skeleton of the letter-value display, (b) the
letter-value display for a melting-points sample from Fig. 2.1.

Problem 2.1 Use of the rank-and-depth method

For the first 9 digits (1, 2, ..., 9) determine letter values and both ranks, with depth.
Solution: The first row of Table 2.2 shows the order statistics x,, the second row,
the upward rank R, the third row the downward rank K and the fourth row, the
depth calculated by Eq. (2.6). From Eq. (2.7), the depth of the median,
Hy =(9 + 1)/2 =5 and the median is equal to M = X ,= 5. From Eq. (2.8), the
depth of both quartiles is Hr = 3 and of octiles Hg = 2. The'fetter values corresponding
to the quartiles are F; = 3 and F; = 7, and to octiles E;, = 2 and Ey = 8. The letter
values in Table 2.2 are in a square. The corresponding diagram is shown in Fig. 2.4.

Table 2.2—The rank-and-depth method

X4 1 4 6 1 8] 9
R 1 2 3 4 5 6 7 8 9
K 9 8 7 6 5 4 3 2 1
H, | 2 3 4 5 4 3 2 1

Conclusion: The rank-and-depth method allows easy determination of letter values
with pencil and paper.
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Fig. 24—A dot diagram showing the letter values: (a) the dot diagram with median M, F; (lower) and
F\, (upper) quartiles, inner B, (lower) and By, (upper) bounds, outer ¥ (lower) and V, (upper) bounds, (b)
the area of outliers: A close outliers, B near far outliers, C far outliers.

2.3 PLOTS AND DISPLAYS IN EXPLORATORY DATA ANALYSIS

The basic features and statistical properties of experimental data are described by
the symmetry and kurtosis of the sample distribution, the dispersion of the data, and
the presence or absence of outliers. The various exploratory diagnostic plots (EDA
plots G1 —G21) offer information about these statistical features of the data.

G1: Quantile plot
(x-axis: the cumulative (order) probability P;, y-axis: the order statistic x ;).
The quantile plot permits identification of any peculiarities of the shape of the
sample distribution, which might be symmetrical or skewed to higher or lower values.
A real sample distribution can readily be compared with the normal one, if the
quantile functions for the normal distribution Q(up) = u + oupfor 0 < P < 1is plotted
on the same graph, with (1) the classical estimators of u and ¢%(i = X and ¢ = 5?)
and (2) the robust estimators of u and 62 (4 = X, 5 and &* = (Rg/1.349)?).

Problem 2.2 Generation of samples from five different distributions which frequently
appear in chemical data

To demonstrate the diagnostic investigation of various samples of chemical data,
samples from five different common distributions were generated. Each sample of
size 50 was taken from an actual population with known population mean u and
population variance o2, denoted X (g, 62):

(A) rectangular distribution R(0.5, 1/12) in interval [0, 1];
(B) normal distribution N(0, 1);

(C) Laplace distribution L(0, 2);

(D) exponential distribution E(1, 1);
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(E) log—normal distribution LN(2.718, 47.209).

Data: (A) Sample from the R(0.5, 1/12) distribution, n = 50

0.531 0.677 0.171 0.065 0848 0.021 0380 0.760 0.524 0.283
0.841 0.631 0.645 0.567 0.594 0.141 0994 0998 0211 0487
0.595 0.751 0.231 0012 0487 0.794 0358 0.823 0414 0.087
0.147 0.559 0.053 0217 0385 0755 0.853 0.707 0.266 0.878
0.040 0407 0.839 0.171 0325 0295 0842 0636 0.172 0.924

(B) Sample from the N(0, 1) distribution, n = 50
-1.008 —0.500 0.749 1.723 0.076 0.569 —1.389 0.087
1.112  —0.235 0.519 0279 —0.758 —0.588 —0.594 —0.885
—0.072 1.980 0.063 0016 —0673 —0993 0.752 0.092
0.236 —2.962 0.109 —1.285 0.634 —0.383 1.134  —0.711
—1.825 2.374 0.500 —1.380 0046 —-0544 -0.150 —1.129
1.173 1401 —2.121 0.521 0.280 1.440 —0.415 —0.443
—0.384 0.690

(C) Sample from the E(1, 1) distribution, n = 50
0.757 1.129 0.188 0.067 1.885 0.021 0478 1.427 0.743 0333
1.837 0.188 0998 1.036 0.837 0902 0.152 5.145 6.170 0.237
0.668 0.903 1388 0.262 0012 0.668 2.572 1580 0444 1.731
0.535 0.091 0.159 0.819 0.054 0245 0487 1408 1916 1.228
0309 2104 0040 0.523 1.829 0.188 0.394 0349 1.846 1012

(D) Sample from the L(0, 2) distribution, n = 50

0.064 0436 —1.072 -—-2036 1.192 —-3162 -0.275 0.734

0049 —-0.569 1.144 —1.070 0.304 0.343 0.144 0.209
—1.269 4452 5477 —-0.862 —0.026 0.210 0695 —-0.774
—3.723 —-0.026 1.879 0.887 —0.333 1.038 —-0.188 —1.749
—1.224 0.126 —-2249 —-0.835 —-0.261 0.715 1.223 0.535
—0.632 1411 —2538 —0.206 1.136 —1.070 —0429 —-0.529

1.153 0.319

(E) Sample from the LN(2.718, 47.21) distribution, n = 50

0.191 2118 0380 0264 3.374 2490 0509 0232
3482 1.746 2372 4657 2507 2832 0.150 13.673
0312 0.810 4080 0619 1691 0.088 1236 0726
0.157 1415 1.002 0.035 0908 15880 0.047 1.817
0.078 7.606 1.349 0.267 3.649 0.212 0.397 26475
0.606 0.440 1.849 27.203 0.545 5.690 48.558 4.732
0.006 2.404

Program. Chemstat: Basic Statistics: Exploratory continuous: QF plot.

Solution: Table 2.3 lists the statistical characteristics (see Chapter 3) of the five samples
taken from five different distributions.
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Table 2.3—Statistical characteristics of five distributions (upper line) and their estimates from samples of
size n = 50 (lower line)

Rectang Normal Exponent Laplace Lognorm
Median, X 5 0.5 0 1 0 1
0.51 0.03 0.75 0.02 1.38
Mean, x 0.5 0 1 0 2.718
0.49 —0.57 —1.01 —0.025 4.08
Variance, o> 0.0833 1 1 2 47.209
0.086 1.088 1.36 243 74.53
Skewness, ¢, 0 0 0 0 23.74
—0.048 —0.14 2.68 0.80 3.611
Kurtosis, ¢, 1.8 3 6 9 3948
1.75 3.37 11.506 6.10 16.795

Some of the estimated characteristics, in particular the estimates of skewness and
kurtosis, differ from the corresponding population values.

The quantile plot for samples from the R-, N-, E-, and L-distributions (Fig. 2.5)
shows that the R- and L-distributions give different tail lengths from the normal
distribution, and the E-distribution is skewed to higher values.

Conclusion: The quantile plot can distinguish between different distributions because
of differences in shape.

G2: Dot diagram

(x-axis: x values, y-axis: selected level, usually y = 0).

The dot diagram is a univariate projection of the quantile plot onto the x-axis. It is
a one-dimensional scatter plot of data. The dot diagram indicates local concentrations
of data, outliers, and extremes in data. A example is shown in Fig. 2.6.

G3: Jittered-dot diagram

(x-axis: x values, y-axis: a small interval of random numbers)

The jittered-dot diagram also represents a univariate projection of a quantile plot.
The values of the sample points are randomly spread out in the y-direction, so this
diagram gives a clearer view of the local concentration of points [2]. An example is
shown in Fig. 2.6.

Problem 2.3 Construction of dot and jittered-dot diagrams

Construct dot and jittered-dot diagrams for the samples from the (a) rectangular, (b)
normal, (c) exponential and (d) Laplace distributions.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Exploratory continuous.
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Fig. 2.5—-The quantile plots (G1, robust — — — and classical ...) of samples from four distributions: (A)
rectangular, (B) normal, (C) exponential and (D) Laplace.

Solution: You should find that the diagrams indicate the obvious asymmetry in the
case of the exponential distribution, and long tails in the case of the Laplace
distribution.

Conclusions: The jittered-dot diagram is more informative than the dot diagram.

G4: Box-and-whisker plot

(x-axis: x values, y-axis: any suitable interval)

The box-and-whisker plot shows the S-number summary overview of letter values in
_the form of median, two quartiles (hinges) and two extremes. This plot permits
determination of a robust estimate of the median M, illustrates the spread and skewness
of the sample data, shows the symmetry and length of the tails of the distribution,
and aids identification of outliers.

1.0
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Fig. 2.6—Examples of (a) a dot diagram (G2) and (b} a jittered-dot diagram (G3).

The letter values are shown graphically in this plot. The skeletal box-and-whisker

plot has a length from lower quartile F, to upper F,, quartile equal to:
Re=Fy—F =Xo75 — Xo.25

and the width is proportional to ﬁ

The position of the median is marked by a vertical crossbar inside the box. The
classical box-and-whisker plot is then completed by drawing lines (whiskers) out from
each quartile to the corresponding extreme values x;,, x,,, at the ends of the order
statistics. An example is shown in Fig. 2.7.

)
|

Fig. 2.7—Construction of (a) the box-and-whisker plot (G4) and (b) the notched box-and-whisker plot
(GS) from the dot diagram. Empty circles indicate outliers.
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This plot is useful in illustrating skewness of a sample. If the distribution has a
long tail to the right (positive skew) the right-hand section of the box will be longer
than the left, and upper extreme point will be further from the median than the lower
extreme. The converse will be true if the distribution has negative skew with its longer
tail to the left.

In the modified box-and-whisker plot, the whiskers are terminated by the “adjacent”
values By and By, . These values lie just within the inner bounds defined by the cutoffs
By and B, which are given by:

By=F,+ 15R, (3.12a)
B =F,_—15R; (2.12b)

For a sample from a normal distribution, B, — B; ~ 4.2. The probability that data
lie outside this interval is 0.04. Observations outside the inner bounds (smaller than
B, or larger than By,) are probable outliers, and are marked on the G4 plot by circles
(Fig. 2.7)

G5: Notched box-and-whisker plot

(x-axis: x values, y-axis: any suitable interval)

An analogue of the box-and-whisker plot is the notched box-and-whisker plot, which
facilitates examination of the variability of the median. The median variability is
expressed by notches given by the robust confidence interval I, < M < I;, where
the lower and upper limits are

I, =M — 157 Rp//n (2.13a)
Iy =M + 157 R/ /n (2.13b)

The notches I; and I are placed symmetrically around the median. The properties
of the notched box-and-whisker plot are similar to those of the G4 plot.

Problem 2.4 Construction of box-and-whisker and notched box-and-whisker plots
Construct a box-and-whisker plot and a notched box-and-whisker plot for the samples
from (A) rectangular, (B) normal, (C) exponential and (D) Laplace distributions.
Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Exploratory continuous.

Solution: The box-and-whisker and the notched box-and-whisker plots in Fig. 2.8
indicate the asymmetry of the exponential distribution (C), and probable outliers in
the samples from the normal (B), Laplace (C) and strongly skewed exponential (C)
distribution.

Conclusion: The two plots, G4 and G5, can demonstrate asymmetry of sample
distributions and outliers in data.

The main statistical features of a sample distribution are examined by comparing
the asymmetry and tail lengths with those of the normal (Gaussian) one. The skewness
and kurtosis can be characterized at various distances from the median by the following
statistical characteristics:
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Fig. 2.8—Dot diagrams (G2), jittered-dot diagrams (G3), box-and-whisker plots (G4) and notched
box-and-whisker plots (GS5) for the samples from the (A) rectangular, (B) normal, (C) exponential and (D)
Laplace distributions.

the midsum Z, = ([; + L;)/2

the interquantile range Ry = I; — I;
the skewness S = (M — P,)/R,,

the pseudosigma G, = Ry /( —2u,,'_)

where up,is the quantile of the standardized normal distribution for P = 27/ (Section
3.3.2); and

the length of tails T, = In (Ry/Rg)

These characteristics are summarized in Table 2.4.
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Table 2.4—Characteristics of a distribution shape

Characteristic Used for Valid for L

Midsum Z, symmetry (at P, = 0) F,E,D,..

Interquantile spread F,E, D, ..
range R,

Skewness S, symmetry (at Sy = 0) F,E, D,

Pseudosigma G, kurtosis (for Gaussian F,E D,.

distribution G4, = const.)
Tail lengths T, kurtosis E,D

For any symmetric distribution, the theoretical length of tails, T and T, can be
computed: for the normal distribution, T = 0.534 and T,, = 0.822, for the rectangular
distribution T;; = 0.405 and Ty, = 0.559, and for the Laplace distribution, Te = 0.693
and T, = 1.098.

The skewness S, has negative values, for distributions skewed to higher values and
positive values for distributions skewed to lower values. For distributions with longer
tails than the normal, the values of pseudosigma G, increase with the distance from
the median. When the values of pseudosigma G, decrease with the distance from a
median, the sample distribution has shorter tails than the normal.

To examine all statistical features of the sample, various plots of characteristics
from Table 2.4 are used. For large samples, the letter values are examined, whereas
for small samples the quantile 5c,,l_ = X usually for P, = (i — 1/3)/(n + 1/3), is used.

G6: Midsum plot
[x-axis: the order statistic x,; y-axis: the midsum Z; = (x(,,1_j + x;)/2]

The midsum plot gives information about the symmetry of a distribution. For a
symmetrical distribution, the midsum plot forms a horizontal line y = M.

Problem 2.5 Construction of the midsum plot

Construct the midsum plot for the samples from the (A) rectangular, (B) normal, (C)
exponential, and (D) Laplace distributions.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Exploratory continuous.

Solution: The midsum plot for sample (C) (exponential distribution) in Fig. 2.9 indicates
that it deviates from a symmetrical distribution.

G7: Symmetry plot

[x-axis: the quantile u,z,i /2 for P,=i (n+1); y-axis: the midsum
Z; = (X410 + x3)/2]

For a symmetrical distribution, the symmetry plot forms the horizontal line y = M.
When this line has non-zero slope, the slope gives an estimate of skewness [3].

Problem 2.6 Construction of the symmetry plot

Construct the symmetry plot for the samples from (A) rectangular, (B) normal, (C)
exponential, and (D) Laplace distributions.

Data: as for Problem 2.2
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Fig. 2.9-—The midsum plot (G6) for samples from the (A) rectangular, (B) normal, (C) exponential and (D)
Laplace distributions.

Program: Chemstat: Basic Statistics: Exploratory continuous.

Solution: The symmetry plot is interpreted in the same way as the midsum plot.
Conclusion: From the slope of the line for sample (C) in Fig. 2.10, the skewness can
be estimated to be equal to 2.

G8: Kurtosis plot

(x-axis: the quantile up /2 for P; = i/(n + 1);

y-axis: the quantity In [(x;,+1-y — x(i,)/(—2upi)])

The kurtosis plot indicates the peakedness of a distribution. For a normal distribution
the kurtosis plot gives a horizontal line. When the line has a non-zero slope, the
value of the slope gives an estimate of kurtosis [3].
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Fig. 2.10—The symmetry plot (G7) for samples from the (A) rectangular, (B) normal, (C) exponential, and
(D) Laplace distributions.

Problem 2.7 Construction of a kurtosis plot
Construct the kurtosis plot for the samples from the (A) rectangular, (B) normal, (C)
exponential, and (D) Laplace distributions.

Data: as for Problem 2.2
Program: Chemstat: Basic Statistics: Exploratory continuous.
Solution: As can be seen in Fig, 2.11, significant systematic deviations from the normal

distribution are indicated in the case of a symmetric distribution with short tails
[sample {A)] and with long tails [sample (D)].
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Fig. 2.11—The kurtosis plot (G8) for samples from the (A) rectangular, (B) normal, (C) eprnemial and

(D) Laplace distributions.

G9: The differential quantile plot

(x-axis: the quantile up ; y-axis: the deviation of order statistics d;, = x;, — Sup.)
The differential quantile plot compares the sample distribution with the normal one.
The statistic § represents the robust estimate of the standard deviation, calculated
for example, by the use of the interquantile range. A horizontal line indicates a
symmetrical distribution with tails similar to the normal one.

Problem 2.8 Construction of a differential quantile plot

Construct the differential quantile plot for the samples from the (A) rectangular, (B)
normal, (C) exponential, and (D) Laplace distributions.

Data: as for Problem 2.2
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Fig. 2.12—The differential quantile plots (G9) for samples from the (A) rectangular, (B) normal, (C)
exponential, and (D) Laplace distributions.

Solution: Figure 2.12 shows the differential quantile plots.
Conclusion: The deviation from normality is smallest for sample (B).

G10: Quantile-box plot

(x-axis: the order probability P;, y-axis: the order statistic x ;)

The quantile-box plot (Fig. 2.13) is a simple and universal tool for examining the
_statistical features of data. The plot is based on the estimate of a sample quantile
function formed by connecting points {x,, P;} by straight lines. P, is calculated from

P, ={(i —1/3)/(n + 1/3).

2.3
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For symmetrical distributions, the sample quantile function has a sigmoid shape,
whereas for an asymmetrical one, the quantile function is convex or concave increasing.
For casier interpretation the following quantile boxes are included on the graph:

(@) The quartile box F has on the y-axis two vertices given by quartiles F, and F,
with corresponding values on the x-axis equal to the cumulative probability
values

P,=2"2=025 and 1—-272=075

(b)  The octiles box E has, on the y-axis, the octiles E, and E,; and on the x-axis the
cumulative probabilities

Py=2"=0.125 and 1 —-27*=0875.
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Fig. 2.13—An example of a quantile-box plot (G10). The dot diagram (left) and the notched box-
and-whisker plot (right) are given for comparison.

(c) The sedeciles box D has on the y-axis the sedeciles D; and D and on the x-axis
the cumulative probabilities

P,=2"*=10.0625 and 1 —27%=09375.

The position of the median M is marked by a horizontal line inside the quartile
box. The robust estimate of confidence interval of the median M + 1.57 RF/ﬁ, is
drawn as a vertical line at P = 0.5. From this plot, and from the estimates of the
midsum Z,,, the interquantile range R, the relative skewness S, and the relative
lengths of tails T, the following may be stated about the sample distribution:
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(1) A symmetric unimodal sample distribution contains individual boxes arranged
symmetrically inside one another, and the value of relative skewness is close to
zero, S, =~ 0. When the tail lengths T, are approximately equal to their theoretical
values for a particular distribution, then the normal distribution, the Laplace
(long tails) and the rectangular distribution (short tails) may be distinguished.

(2) An asymmetric sample distribution. In the case of a distribution skewed to higher
values, there are significantly shorter distances between the lower than between
the upper parts of the boxes. The skewness S, then has a negative value. For a
distribution skewed to lower values, the skewness S, is positive.

(3) Outliers are indicated by a sudden increase of the quantile function outside the
F box; the slope may approach infinity.

(4) A multimodal sample distribution is indicated by several parts of the quantile
function inside box F reaching zero slope.

The quantile-box plot is one of the most useful diagnostics of exploratory data
analysis. The sample values are not transformed and all the original information
about the data is available.

Problem 2.9 Construction of a quantile-box plot

Construct quantile-box plots for samples from the (A) rectangular, (B) normal, (C)
exponential, and (D) Laplace distributions.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: One sample analysis or Exploratory continuous.
Solution: Significant differences in the tail lengths of symmetrical distributions (A, B,
D) and obvious skewing in the case of the exponential distribution (C) can be observed.
For a distribution with long tails (¢.g. D), it 1s difficult to recognize outliers (Fig. 2.14).
Table 2.5 lists the estimates of skewness S, and tail lengths Ty, in the region of octiles
and sedeciles.

Table 2.5—The estimates of sample skewness S, and sample kurtosis expressed by the tail lengths T, for
four samples

Sample skewness Tail lengths
Octiles E Sedeciles D Octiles E Sedeciles D
A 0.040 0.031 0.318 0.478
B 0.027 0.020 0.633 0.990
C —0.160 —0.230 0.407 0.736
D 0.076 0.084 0.565 1.007

Conclusion: The samples taken from the normal and Laplace distribution do not
differ significantly in the octile and sedecile values.

2.4 EXAMINING A SAMPLE DISTRIBUTION BY EDA

The first step in any data examination is to summarize the information contained in
the data. EDA can perform this step in two ways: (a) by use of an appropriate picture
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Fig. 2.14—The quantile-box plot (G10) for samples from (A) rectangular, (B) normal, (C) exponential and
(D) Laplace distributions.

or display, or (b) by calculation of characteristics from the data which indicate certain
basic features.

Some graphical displays can show overall patterns or trends. They can also reveal
surprising, unexpected, or amusing features of data that might otherwise go unnoticed.
When a large number of observations is available, the estimation of the probability
density function or other function characterizing the data distribution can help to
elucidate the structure of the sample.

In order to elucidate the structure of a large sample we can divide the range covered
by the sample into a number of classes, usually of equal length, and then count the
number of members f; of the sample falling into each class. In this way the sample
is reduced to a grouped sample characterized by frequencies f; and mid-point of classes
x;,i=1,...,k k < n Grouping generally leads to a drop in the information content,
especially with small and medium sample sizes.
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The number of classes taken in forming a grouped sample is to some extent arbitrary.
As the class width is reduced, a situation is eventually reached in which there is a
frequency f; of either 1 or 0 in some class. On the other hand if the class width is
increased, the observations in the sample will fall into fewer and fewer classes and
the picture of the structure of the sample presented will become cruder and less
informative. As a compromise between these extremes we use, for example, with a
sample of size 100, about 10 classes. Some empirical rules for choosing optimal number
of classes are discussed in section G13.

Usually the class widths are chosen to be the same, but this is not essential. If the
tails of the distribution contain only a few members of the sample it may be convenient
to take wider classes in the tails than in the rest of the range.

G11: Stem-and-leaf display
The stem-and-leaf display shows

(a) the range of values covered by the data;

(b) where the values are concentrated;

{c) how symmetric the sample is;

(d) whether there are gaps where no values were observed; and
(©

¢) whether any values stray markedly from the rest.

A working stem-and-leaf display is constructed such that the numerical values of the
observations in each class of the distribution are divided into two parts, (1) the stem
which consists of all the digits common to the members of the class, and (2) the leqf,
which consists of the remaining digits. The stems are then written as a column with
the smallest at the top, and the leaves are written on the same lines as their stems
to give an ordered stem-and-leaf display. The leaves in each of the rows may be
ordered to give an ordered stem-and-leaf display.

Problems 2.10 Construction of an ordered stem-and-leaf display

Construct an ordered stem-and-leaf display for the data sample of the weights of 100
aspirin tablets in 8 classes.

Data: The weights of aspirin tablets [10] grouped into 8 classes, are, to the nearest mg:

Class Class Class Tally marks Freq.
boundary mid-value

1 0.324-0.325 0.3235-0.3255 03245 111 3
2 0.326—0.327 0.3255—0.3275 0.3265 1t 7
3 0.328—-0.329 0.3275—0.3295 0.3285 11110 1111t et 11 18
4 0.330-0.331 0.3295--0.3315 03305  tiiit 111t 11t

1111t 1t 23
5 0.332-0.333 0.3315-0.3335 03325 1111 111t 11t

111 1111 24
6 0.334—0.335 0.3335—0.3355 0.3345 1SRRI ERR IR RN 15
7 0.336-—-0.337 0.3355-0.3375 0.3365 i 1 7
8 0.338 —-0.339 0.3375-0.3395 0.3385 111 3

Total 100
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Solution: The stem-and-leaf display is as follows:

Class
Stem Leaves
0.32 4, 5) 545
032 6,7) 77777 77
0.32 (8,9) 99998 89988 88998 998
033 0, 1) 00100 00100 01010 10111 100
0.33 (2, 3) 33322 23332 32233 22222 2222
0.33 4, 5) 54444 55554 45445
0.33 6, 7) 76776 77
033 (8, 9) 988

G12: Kernel estimation of probability density

[x-axis: the variable x, y-axis: the probability density f(x)]

Let x be a continuous random variable. The statistical properties of x may be
determined by specifying the probability density function of x (also termed the frequency
function), f(x) say. A computer may be used to estimate the kernel of the sample
probability density function f(x) for small and medium samples from:

1 2 X — X;
f(x)=;};i; K[ p } (2.14)

In this equation k is bandwidth, which controls the smoothness of f(x), and K (x)
is the kernel function, which is symmetric around zero, and also has the properties
of a frequency function. The actual choice of shape for the kernel function is not
important, so here we consider a bi-quadratic kernel estimate

09375 (1 — x2)? for —1 <x <1
0 for x outside [—1; 1]

The quality of the kernel estimate f(x) is controlled mainly by the selection of
parameter h. If h is too small, the estimate is too rough; if it is too large, the shape
of f(x) is flattened too much. For samples taken from a normal distribution, the
optimal bandwidth h can be calculated from an expression suggested by Scott and
Sheater [4]

hoy = 2.34 an ™02 (2.16)

Lejenne, Dodge and K oelin[ 5] recommend the following procedure for construction
of the kernel estimate of the probability density function.

(1) From Eq. (2.14), calculate an initial guess for the probability density function
F(x)® with the bandwidth

h'® = 0.75 x (n/lOO)fO‘Z X [ X intm2y — x(.')],

K(x) = { (2.15)

then calculate the kernel function K (x) from Eq. (2.15).
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(2) Find the final estimate of the probability density function with the kernel function
(2.15) and non-constant bandwidth from

1 2 X —X;
k) _
x)¢ _n; [ } (2.17)

l

Here the local bandwidth #, is calculated from
hy = B x [f(x,)/max fx;)*] (2.18)

Parameter o is defined in the interval [0, 1] and controls the smoothness of f(x)
Higher values of a lead to a smoothed estimate f(x). The parameter « is usually
chosen to be equal to 1/3. For complex sample distributions, it is useful to construct
f(x) with various values of o and select the one corresponding to maximal visual
smoothness.

Problem 2.11 Construction of the kernel estimate of the probability density function

Construct the kernel estimate of the probability density function for samples from
the (A) rectangular, (B) normal, (C) exponential, and (D) Laplace distributions.
Data: as for Problem 2.2

Solution: The kernel estimates for the four sample probability density functions are
constructed with the use of Egs. (2.15), (2.17), (2.18), for o = 0.7 (Fig. 2.15).
Conclusion: The kernel estimates of the probability density function are in a good
agreement.

G13: Histogram, frequency polygon, bar chart and rootogram

[x-axis: the variable x; y-axis: the probability density function f(x)]

The histogram is one of the oldest classical representations of grouped frequency
distributions. The vertical axis represents roughly the class frequency, and the class
mid-values x;, i = 1,...,k, are plotted on the horizontal axis. With the class mid-value
x; as the centre of its base, a vertical bar of width equal to the class width and height
equal to an empirical relative frequency f;, is drawn for each of the classes.

If the class widths Ax; are not all equal, a histogram constructed by the above
method will give a distorted picture of the distribution—it will overemphasize the
contributions of the classes with the larger widths. In this situation the correct
histogram is constructed with f;/Ax; along the vertical axis instead of f;. When the
Ax; are all the same (= Ax, say) the shape of the histogram will be the same whether
f; or f;/Ax is plotted against x;.

In an ungrouped data sample, the class boundaries x}, j =1, ..., L+ 1, and the
number of classes L should be defined. Then the jth class has two boundaries,

* *
X; X < Xjiq,
and their difference represents the class width,
ok %
Ax; = X7, — x5,

The quality of a histogram will depend on the width of the classes used. For
approximately symmetric distributions, a suitable number of classes Lis given by
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for samples from the distributions: (A) rectangular, (B) normal, (C) exponential, and (D) Laplace.

L= int(2/n)

where int(x) is the integer part of a number x. For a large range of sample sizes
L = int[2.46 x (n — 1)°*]

may also be used. For samples from the normal distribution, the optimal class width is
Ax,p = 3.49 s/n'?

where s is the standard deviation. A robust estimate of class width for approximately
normal data is

Ax,,, = 2F, — Fp)/n'
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where Fy; and F are the upper and lower values of sample quantiles.

For more complicated shapes of sample distribution, the number of classes should
be increased, or some special technique of classes with a non-constant length can be
used.

If the class boundaries for all classes, xj‘, are known, the histogram is calculated from

1

X)=————— C(x¥, x* for x¥ <x<x¥
f( ) n(x}"“—x;") (J }+l) j jt+1
where C(x}, x¥,,) is a function equal to the number of sample observations in the

interval
* *
X; < x <Xy

An alternative method for graphical representation of a grouped frequency
distribution is the frequency polygon. The class frequency values are joined by straight
lines to form an open polygon which is referred to as the frequency polygon. If the
class widths are not all equal, the construction is based on the points (x;, f;/Ax;), as
in the case of the histogram.

A bar chart is used for the graphical representation of a sample distribution in
which all the elements in a given class have the same value. Here the class values are
plotted along the x-axis and a vertical line (or bar) of height equal to the class
frequency is drawn at the class value.

The square-root re-expression of a histogram is the rootogram. The class widths
have not changed; so we keep the same bar widths as in the histogram, but we now
use \ﬁi/Axi as the height of the bar for class i. A suitable re-expression can make
data more regular and easier to look at.

Examples of these graph types are given in Fig. 2.16.

Problem 2.12 Construction of a histogram

Construct a histogram with a constant class width for the samples from the (A)
rectangular, (B) normal, (C) exponential, and (D) Laplace distributions.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Exploratory continuous.

Solution: The histograms in Fig. 2.17 indicate quite obviously the type of distribution
the sample was taken from.

G14: Quantile—quantile plot ((Q-Q plot)

[x-axis: the quantile Qy(P;); y-axis: the order statistic x;, ]

Given a random sample, we often need to find whether the data can be regarded as
a sample from a population with a given theoretical distribution. To look at the
closeness of the sample distribution to a given theoretical one, the quantile — quantile
plot (Q-Q plot)is used [6]. The Q-Q plot allows comparison of the sample distribution
being described by the empirical Q¢(P;) quantile function with the given theoretical
one, with the theoretical Q(P;) quantile function. The empirical Q; function is
approximated by the sample order statistic x;,. If there is close agreement between
the sample and theoretical distributions, it must be true that
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X = QP))

where P, is the cumulative probability chosen as

P, =(i—1/3)(n + 1/3).

(2.19)

When the empirical sample distribution is the same as the theoretical one, the
resulting Q—Q plot is represented by a straight line [see Eq. (2.19)].
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Fig. 2.17—The histograms (G13) for samples from the (A) rectangular, (B) normal, (C) exponential, and
(D) Laplace distributions.

To construct this plot, the parameters of location and spread of the theoretical
distribution (or their estimates) must be known. For many theoretical distributions,
the standardized variable S may be used

S=(x— Q)R (2.20)
where Q stands for a parameter of location or threshold and R for a parameter of
spread. The standardized (theorctical} quantile function Qg(P;) then contains only
shape parameters (their magnitude may be varied).

When there is agreement between the empirical sample and the theoretical
distribution, the Q-Q plot is a straight line

Xy = Q + RQO«(P;) (2.21)
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For selected theoretical distributions the x and y co-ordinates of the Q —Q graph
are given in Table 2.6.

Table 2.6--Standardized frequency fi(s) and distribution F(s) functions, and corresponding co-ordinates
(x, v) of the Q—Q plot

Distribution F(s) fls) ¥ X
Rectangular s 1 X P,
Exponential I —exp(—s) exp{—s) X —In(1 —P))
Normal B(s) (2m) 7172 exp(0.55%) Xy ¢~ (P,
Laplace
x<Q 0.5 exp(s) 0.5 exp(s) X4 In (2P;)
for P, <05
x>Q 0.5[2 — exp(—s)] 0.5 exp(—s) X —In(2(1 — P;))
for P,> 0.5
Log-normal ®[In (s)] (2m) " ' 2exp(—0.5 In s7) Xy exp[®~ 1(P,)]

In Table 2.6 the normal distribution function ®(s) is defined as

D(s) = % Js exp(—0.5u?) du
NA:

x

To calculate the inverse function @~ '(P;), the following simple approximate expression
may be used

®~Y(P,) = —9.4 In[1/P, — 1]/[abs(In(1/P, — 1))] + 14.

Problem 2.13 Construction of the Q-Q plot

Construct the quantile —quantile plot for investigation of agreement between the
distribution of sample (B) in Problem 2.2 and the theoretical (A) rectangular, (B)
normal, (C) exponential, and (D) Laplace distributions.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Distribution checking

Solution: Agreement between the empirical distribution and the theoretical distribu-
tions is assessed by the goodness of the fit to a straight line, which can also be
estimated by the correlation coefficient r.. When the sample distribution is compared
with the normal distribution (B), the correlation coefficient is 0.993, for the rectangular
(A) distribution, 0.963, for the exponential distribution, 0.908, and for the Laplace
one, 0.994.

Conclusion: From the Q—Q graphs shown in Fig. 2.18 is clear that the sample
distribution has slightly longer tails than the theoretical normal one. It is then difficult
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Fig. 2.18—The Q-Q plot (G14) for comparison of the empirical distribution of sample (B} with the
theoretical (A) rectangular, (B) normal, (C) exponential, and (D) Laplace distributions.

to decide if the sample is taken from the normal (correct) or Laplace (incorrect)
distribution.

G15: Rankit plot

(x-axis: the standardized normal quantile up ; y-axis: the order statistic x;)

When it is desired to test whether a given random sample can be regarded as a sample
from a normal (Gaussian) distribution, the resulting Q —Q plot is called the rankit
plot or the normal probability plot. This plot enables classification of a sample
distribution according to its skewness, kurtosis and tail length. A convex or concave
shape indicates a skewed sample distribution. A sigmoidal shape indicates that the
tail lengths of the sample distribution differ from those of the normal one.
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Problem 2.14 Construction of a rankit plot

Construct the rankit plot for samples from (A) rectangular, (B) normal, (C) exponential,
and (D) Laplace distributions with the theoretical one.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Exploratory continuous: Q-Q plot.

Solution: The graphs in Fig. 2.19 indicate short tails (A), or long tails (D), and skewing
of the distribution to higher values in case (C). Also, sample (B) has rather longer
tails than an ideal normal distribution.

G16: Conditioned rankit plot
(x-axis: the function ¢~ '[(u;_, + U, ,))/2]; y-axis: the order statistic x;)
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Fig. 2.19—The rankit plot (G15) for samples from (A) rectangular, (B) normal, (C) exponential and (D)
Laplace distributions.
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Fig. 2.20—The conditioned rankit plot (G16) for samples from the (A) rectangular, (B) normal, (C)
exponential, and (D) Laplace distributions.

Kafander and Spiegelman [7] have recommended the conditioned rankit plot for the
examination of the normality of a sample distribution. The symbol ®~'(U) denotes
the standardized quantile function of the standardized normal distribution where, for
U = P,, it corresponds to the normal quantile Up,. The order statistic U ;, corresponds
to the random variable U, defined by

U; = ®(x; — Az)/6r (2.22)
where the symbol ®(x) stands for the distribution function of the standardized normal

distribution. The robust estimate of location fi = M is equal to the median and the
robust estimate of the standard deviation is

6r = 0.75(X 75 — Xg.25)-
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For complete definition, U, =0 and U, ,,, = 1 are also required. Approximate
linearity of the conditioned rankit plot indicates normality of the sample distribution.

Problem 2.15 Construction of a conditioned rankit plot

Construct the conditioned rankit plot for the samples from (A) rectangular, (B) normal,
(C) exponential, and (D) Laplace distributions.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Exploratory continuous: Q —Q conditioned
Solution: The conditioned rankit plot shown in Fig. 2.20 shows smaller local vanability
than the rankit plot (Fig. 2.19). Sample (B) is proved here to be from the normal
distribution.

G'17: Frequency-ratio plot

(x-axis: the variable x; y-axis: the function xp{x)/[p(x — 1)])

To distinguish between various types of discrete distributions the frequency ratio plot
is used. This plot is based on the expression

2PN ey (2.23)

plx)—1
where the discrete variable x =1, 2, ..., k, and the symbol p(x) stands for the
probability frequency function. Equation (2.23) is valid for many discrete distributions.
By comparing estimated values of the slope C, and intercept C, of a straight line on
the frequency ratio plot with theoretical values from Table 2.7, the actual type of
discrete distribution may be identified.

Table 2.7—The slope C, and intercept C, of the straight line in the frequency ratio plot

Distribution Probability function p(x) Slope C, Intercept C,,
Poisson exp(—A)AY/x! 0 /.
Binomial® n N pin+ 1)
pt—pr > —pil —p)

X (1-p)

Negative binomial® n+x—1
i —py L—p {n— 1}1 —p)
X

Geometric' p(l —pr! 1—p 0

Ywhere n, p are parameters of the distribution

Problem 2.16 Construction of a frequency ratio plot

Four hundred values from the Poisson distribution with 4 = 2 were generated. The
sample estimate 4 is 2.053. Construct a frequency ratio plot and indicate the actual
distribution.

Data: A random number generator was used to generate 400 numbers for the Poisson
distribution (4 = 2).
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Fig. 2.21—The frequency ratio plot (G17) for a sample from the Poisson distribution.

Program: Chemstat: Basic Statistics: Exploratory discrete.

Solution: The frequency ratio plot is shown in Fig. 2.21.

Conclusion: This plot (Fig. 2.21) shows great scatter about the line y = £ but the
sample distribution can be approximated by the Poisson distribution.

G18: Poisson plot
(x-axis: the variable x; y-axis: the function In(x!n,/n))
The Poisson plot is based on the validity of the equation

In(x!n,/n) = —4 + x In A (2.24)

where the absolute frequency n, represents the number of sample values reaching the
magnitude x, and »n is the sample size. If the actual distribution is of Poisson nature,
the Poisson plot is a straight line with slope In 4 and intercept 2. When an estimate
of £ is known, the “theoretical” straight line y = — 4 + x In Z may be drawn.

Problem 2.17 Construction of a Poisson plot

Construct the Poisson plot for the data used in Problem 2.16.

Program: Chemstat: Basic Statistics: Exploratory discrete.

Solution: The Poisson plot shows that the data points are in good agreement with
the “theoretical” straight line

y = —2.053 + x(In 2.053)

and therefore the sample comes from the Poisson distribution.
Conclusion: the Poisson plot is shown in Fig. 2.22.
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Fig. 2.22 - The Poisson plot (G18).

G19: Modified Poisson plot

[x-axis: the variable x; y-axis: the function In(x!n,/n) + (i, — x In 4,)]

To examine the suitability of the value selected for parameter i, in the Poisson
distribution, the modified Poisson plot can be used. When the estimate 4, is reasonably
suitable, the sample points lie on the horizontal line y = 0.

Problem 2.18 Construction of a modified Poisson plot

Construct the modified Poisson plot for the data sample used in Problem 2.15.
Solution: The estimate A, = 2 is used to construct the modified Poisson plot. Since
all the points are randomly spread around the horizontal straight line y = 0, the
sample comes from a Poisson distribution with the mean equal to 2.

Conclusion: The plot is shown in Fig. 2.23.

2.5 DATA TRANSFORMATION

When exploratory data analysis proves that the sample distribution strongly differs
from the normal one, we are faced with the problem of how to analyse the data. Raw
data may require re-expression to produce an informative display, effective summary,
or a straightforward analysis. We may need to change not only the units in which
the data are stated, but also the basic scale of the measurement. To change the shape
of a data distribution, we must do more than change the origin and/or unit of
measurement. Changes of origin and scale mean linear transformations, and they
leave shape alone. Nonlinear transformations such as the logarithm and square root
are necessary to change shapes.

Data must be examined so as to find the proper transformation which leads to
symmetric distribution of data, stabilizes the variance, or makes the distribution closer
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to normal. Such transformation of original data x to a new variable y = g(x) is based
on an assumption that the data represent a nonlinear transformation of the normally
distributed variable y, according to x = g~ !(y).

Transformation for variance stabilization involves finding a transformation y = ¢(x)
in which the variance () is constant. If the variance of the original variable x is a
function of type a?(x) = f,(x), the variance ¢*(y) may be expressed by

d 2
ai(y) ~ < (gi(;)> filx)=C (2.25)

where C is a constant. The chosen transformation g(x) is the solution of the differential
equation

dx

V i(x)

In some instrumental methods of analytical and physical chemistry, the relative
standard deviation &(x) of the measured variable is constant. This means that the
variance ¢(x) is described by a function ¢?(x) = f,(x) = 6%(x)x? = const x x2. The
substitution into Eq. (2.26) will be g(x) = In x, so that one form of transformation of
original data is the logarithmic transformation. This transformation leads to the use
of a geometric mean.

When the dependence o%(x) = f,(x) is of power nature, the optimal transformation
will also be a power transformation. Since for a normal distribution the mean is not
dependent on the variance, a transformation that stabilizes the variance makes the
distribution closer to normal.

Transformation for symmetry is carried out by a simple power transformation

g(x) ~C (2.26)
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x* for parameter 1 >0
y=¢gx}= In x for parameter 2 =0 (2.27)
—x~*  for parameter A <0

which does not retain the scale, is not always continuous, and is suitable only for
positive data x. Optimal estimates of parameter A are sought by minimizing the
absolute values of particular characteristics of asymmetry. In addition to the classical
estimate of skewness g,(y), [Eq. (3.29)] the robust estimate g, x(y) is used:

gl.R(y) - (5}0.75 - PO.SO) - (j/O.SO B 5}0.25)

(2.28)

)~’ 0.75 J~’ 0.25
The relative distance between the arithmetic mean and the median may also be utilized:

ZIP(,V) =¥ Y~ Yo.s0 1/2
[ (i — 9 /in — 1)]
i=1

because for symmetrical distributions this is equal to zero.
The estimate of parameter 4 may be found also from a rankit plot, because for an
optimal value of 4 the transformed quantiles y, will lie on the straight line.

(2.28)

G20: Hines—Hines selection graph

(x-axis: the ratio X, s/X, _p., y-axis: the ratio X, /X, s)

An excellent diagnostic tool enabling estimation of parameter 4 is represented by the
Hines—Hines selection graph [8]. This is based on an assumption of symmetry of
individual quantiles around a median

(ipi/’?o.s)l + (5(0.5/5(1_&)_'.‘ =2 (2.30)

where, for the cumulative probability P; = 27 the letter values F, E (i = 2,3) are
usually chosen.

To compare the empirical dependence of the experimental points with the ideal
one, patterns for various values of parameter 4 are drawn in a selection graph. These
patterns A represent a solution of the equation y* + x~* = 2 in the range 0 < x <1
and0<y<1:

(1) for A = 0 the solution is a straight line y = x;
(2) for 4 < 0 the solution takes the form y = (2 — x~4)174;
(3) for 4 > 0 the solution takes the form x = (2 — y*)~ !4

The estimate £ is guessed from a selection graph, according to the location of
experimental points near to the various theoretical patterns.

Problem 2.19 Estimation of 2 from a Hines—Hines selection graph

Construct the Hines—Hines selection graph for the sample (E) taken from the log
normal distribution (Problem 2.2) and find the optimal power transformation with
the use of the estimate of parameter /.
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Fig. 2.24—Determination of / from a Hines-Hines selection graph (G20).

Data: sample (E) from Problem 2.2

Program: Chemstat: Basic Statistics: Power transformation: Hines-Hines plot
Solution: The selection graph shown in Fig. 2.24 suggests that the best estimate for
parameter A is A = 0, because the experimental points oscillate around the curve
4= 0. The value 4 = 0 corresponds to a logarithmic transformation.

Conclusion: The simulated data from a log-normal distribution have shown that a
selection graph was able to find a suitable value of the transformation parameter
/=0 that would lead to normality.

In many cases sample distributions can be transformed to approximate normality
by use of the family of Box—-Cox transformations defined as

(= 1)/2 for A #0

2.31
In x for A=0 ( )

y=4gx)
where x is a positive variable and 4 is real number. Box-Cox transformation has
following properties:

(1) The curves of transformation g(x) are monotonic and continuous with respect
to parameter 4, because

lim (x* — 1)/A =In x (2.32)

Ai=0

(2)  All transformation curves share one point [y = 0, x = 1] for all values of i. The
curves nearly coincide at points close to [0,1); that is, they share a common
tangent line at that point.

(3) The power transformations with exponent —2, —3/2, —1, —1/2, 0, 1/2, 1, 3/2,
2 have equal spacing between curves in the family of Box—Cox transformation
graphs.
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The Box—Cox transformation defined by Eq. (2.32) can be applied only for positive
data. To extend this transformation, the x values are replaced by (x — x,) values,
which are always positive. Here x,, is the threshold value x, < x,.

G21: Plot of logarithm of likelihood function

{x-axis: the parameter A; y-axis: the logarithm of the likelihood function In L)

To estimate parameter 4 in the Box—Cox transformation, Eq. (2.31), the method of
maximum likelihood may be used, because for 4 = /. a distribution of the transformed
variable y is considered to be normal, N[y, 6%(y)]. The logarithm of the maximum
likelihood function may be written as

In L(A) = — g In () + (A — 1) Z in x, (2.33)
i=1

where s%(y) is the sample variance of the transformed data. y. The function In L= f(/)
is expressed graphically for a suitable interval, for example, —3 < /4 < 3. The
maximum on this curve represents the maximum likelihood estimate £

The asymptotic 100(1 — o)% confidence interval of parameter A is expressed by

21n L) — In L(A)] < ¢2_ (1) (2.34)

where y7_ (1) is the quantile of the y? distribution with 1 degree of freedom. This
interval contains all values 4 for which it is true that:

In L(A) > In L(A) — 0.5 x3_ (1) (2.39)

This Box—Cox transformation is less suitable for wide confidence intervals. When the
value 4 =1 is also covered by this confidence interval, the transformation is not
efficient.

Problem 2.20 Construction of the plot of the logarithm of maximum likelihood
Construct the plot of the logarithm of maximum likelihood for sample (E) from the
log normal distribution.

Data: sample (E) from Problem 2.2

Program: Chemstat: Basic Statistics: Power transformations.

Solution: The plot of logarithm of maximum likelihood for sample (E) is shown in
Fig. 2.25. The optimal estimate is £ =0, for which the logarithm of maximum
likelihood reaches the value In L= —31.4. The 95% confidence level is graphed too.
Figure 2.26 shows the quantile box plot and rankit plot for both the original and
transformed data. With respect to skewness, the optimal estimate of u is A =0 but
with respect to the robust skewness gg(y), it is 4 = 0.133. The optimal value of x is
that for which g' (or gg) reaches a value near zero.

2.6 RE-EXPRESSION OF STATISTICS FOR TRANSFORMED DATA

After an appropriate transformation of the original data {x} has been found, so that
the transformed data gives an approximately normal symmetrical distribution with
constant variance, the statistical measures of location and spread for the transformed
data {y} are calculated. These include the sample arithmetic mean y, the sample

P v e v
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Fig. 2.25—The plot of the logarithm of maximum likelihood (G21).

variance s%(y), and the confidence interval of the mean j + ¢, _aan— l)s(y)/\/;. These
estimates must then be recalculated for the original data {x}. Two different approaches
to re-expression of the statistics for transformed data exist.

(1) Rough re-expressions represent a single reverse transformation X = ¢~ !(y). This
re-expression for a simple power transformation leads to the general mean

n 1/4

Xp=X, =2 — (2.36)

where for 2 = 0, In x is used instead of x* and ¢* instead of x!/*. The re-expressed
mean X = X _, stands for the harmonic mean, Xy = X, for the geometric mean, 3z = X,
for the arithmetic mean and Xz = x, for the quadratic mean.

(2) More correct re-expressions are based on the Taylor series expansion of the
function y = g(x) in the neighbourhood of the value . The re-expressed mean X is
then given by

1d2 d -2
By (y -3 dgif) (%(;‘)) s%y)) (2.37)
For the variance
d -2 .
) © < d“j’) $0) (23%)

where individual derivatives are calculated at the point x = X;. The 100(1 — %)%
confidence interval of the re-expressed mean for the original data may be defined as
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Fig. 2.26—The EDA graphical examination of a sample from the log-normal distribution: (A) the
quantile-box plot (G10), (B} the rankit plot (G15). Upper graphs are for the original data, and lower for
logarithmically transformed data.

Xp— I <u<ig+1y (2.39)
where
IL=g¢ '[7 4+ G — 1, _,(n — Ds(y)//n] (2.39a)
To=9"'[7 + G + t, _,p(n — Ds(y)/y/n] (2.39b)
_ 1dg(x) (d ¢g(x) w2,
G“_id_x2<dx> s2(y) (2.39¢)
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On the basis of the (known) actual transformation function y = g(x) and the
estimates y, s*(y), it is easy to calculate re-expressed estimates X and s%(xg):

(1) For a logarithmic transformation (4 = 0) and g(x) = In x, the re-expressed mean
and variance will be given by Eq. (2.37), i.e.

Xg ~ exp[y + 0.5 s*(y)] (2.40)
and
sH(xg) & Xgs2(y) (2.41)

(2) For 4 # 0 and the Box —Cox transformation, Eq. (2.31), the re-expressed mean
xg will be represented by one of the two roots of the quadratic equation

X2 = [05(1 +27) £ 05{1 + 245 + s*(y) + 22(9* — 25°()} 2] (2.42)

which is close to the median %, 5 = ¢~ '(Jo.5). If Xz is known, the corresponding
variance may be calculated from

$(x) = Xy 2+ 25%(y) (243)

Problem 2.21 Re-expressed statistics for logarithmic data

Make a reverse transformation of the statistics estimated for the sample (E) from the
log—normal distribution, and compare the rough and correct approaches to
re-expressed estimates.

Data: sample (B) from Problem 2.2

Program: Chemstat: Basic Statistics: Power transformations.

Solution: Logarithmic transformation of the sample (E) leads to estimates y = 0.41
and s*(y) = 3.226. The correct approach of Eq. (2.40) gives for the re-expressed mean

xg = exp(0.041 + 0.5 x 3.226) = 5.23.
The rough approach gives
Xgp = exp(0.041) = 1.05
which is significantly smaller. From Eq. (2.41) the re-expressed variance is

s3(Xg) = 5.23% x 3.226 = 88.24.

2.7 CONFIRMATORY ANALYSIS OF ASSUMPTIONS ABOUT DATA

Statistical treatment of experimental data supposes that the data are independent
random variables from the same distribution, which may be normal in nature, and
that the sample size is sufficient for precise estimates of location and spread to be
obtained.

When some of these assumptions about data are not fulfilled, the data analysis is
rather complicated. These assumptions are examined in confirmatory data analysis
(CDA).
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2.7.1 Examination for minimum sample size
The sample size has an influence on the precision of estimates; e.g., the variance of
the parameter estimate is a function of 1/n. The sample size n controls the size of
confidence intervals; i.e., for larger values of n, the confidence interval is smaller. For
very small sample sizes it may happen that the class width and hypothesis tests are
affected more by the sample size n than by the variability of data. The procedure for
finding the sample size that is sufficient is as follows:

(1) From n, starting values, the sample variance si(x) is calculated. The minimum
size n,;, of a sample taken from a normal distribution is calculated in such a way
that for a given probability (1 — «) and value of d, the confidence interval will be

p—d<x<p+d,
and n,,;, 1s then given by
R = So(t1 — a2y — 1)/dT? (2.44)

where t, _, ,(n; — 1) is the quantile of the Student distribution with (n;, — 1) degrees
of freedom.

(2) The minimum size n,,;, of a sample from the normal distribution may be chosen
such that the relative error of the standard deviation J(s) has a particular value

A = 1 + [§2(x) — 11/[46%(s)] (2.45)
where §,(x) is the estimate of the kurtosis of the sample distribution given by Eq.
(3.30). The value of &(s) usually chosen is 10%, i.e. 0.1. The minimum size n;, is
several tens, so typical sample sizes used in chemical laboratories n = 5, 10, ... are
too small from the statistical point of view.

Problem 2.22 Minimum sample size for samples from various distributions
Determine the minimum sample size n,;, for samples from the (A) rectangular, (B)
normal, (C) exponential, (D) Laplace, and (E) log-normal distribution.

Data: as for Problem 2.2

Program: Chemstat: Basic Statistics: Assumptions testing.

Solution: For a relative error of the standard deviation of (s) = 10%, n,,;, can be
calculated from Eq. (2.45). The results are given in Table 2.8.

Table 2.8—Minimal sample size n,;, for five distributions, calculated for (s) = 10%

min

Distribution Skewness Minimal size
Rectangular 1.8 21
Normal 3.0 51
Exponential 6.0 126
Laplace 9.0 176
Log-normal 15.0 351

Conclusion: The sample size (n = 50) chosen for Problem 2.2 is suitable for the
rectangular and normal distributions only. For the other three distributions it is too
small, and does not ensure the requested value of d(s) = 10%.
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2.7.2 Examination for independence of sample elements

The basic assumption of good measurement is that the individual measurements
(observations) in the sample set are independent. Interdependence of measurements
may be caused by

(1} instability of the measurement equipment, for example, a shift in readings with
time;

(2} variable conditions of measurements, which could suddenly change;

(3) neglect of factor(s) which have a great influence on measurement, for example,
the sample volume, temperature, purity of chemicals, etc.

(4) false and non-random (stratified) choice of values in a sample.

When all the experimental factors change over time, a time dependence in the
observations may be indicated if the observations are arranged in order of time. When
there is a sudden change in observations, a heterogeneous sample is formed. In both
the above cases, a higher value for the variance is found than for a homogeneous
sample.

Any time dependence or dependence on the order of observations is tested for by
examining the significance of the autocorrelation coefficient p, according to

to=T/(n+ 1)//(1 = T)) (2.46)
where
T, =(01- T/2)\/[(n2 — 1)/(n? — 4)] (2.46a)
and T is the von Neumann ratio defined by
"il (X4 1) — Xp)*
T=1=1 (2.46b)

M=

(x(i) - SC)Z
1

When the null hypothesis Hy: p, = 0 is valid, the test criterion ¢, has the Student
distribution with (n + 1) degrees of freedom. The alternative hypothesis H,, is p, # 0.
When |t,| > t,_,,(n; + 1), the null hypothesis about the independence of sample
observations is rejected at the significance level a.

There are other nonparametric tests and tests for autocorrelation of higher order
which are applicated individually or simultaneously. To find any interdependence of
data, the whole measurement process and data collection should be examined.

Problem 2.23 Test for independence of sample elements

The sample (A) used in Problem 2.2 was generated from R,,, = (z + R,)® —
int(z+ R)% i=1,...,50, with R, = 0. Test the data for independence.

Program: Chemstat: Basic Statistics: Assumptions testing.

Solution: From Eq. (2.46b) the von Neumann ratio T= 2.149 and the test criterion
|t,| = 0.534. Since the quantile of the Student t-test ¢, 4,5(51) = 1.96 is significantly
larger, there is no evidence for autocorrelation of the elements of the data.
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2.7.3 Testing for normality of sample distribution

Normality of a sample distribution is the basic assumption of most statistical data
treatment, because many statistical tests require normality. When the type of deviation
from normality of the sample is known before statistical inference, the directional
tests are used; when the type of deviation from normality is unknown, the omnibus
tests are used.

Generally, statistical tests are less sensitive to deviations from normality than
diagnostic graphs. Moreover, deviation from normality can be caused by the presence
of outliers. When the normality of a sample distribution is not proved, the data
should be analysed with great care. To test normality of a sample distribution, the
rankit plot is one of the most useful tools, but other useful tests are available.

(1) Test for combined sample skewness and kurtosis
The test criterion is defined as

_ 8, [9:09 =37
'TDE,) T DG

where 4,(x) is the sample skewness and D(g,(x)) is its variance, §,(x) is the sample
kurtosis and D(g,(x)) is its variance (calculated from Eqgs. (3.19a)(3.20a)). For a normal
distribution, the test criterion C, has approximately the y? distribution, so that when
C, > xi-4(2), the null hypothesis about normality of sample distribution is rejected.

(2.47)

(2) Anderson— Darling test

This test is based on the empirical distribution function Fg(x). The null hypothesis,
Hy: Fg(x) = Fylx) is tested vs. H,: Fg(x) # F(x) where Fi(x) is the distribution
function of the fully specified distribution. The test criterion is defined as

AD =n — [Z Qi—1[In Z,+1In (1 — z,,_,.H))]}/n (2.48)

i=1
where Z, is the standardized variable
Z; = Fy(x).

To test for normality, the null hypothesis is formulated as H,: Fg = N (x; s%) and the
variable

Z; = ®f(xq — X)/s]

represents the quantities of the normal distribution. When AD > D, _,, the null
hypothesis about normality is rejected. The quantile D, 5 may, for large samples,
be approximated by

Dgos = 1.0348 (1 — 1.013/n — 0.93/n?) (2.49)

Problem 2.24 Examination of the normality of five samples
Apply the normality tests to samples from the (A) rectangular, (B) normal, (C)
exponential, (D) Laplace, and (E) log—normal distributions.
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Data: as for Problem 2.2.

Program: Chemstat: Basic Statistics: Assumptions testing.

Solution: Two different tests were applied to the five samples, and the results are
given in Table 2.9.

Table 2.9—Normality tests made at the significance level « = 0.05; Hy: Fp = N(x;s?)
vs. Hy: Fg # N(x; 5%)

Sample C, test: Hy is AD test: H, is
(a) accepted accepted
(b) accepted accepted
(c) rejected rejected
(d) rejected rejected
(e) rejected rejected

Conclusion: Neither test can distinguish between the rectangular and normal
distributions. The other distributions are correctly indicated as not being normal.

2.7.4 Testing for homogeneity of sample
Sample heterogeneity becomes evident when a sample contains outliers or when the
sample can be logically divided into several sub-samples, each of which can be analysed
separately. Testing the difference between sub-sample averages can indicate whether
the separation into sub-samples can be taken as significant or not. We limit ourselves
here to the situation when outliers exist in a data batch. Outliers significantly differ
from all other values and can be readily identified by EDA plots. Outliers cause
distortion of the estimates X and s? and may impair the subsequent statistical testing.
There are many different techniques for identifying outliers, when a normal
distribution of data can be assumed. One of the simplest and most efficient methods
seems to be Hoaglin's modification of inner bounds BY and B, (Fig. 2.7)

Bf =Xp.25 — K(Xg.75 — Xg.25) (2.50a)
and
By = X475 + K (X075 — Xo.25) (2.50b)

where the value of parameter K is selected such that the probability P(n, K ) that no
observation from a sample of size n will lie outside the modified inner bounds [Bf, B]
is sufficiently high, for example, P(n, K') = 0.95. For P(n, K) = 0.95 and 8 < n < 100,
Hoaglin [9] uses the following equation for calculation of K:

K ~225—-3.6/n (2.51)

All elements lying outside the modified inner bounds [B}, B¥] are considered to be
outliers.

Problem 2.25 Identification of outliers in a sample

Find outliers in samples from the (A) rectangular, (B) normal, (C) exponential, (D)
Laplace and (E) log-normal distributions with the simplifying assumption that each
sample comes from a normal distribution.
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Data: as for Problem 2.2.

Program: Chemstat: Basic Statistics: Assumptions testing.

Solution: According to Hoaglin’s modification of inner bounds Bf and B, n,,, values
are excluded from each sample as outliers (Table 2.19)

Table 2.10—Excluding outliers by an external hinges technique

Sample B} B} Ry
A —0.956 1.928 0
B —338 3.27 0
C —2.289 3.941 2
D —4.21 4.09 2
E —6.358 10.04 5

Note: the simplifying assumption of normality gives misleading results for samples
with skewed distribution, or samples of a distribution with long tails. The apparent
outliers should not therefore be excluded from these samples.

2.8 SUMMARY OF THE PROCEDURE FOR EDA AND CDA OF
UNIVARIATE DATA

The extent of exploratory (EDA) and confirmatory (CDA) data analysis of univariate
data is best chosen according to experience from previous data analyses. Here, we
consider two common situations:

(a) the treatment of routine data, and
(b) the treatment of new data when no preliminary information is available.

(a) The analysis of routine data

With routine data, some knowledge of the sample distribution is assumed-it is usually
normal, and the data elements are homogeneous and independent. Tests for examining
all assumptions about data should include

(i) a test for minimal sample size;

(i) a test for independence of sample elements;
(i) a test for normality;

(iv) a test for homogeneity of sample.

Graphical EDA techniques such as the rankit plot (G15) and quantile-box plot (G10)
are often used.

When no preliminary information about the data is available, the full range of
EDA plots should be followed by determination and construction of the sample
distribution. When no suitable distribution has been found, a power transformation
of the data is recommended.

To summarize a batch of experimental data, the quantile-box plot (G10) is always
used.
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(b) The analysis of new data
There are several cases that require different strategies for the EDA and CDA
procedures.

Case 1. No independence of sample elements

When the sample elements are not proved to be independent, a danger of systematically
biased and over evaluated estimates for a positive value of p, Eq. (2.46) arises.
Therefore, a new logical analysis of the experimental equipment and data measurement
procedures is necessary: after an improvement in the experimental strategy, the new
data should be examined again.

Case Il. The sample distribution is not normal
The actual sample distribution is not normal in nature, or outliers are present in the
data. When the distribution is not normal, the deviation can be in the lengths of tail
or in skewing. When tails differ in length, robust estimates (Section 3.3) may be used,
or a power transformation chosen. For skewed distributions, a power transformation
should be always used. When a power transformation is successful and the optimal
value 4 is found, the estimates of the parameters of location and spread can be
calculated and re-expressed in the measure of the original variables. If the power
transformation is not successful, exploratory data analysis can be used to find a
suitable approximate theoretical distribution. The estimates of location and scale can
then be found as appropriate.

When the actual distribution is strongly skewed, with skewness §,, the modified
random variable ¢_ is used,

P TR TR N/
tc—[(x R e u)J : 252)

where ¢, has the Student distribution with n — 1 degrees of freedom. In practical
calculations the variance o is replaced by its unbiased estimate s and the skewness
g, by its unbiased estimate

g, = (——n_l — :z (2.53)

For construction of the confidence intervals according to Eq. (2.32)
H <p<Hy,
the quadratic equation for y should be solved. The limits H, and H,; will then be

+ L=V (2.54)

H =x 2C,
1—./d
Hy=Xx+ —L (2.55)
20,

where
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C, = §,/3s* (2.56a)
d, =1—4C,(C, - C) (2.56b)
d,=1—4C,(C, + C) (2.56¢)
C, = §,/(6s%n) (2.56d)
C=1t,_,n—s//n (2.56¢)

The confidence interval of the mean, H; < u < H;, can also be used for statistical
inference about this parameter of location.

Case 111. Sample not homogeneous

It should first be considered whether the distribution is skewed or not, because some
points would appear to be outliers for a symmetrical (normal) distribution, but would
be accepted in a skewed distribution. When some points may be extremes or outliers
there are two alternatives. (1) Exclude the outliers from the data batch. For a small
sample size, this may lead to loss of valuable information. (2) Apply robust methods.
In both cases the experimenter should be consulted about the suspect points from
the physical point of view, in order to consider the possibility of gross errors.

Case IV. The sample size is not sufficient

The best solution is to carry out new experimental measurements. As a general rule,
when the variance of the data is small, a relatively smaller sample size will be required
for any given precision of estimate. When no extra experiments can be carried out,
the technique for small sample sizes should be applied (Section 3.3.4). This is
convenient for routine data analysis, but for new data, exploratory data analysis
should be used first, so that any statistical peculiarities of the sample are determined.

29 ADDITIONAL SOLVED PROBLEMS

Problem 2.26 Use of EDA in the determination of phosphorus in blood

A random sample of fifty milk cows was taken from a herd of 2900 cows, and the
blood of each was analysed for phosphorus content, in mmoles per litre. Apply EDA
to determine the sample distribution, and to decide whether the measures of location
and spread should be computed from classical moment or robust quantile estimators.
Data: the phosphorus content {[mmol/1]; n = 50.

1.74, 2,05, 2.35, 221, 1.50,
217, 272, 191, 195, 220, 229, 184,
221, 140, 251, 219, 1.51, 209, 228,
1.43, 2.50, 244, 208, 227, 179, 216,
203, 208, 212, 196, 196, 1.79, 276,
1.83, 2.10, 2.17, 1.55, 214, 192, 228,
243, 217, 221, 1.82, 228, 217, 240,
1.87, 198, 2.56.
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Fig. 2.27—The EDA diagnostics for Problem 2.26: (A) the quantile plot G1; (B) dot diagram G2, and
jittered dot diagram G3; the box-and-whisker plot G4, and the notched box-and-whisker plot G5; (C)
the midsum plot G6; (D) the symmetry plot G7.

Program: Chemstat: Basic Statistics: Exploratory continuous.
Solution: The diagnostic graphs of EDA are used as follows. The quantile plot G1
shows small deviations from the normal distribution, especially at low values. The
dot diagrams G2—G3, and the box-and-whisker plots G4 —G5 (Fig. 2.27) indicate
that five low measurements and two high measurements differ from the rest of the
sample. The distribution is skewed to lower values, and both skewness and kurtosis
differ from the expected values (the diagnostics G6, G7 and G8 in Figs. 2.27 and 2.28).
The non-parametric kernel estimate of probability density function G12 in Fig.
2.28 and the histogram G13 indicate that the distribution is skewed to lower values
in comparison with the normal distribution. Therefore the mode %__, is also shifted
from the arithmetic mean X.

mod
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Fig. 2.28—The EDA plots for Problem 2.26: (A) the kurtosis plot G8; (B) the kernel estimate of probability
density function G12; (C) the histogram G13; (D) the rankit plot G15.

Both the rankit plot G15 (Fig. 2.28) and the modified rankit plot G16 (Fig. 2.29)
prove that there is a significant separation of five lowest and two highest values of
the sample. The quantile-box plot G10 (Fig. 2.29) and the numerical values of quantile
measures of location and scale in Table 2.11 show (1) there is asymmetric skewing,
which is largest in the quartile range, and (2) the five lowest and two highest values
are outliers.

To improve the distribution the power transformation was used. A Hines—Hines
selection graph was analysed and a convenient transformation was found to be in
the range 1.5—2. With 1 = 1.6, the distribution is near to normality (Table 2.11). The
plot of the logarithm of the likelihood function G21 gave 1 = 1.5. The 95% confidence
interval of A is so broad that it also covers the value A = 1; thus from a statistical
point of view this transformation is not significant.
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Fig. 2.29—The EDA diagnostics for Problem 2.26: (A) the modified rankit plot, G16, (B) the quantile-box
plot, G10, (C) the Hines—Hines selection graph, G20, and (D) the plot of the logarithm of the likelihood

function, G21.

Table 2.11(a)--The quantile measures of location

Quantile P Lower quantile Upper quantile Range
Median 0.5 2.130 2.130 -

Quartile 0.25 1.900 2.280 0.380
Octile 0.125 1.759 2436 0.678
Sedecile 0.0625 1.502 2.551 1.049
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Fig. 2.30—The EDA diagnostics for Problem 2.27: (A) the dot diagrams G2 —G3 and the box-and-whisker
plots G4 —GS5, (B) the symmetry plot G7, (C) the kurtosis plot G8, and (D) the kernel estimation of the
probability density function G12.

Table 2.11(b)—The quantile measures of spread and shape (the values for the transformed data are given
in brackets).

Quantile P Midsum Skewness Tails length of
the sample the normal
distribution distribution
Quartile 0.25 2.090 0.105 0.000 0.000
(1.354) (0.094) (0.000) (0.000}
Octile 0.125 2.098 0.048 —1.025 0.578
(1.378) (0.0280 (—0.037) (0.517)
Sedecile 0.0625 2.026 0.099 0.125 0.801
(1.305) (0.068) (0.725) (0.801)
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Fig. 2.31—The EDA diagnostics for Problem 2.27: (A) the histogram, G13. (B) the rankit plot, G185, (C)
the modified rankit plot, G16 and (D) the quantile-box plot, G10.

Conclusion: The sample batch deviates from normality, and this has significant
influence on the measures of location and spread. The robust quantile estimators are

more suitable for these data.

Problem 2.27 EDA in determination of trace copper in kaolin

Trace copper was determined in a standard sample of kaolin, and the values were
arranged in increasing order. Examine the type of sample distribution and decide

what type of measures of location and spread should be used.

Data: copper concentration [ppm]; n = 17.
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4, 5 7, 7, 7, 8, 83, 84, 94, 95, 10, 105, 12, 128, 13, 22, 23.

Program: Chemstat: Basic Statistics: Exploratory continuous, power transformations,
assumptions testing.

Solution: On examination of the EDA diagnostics, the following were noted. The dot
diagrams G2—G3 and the box-and-whisker plots G4 —GS (Fig. 2.30) indicate two
outliers, but these could be accepted if the distribution is skewed.

The symmetry plot G7 and the kurtosis plot G8, the non-parametric kernel
estimation of the probability density function G12, (Fig. 2.30) and the histogram G13
(Fig. 2.31) indicate that the distribution is skewed towards higher values.

The rankit plot G15, with a convex increasing shape, confirms that the distribution
is skewed to higher values. The modified rankit plot G16 (Fig. 2.31) indicates that,
if the two highest and two lowest points are omitted, the distribution would appear
to be normal. The box plot with quantiles G10 and corresponding quantile measures
confirm that the distribution is skewed because of the two highest points.

The second part of EDA concerns the search for a suitable symmetric transformation
of the data. The selection graph G20 (Fig. 2.32) shows that the optimal power reaches
a value above —0.5 in the range near zero which corresponds to a logarithmic

transformation.
From the plot of the logarithm of the likelihood function for the Box—Cox
transformation the maximum of the curve is at A = —0.2. The corresponding 95%

confidence interval does not contain the value 4= 1, so this transformation is
statistically significant. The quantile-box plot G10 together with the rankit plot G15
(Fig. 2.32) show that there is a significant improvement in the distribution symmetry
with the transformation £ = —0.2.

The measures of location, spread and shape for the original data have the values
% = 10.406, s¥(x) = 26.834, ! = 1.399, §*(x) = 4.272. After a logarithmic transform-
ation (4 =0) the values are 2.243, 0.203, 0.304 and 3.070, and after a power
transformation (4 = —0.2) they are 1.795, 0.081, 0.041 and 3.052.

By rough re-expression [Eq. (2.36)] xp = exp(¥*) = 9.337. The corresponding
confidence limits are I, =7.742 and [I,=11.878 (Eq. (2.39ab)). Quantile
to.o75(16) = 2.12. By the approximate re-expression [Eq. (2.37)] Xg = 10.42 with
I, = 8272 and I, = 13.147 [Eq. (2.42)].

In the comparison of the sample distribution with the theoretical exponential one,
the correlation coefficient r,, of the Q—Q plot G14 is found to be 0.967, while for
the log-normal one, r,, is 0.961.

Conclusion: The assumption of a log-normal distribution is acceptable. Because of
the small sample size it is difficult to be certain whether there are outliers in the
sample, or if the sample distribution is of skewed log-normal or of skewed exponential
nature.

Problem 2.28 Investigation of number of micro-organisms

In biomedical laboratories, the counting of micro-organisms in individual fields of a
square net under the microscope is common. Micro-organisms were counted in
n = 118 rectangular fields. The number of fields n, containing x (=0, 1, 2, ..., 6)




Sec. 2.9] Additional solved problems 91

-23.5
B
y s
2 % alfa= 95%
x x
2 %
xX x
X X
x x
x x
-34.3 o o
x x
x x
x x
x x
x x
-l *x
x
x
x
x
-45.2 x
- o X' =
cvla o ™
3.1 - 3.2
y ¢ y x P
2.3 /(,_,/E‘/ 2.3
1.4 1.3
c 0 X © =] o x 9
o o - o~ o o~
|

Fig. 2.32—The transformation of data: (A) the selection graph G20, (B) the plot of the logarithm of the
likelihood function G21, (C) the quantile-box plot G10 for the transformed data, (D) the rankit plot G15
for the transformed data.

micro-organisms make up the sample. It is assumed that the numbers of micro-
organisms in the individual fields of square net have the Poisson distribution with
Ao = 2.960. Examine this assumption and estimate parameter A and its confidence
interval.

Data:

X 0O 1t 2 3 4 5 6
519 26 26 21 13 8

X

Program: Chemstat: Basic statistics: Exploratory discrete.
Solution: The maximum likelihood estimate of parameter 1 is calculated from Eq.
(3.34) to be 4 = 2.932. The calculated numbers of fields n, are estimated from
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Fig. 2.33—The EDA diagnostics for a discrete distribution: (A) the Poisson plot, G18, (B) the modified
Poisson plot, G19, and (C) the frequency ratio plot, G17.
A, = plx, An

and are given in Table 2.12. The function p(x, 4) is found from Eq. (3.31). The lower
(L) and upper (U) limits of In(n,) are calculated from

L =In(n,) — 1.96 [(1 — p)/(n, — (0.47 + 0.25p) \/n,)]"/>
U = In(n,) + 1.96 [(1 — p)/(n, — (0.47 + 0.25p) /n,)]"/>

The Poisson plot G18 shows significant linearity and hence confirms the hypothesis
about the Poisson distribution of the numbers of micro-organisms. Significant
deviations occur only at x = 0 and x = 6. Confirmation of the assumed value for

8.0
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parameter A, leads to the modified Poisson plot G19 (Fig. 2.33), which also indicates
two possible outliers, at x = 0 and at x = 6. The frequency ratio plot G17 shows that
(a) when one outlier (for x = 0) is excluded the non-zero straight line with a non-zero
intercept suggests a binomial distribution; and (b) when two outliers (x = 0 and x = 6)
are excluded, the non-zero trend of the straight line is not significant, so the distribution
can be of Poisson nature.

Table 2.12—The quantiles of the Poisson distribution

X n, A, In(n,) L U
0 5 6.3 1.60 048 243
1 19 18.4 294 246 3.34
2 26 270 3.26 2.86 3.58
3 26 264 3.26 2.86 3.58
4 21 19.4 3.04 2.59 341
5 13 114 2.56 1.95 3.05
6 8 5.5 207 1.24 272
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3

Statistical analysis of univariate data

After the exploratory data analysis, the next step is statistical analysis. With small
samples the statistical characteristics are estimated directly, but with large samples
the data are divided into classes and the statistical characteristics of each class are
estimated. For univariate data, a single property or quantitative parameter is
examined.

Univariate samples come from a population with an unknown probability
distribution. A univariate population (or ensemble) is considered to be a set in which
only one property is studied, and one quantity with frequency N is measured. The
population is characterized both by measures of the location, i.e. the level at which
the quantity values vary, by the degree of the dispersion (or spread, scatter, variability)
of the quantity of interest, and by the shape of the distribution.

In chemical practice, the large population of all measured quantities is rarely
available. Therefore, statistical analysis examines a representative random sample (or
sample) of n measurements. A representative random sample has the properties:

(1) All sample elements {x,;}, i=1, ..., n, are random quantities from the same
distribution; that is the sample is homogeneous.

(2) All sample elements x; are selected independently. The choice of one element
does not affect the value of any other element in sample.

The sample is characterized by information about the mean value of the sample
elements and their variability around this mean. In addition, there may be interest
in the shape of the sample distribution. Statistical characteristics of location, spread
and shape are called the sample characteristics. From these sample characteristics,
the measures for the population are derived.

In statistical analysis it is assumed that the sample distribution is the same as the
population distribution. For continuous random quantities the sample distribution

i
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is described by the probability density function f(x, 8), and for discrete random
quantities by the probability density function p(x, 6). The probability density depends
on vector @, which contains the parameters of location, scale and shape. The purpose
of an analysis is the estimation of these parameters. Since these estimates are also
random quantities, their distribution or at least their characteristics should be
estimated.

The main task of statistical analysis is to collect information about a population,
so the sample estimates are used to find confidence intervals of parameters. With a
given probability, the confidence interval of a population parameter will include the
true value of this “unknown” parameter. Statistical testing of hypotheses about
“unknown” parameters of the population is also carried out.

A main purpose of chemometrics experimentation is to draw inferences about a
population from samples of the population. We can identify three different types of
inferences, namely:

(1) parameter (point) estimation;
(2) interval estimation,
(3) hypothesis testing.

If we want to make the best estimate of one or more parameters of a probability
distribution, the problem is said to be parameter estimation. By parameters we usually
mean measures of location, scale and the shape of probability distribution. Estimation
of a single value for a parameter is called point estimation.

Interval estimation is concerned with estimation of the interval that will include
the population parameter with a specified probability. An interval estimate is more
informative than a point estimate.

Interval estimation is closely related to hypothesis testing. In hypothesis testing,
one or more propositions are selected about parameters of population probability
distribution. Hypotheses are stated, a criterion of some sort is formulated, and a
decision is reached.

“Good” estimates should, if possible, be: (1) unbiased, (2) consistent, (3) efficient,
and (4) sufficient.

(1) Unbiased. An estimate § of a parameter 0 is said to be unbiased if its expected
value, E(0), is equal to the population value 0.

(2) Consistent. An estimator is said to be consistent if the estimate tends to approach
the population value more and more closely as the sample size is increased; that
is, if E[(0 — 6)*] approaches zero as the sample size n approaches infinity.

(3) Efficient. The estimate 0 is efficient when its variance around the population
value 6 is the smallest of all the possible estimates. If two point estimates of a
single parameter 0 are calculated from the same sample size n, the one with the
smaller variance has the higher efficiency.

(4) Sufficient. If § is a sufficient estimate of population parameter 0, then it contains
all sample information. An estimate of 6 is denoted as best unbiased if it is
unbiased, efficient and sufficient simultaneously.

We now turn to methods for estimation of parameters.
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3.1 POINT ESTIMATES FOR PARAMETERS OF LOCATION, SPREAD
AND SHAPE

3.1.1 Maximum likelihood method
There are many varied methods of point estimation. Regression uses the least-
squares method, but for univariate samples the simple method of moments is often
used. A well-known and desirable estimation procedure is that of maximum likelihood,
which leads asymptotically to estimates that are efficient but not necessarily unbiased.
A desirable feature of the maximum likelihood method is that, under certain
conditions, the estimated parameters are normally distributed for large samples.
Suppose that p(x; 0) is a probability density function of known form for the discrete
random variable x. This function contains one or more unknown parameters 6, ...,

0,.. One way to estimate the parameters 0,, ..., 6,, is to maximize the likelihood
function L{0, x). The estimators 0, ..., 0, are known as maximum likelihood
estimators.

The likelihood function for one discrete observation x, is just the probability density
at the point x,

Loy, 0,,... 0,;x,)=p(x;;0,,0,,...0,) (3.1a)

where the lower case xs and the number subscripts refer to the value of the observation
that is inserted into the probability function. The likelihood function based on several
discrete observations is the product of the individual functions if the discrete
observations are independent

1=

LO,,0,,...,0,;x,%5,...,Xx,) =

p(x;; 0)

1
= p(xy; 0) X p(x5; 0) ... x p(x,; 6) (3.1b)

For the continuous case, the likelihood function based on one observation x, is equal
to the probability density

Lo,,0,,....,0,;x)=f(x;;0,,0,,...,0,) (3.2a)
The likelihood function for several independent observations is a product of densities

L(Olagz""sam; XI,XZ,...,X")= Hf(xi; 6)

=J0x150) x f(x3; 0). ... f(x,; 0) (3.2b)

The estimates of 0, that are chosen are the ones that give the maximum value of
L for the given data (x,, ..., x,). However, it is more convenient to work with In L
which is not affected by the position of the extreme.

In L=In p(x; 0) + In p(x,; ) + ... + In p(x,; 6)

= Z In p(x;; 0) (3.3a)
i=1
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or

InL=1Inf(x;;0)+1Inf(x,; 0) + ...+ 1n f(x,; 0)

Z In f(x;; 6) (3.3b)

The value of In L can be maximized with respect to the vector 8 by equating to
zero the partial derivatives of In L with respect to each of the parameters:

S In fx; 0)
i=1

6InL =

50 - 57, =0 (3.4a)
oL 30 0 (3.4b)
56, s 0, - '

(and analogously for p(x;; 0) for a discrete random variable). Solution of Egs. (3.4a),
(3.4b), etc. yields the maximum likelihood estimates f,, f,, ..., #,. It can be shown
that as n approaches infinity the maximum likelihood estimates have the desired
asymptotic properties; that is (1) they are best unbiased; and (2) values of [\/ﬁ((?i — 0]
have the normal distribution N (0, D(f)). When one parameter 0 is estimated, the
variance of the most probable estimate can be expressed by

d?’In L
D) = — I/E[le

(3.5a)
where D() is an operator of the variance and E() is an operator of the mean value.

To estimate a parameter vector 6 for characterization of variability, the covariance
matrix C = A~' containing on its diagonal the variances D(6)), is calculated. The

elements A4;; of matrix A are given by

d2InL
A.= —F ——~ )
” E[de,. de,.] (3.55)

The distribution of the estimates § is asymptotically normal N (0, A~ ). For real
samples of finite size n, the maximum likelihood estimates lose some of their asymptotic
properties. They are biased and non-effective.

3.1.2 Sample characteristics

The maximum likelihood estimates of location 8, and of dispersion f, based on data
from a normal distribution are the sample arithmetic mean x, (0, = %), and the sample
variance s%, (0, = s?).
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The sample arithmetic mean x and sample variance s* can be used for data sampled
from all other distributions. If the sample comes from a symmetric population
distribution with the mean y, variance o2 and kurtosis g,, it can be proved that

ER) =u (3.62)
D(x) = ¢*/n (3.6b)
and
E(s*) = o (3.7a)
4 -3
D(s?) = - [gz e 1] (3.7b)

In addition to the sample arithmetic mean and the sample variance, other
parameters of location and dispersion can be used:

The sample mode (or just mode) %y is the most frequently found element value in
the sample. The sample quantiles are descriptive statistics from exploratory data
analysis and are sometimes used to supplement the information obtained from the
mean and the variance. The sample values x,, ..., x, are first of all arranged in order
of ascending magnitude x;, < x(,, < ...X,. The quantities x, are called the order
statistics. The pth quantile (or percentile) is defined to be the value of x below which
p% of the sample values lie. The pth quantile separates the order statistics into two
parts so that each contains the required percentage of the sample elements, p% and
(100 — p)%.

The sample median %, 5 is the quantile that separates order statistics into two parts:
50% of the elements lie below X, ; and 50% of the elements lie above X, 5. The
sample median for an odd sample size has the form

Xo0.5 = Xk

where k = (n + 1)/2. For an even sample size, it is

Xo.5 = (Xg + Xt 1))/2

where k = n/2. The mean, mode and median are compared in Fig. 3.1.

The 25th, 50th and 75th percentiles may be called the first (or lower) quartile, i
median (or second quartile) and third (or upper) quartile of the sample. The median
represents the maximum likelihood estimate of location for the Laplace distribution.
For this distribution the variance of the median is expressed by

Dy (%, 5) = 6*/2n (3.8)

For the normal distribution, however, the sample median is not efficient (Table 3.1).
For the rectangular distribution, the efficient estimate of location is the midsum xp
defined by

Xp = (Xq) + Xp)/2 (3.9

N
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where x;, is the smallest and x,, the largest element of the ordered sample. The
variance of the midsum estimate for the rectangular distribution is defined by

60°

Dg(%p) = n—Dn-2

(3.10)

Index R denote the rectangular distribution. The variance of x, for the normal
distribution is much higher.

2.5 2.5
A B
fix) f ix)
1.3 1.3
©
o
- X
X
0.0; 1 117 0.0 -]
o XmXo.5 x e = X Xy X oo
- o -

Fig. 3.1—Comparison of three measures of location: mean %, mode %, and median X, s for (A) negatively
and (B) positively skewed distributions.

Often the condition of constant variance of all sample elements is not maintained.
If each x; has a normal distribution with variance g, the statistical weights are

calculated as w; = 1/6?7. Instead of the sample mean %, the weighted sample mean x,,
is computed from:

n

n
Z X;W; Z x.‘/“i2
i=1

Ny T o (3.11)
Z w; Z 1/“;'2
i=1 i=1
The variance of the weighted mean is
D(x,) = 1/[2 1/6?J (3.12)
i=1

If the relative error has a constant value, § = o/x; = constant, then
o} = x? x 8%

Then w; = 1/x? and the sample mean is calculated from

)
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with variance

D(x,) = &* / [z l/x,] (3.14)

The dispersion parameters describe the degree of dispersion, (scale, spread,
variability or scatter) of the population elements. The range is one of the measures
of scale which represents the difference between the largest and the smallest value of
sample. The interquartile range is the quantile estimate of population standard
deviation ¢ defined by

R = 07413 (% 15 — %0.55) (3.15)

where X, ;5 is the upper and X, ,5 the lower quartile. Table 3.1 surveys the sample
estimates of location and dispersion, with their variances, efficiency and distribution.
Sample estimates are for sample size n, and the sample comes from a population with
normal distribution N (y, ¢2).

Table 3.1 —Estimates of location and dispersion for sample of size n from a population with normal
distribution N (y, o)

Parameter Estimate Variance Efficiency Estimate
estimate distribution
X 6%/n 1 Ny, 6%)
Mean pu %05 o*n/(2n) 0.63 N(u, 0?)
Lp a*n?/(24 In(n)) 24 In(n)/(n?n) Ny, ¢?)
Variance o2 2 2 0%/n 1* N (a2, D(a?)
52 26%/(n — 1) 1 :
g a%/(2n) ~1*
Standard s a*/[2(n — 1)] 1 N (g, D(c))
deviation ¢ R ~1.36 6?/n ~0.368
d o2/ — 2)n] ~0.876

*biased estimate

Another measure of dispersion is the mean deviation d defined by

nfl &
d= \/5 [; i; Ix; — #I] (3.16)
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where the factor /n/2 ensures that for normal distribution the value of d approaches
that of the standard deviation o.

The widely used the coefficient of variation 6 (CV) also known as the relative standard
deviation s,,, (RSD) is given by 1000/u and may be estimated by

d =s/x (3.17)
The variance of § is approximately equal to

D) = &z[n + 6%(2n + 1)]

2n(n — 1) (318)

The error §, units %, is called a relative error. Relative errors are frequently used in
the comparison of the precision of results with different units or magnitudes, and are
again important in calculations of error propagation.

To characterize the shape of a distribution, skewness and kurtosis are used. Skewness
g, is a measure characterizing symmetry, which is equal to zero for a symmetrical
distribution. Positive values of g, indicate smaller scattering of lower values of elements
x; than of the larger values and negative values of g, indicate the opposite case. The
moment estimate of skewness is defined by

\/;’ Zn: (x; — x)°

g4, =+= 33 (3.19)
I: Z (x; — 5‘)3]
i=1
Its asymptotic variance is
6 (n—2
D, ~ =2 (3.19)

MTERIE)

The effect of skewness on the shape of the probability density function is shown
in Fig. 3.2.

Kurtosis characterizes the shape of the distribution near a modal value, and provides
a picture of the shape of the distribution peak. For higher values of kurtosis than 3,
the distribution has a sharper peak than the normal distribution, while a flat shape
is indicated for values of kurtosis lower than 3 (see Fig. 3.3). The moment estimate
of kurtosis is defined by

(x; — x)*
i=1 (3.20)

P O
[ z (x; — R)Z:I
Its asymptotic variance has the form

24n (n — 2)(n — 3)
(n+ 1)*n+ 3)n+5)

n

n

(3.20a)

D(g,) ~
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Fig. 3.2—The probability density function for various degrees of skewness: g, <0, g, =0, g, > 0.

When a point estimate of any parameter is determined, the variance of the parameter
must also be calculated. To achieve the same “precision” of estimates when less
effective estimates are used, a greater number of measurements n should be used. To
achieve the same parameter precision for data of normal distribution, for example,
the calculation of median X, ; needs 1.6 times more measurements that would the
arithmetic mean Xx.

3.0
f (x) g2>3
g,=3
1.5
9,
0.0
(=] wn X o
o o -

Fig. 3.3—The probability density function for various values of the kurtosis: g, > 3,9, =3, g, <3.

R
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Problem 3.1 Mode, midsum, skewness sand kurtosis of samples from five different
distributions

Calculate the mode, midsum, skewness and kurtosis of a random sample taken from
the rectangular, normal, exponential, Laplace and log—normal distribution.

Data: from Problem 2.2

Program: Chemstat: Basic Statistics: One sample analysis.

Solution: For a sample size n = 50 taken from five distributions, the mode %,,, the
halfsum %, the skewness ¢, and the curtosis g, are estimated. The rectangular
distribution has no mode, for the exponential, normal and Laplace distributions, the
mode is equal to zero, and for the log—normal distribution to 0.135. The midsum for
the rectangular distribution is near to the mean value 0.5. Skewness and kurtosis
were discussed in Problem 2.2.

Table 3.2—Parameter estimates of location (£, Xp) and shape (4, §,) for a sample of n = 50 taken from
five distributions

Distribution Mode Midsum Skewness Kurtosis
)EM *P él gl

Normal

N(©; 1) 0.0818 —0.294 —0.137 3.369

Rectangular

R(0.5; 0.083) 0.841 0.505 —0.0052 1.752

Exponential

E(1; 1) 0.213 3.09 2.68 11.5

Laplace

L0; 2) 0.135 0.877 0.801 6.099

Log-normal

IN(2.71; 47.21) 0.222 2428 3.61 16.795

Conclusion: Different estimators can lead to very different values.

For samples from a population with a normal distribution, the random variable

i=X"* /Jn (3.21)

N

has the Student distribution with (n — 1) degrees of freedom (Fig. 3.4). Also, the
random variable

2 _(n— 1)s?

0.2

(3.22)

has the y? distribution with (n — 1) degrees of freedom. The random variable t and
x? are mutually independent. For sufficiently large samples (n > 40) from the normal
distribution, for some estimate 0 of parameter 0, the random variable
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Fig. 3.4—The Student distribution for the degrees of freedom v = 1, v = 9, and v - o0, in comparison with
the normal distribution.
0—0
U=—= 3.23
) (3:23)

has an approximately standard normal distribution N(0, 1). Equation (3.23) is
asymptotically valid for any estimate §; with variance D(0,) determined by the
maximum likelihood method, and for any theoretical distribution f(x, 0).

Instead of maximum likelihood estimates, another statistical characteristic called
the likelihood ratio

L, = =2 [In L®) — In L(0)] (3.24)

is often used. The likelihood ratio L, has the x> (1) distribution with 1 degree of
freedom. In Eq. (3.24) 0 stands for the maximum likelihood estimate § of parameters
6 for which 0, = 0,.

It is clear that the distribution of estimators is connected with sample distributions
like the Student and x* ones. The Student and yx2-distributions are both among basic
sample distributions which depend only on degrees of freedom, v. For various values
of the degree of freedom v, the quantiles of the Student distribution and y2-distribution
may be found in statistical tables.

3.2 INTERVAL ESTIMATES FOR PARAMETERS OF LOCATION
AND SPREAD

In the previous section, we described ways of obtaining point estimates of parameters
of location, spread and shape. Better than these point estimates are confidence intervals.
The confidence interval is calculated from the sample estimators. It includes the value
of the population parameter within the interval limits, termed confidence limits, for
a specified degree of assurance, called the confidence coefficient. Here, the confidence
limits are random variables dependent on the sample.
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The parameter of location is then described not by one value () but by two
numerical values L, and L,. It is expected that the confidence interval (L, Ly) will
include the unknown population parameter 6 with a preselected probability (1 — ).
The degree of trust associated with the confidence statement is called the confidence
coefficient; it expresses the degree of certainty or reliability (1 — «) about the unknown
population parameter 6.

P(L,<0<L,)=1—gq (3.25)

where « is called the significance level; the value chosen for « is usually 0.05 or 0.01.
It is useful to know that

(1) the confidence interval is small if the variance of estimate D(6) is small,
(2) a large sample size n gives a small confidence interval (L, L,/, and
(3) higher degrees of certainty (1 — «) give broader confidence intervals (L, L, .

Confidence interval (L,, L, is referred to as a two-tailed interval, but one-tailed
intervals are also used in the chemical laboratory. One-tailed confidence intervals
can be

(1) the left-side or lower-tail interval \ L,; o), or
(2) the right-side or upper-tail interval (— oo, L, .

3.2.1 Derivation of the confidence interval

Finding the confidence interval L, , requires knowledge of the distribution of the
parameter in question. Let us find the confidence interval of the population mean of
the normal distribution N (g, 62). Let X be the mean of a sample of n observations
on a normally distributed random variable x with unknown mean x and known
variance o2 Then the 100(1 — )% confidence interval L, , for y may be found from

o o
X—U_gp—F=SpU<X+U _,— (3.26)
1 /2\/‘}; 1 /2\/;1

where u, _,, is the 100(1 — @)% quantile of the standardized normal distribution,
(€8 for ug 975 =2, L, , = X + 26/\/n).

In cases where the sample size n is not large enough and the variance o2 is not
known, the confidence limit for 4 may be found from Eq. (3.26), but using quantiles
for the Student t-distribution instead of from the normal one. The 100(1 — )%
confidence limits L, , are then given by

S R OUNCEYES SRR N (327)

where v = n — 1 is the number of degrees of freedom and t, —a2(v)is the 100(1 — 0/2)%
quantile of the Student distribution. For large sample sizes (n > 30) instead of Ly —ya(V)
the quantile u, _,, can be used.

According to Eq. (3.23), the 100(1 — @)% asymptotic confidence interval of any
parameter 6§ may be expressed by

0 —uy_pp /DO SOKD+u,_,, /DO (3.28)

)
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The 100(1 — «)% two-tailed confidence interval of the variance o2 is given by

2 2

<sl< Vs
2 X0 %732
X1 —a/z(") Xa/z(")

where xf_a/z(v) is the upper and Xf,z(v) the lower quantile of the y?-distribution, and
v =n — 1 is the number of degrees of freedom.

Construction of a confidence interval depends on the population distribution from
which the sample comes. For example, the variance of the median may be calculated from

D(%,.5) = 1/(4nf*(med))

where f(med) is the value of the probability density function at the position of the

median. For the Laplace distribution, f(med)= 1/(0\/5) and therefore
D(X, 5s) = 6*/2n, and the confidence interval of the median is given by :

Ros — Uy a2 X 0.707 s/3/n < med < %o.5 + t; _yp X 0.707 5/3/n (330)

Vs

(329) !

The Equation (3.30) is valid only if the sample size n is big enough for the median
of the Laplace distribution to have approximately normal distribution.

Problem 3.2 Analysis of five samples with a false assumption of normality :
Make an analysis of samples of size n = 50 from rectangular, normal, exponential,
Laplace and log-normal distributions, with a false assumption of normality.

Data: from Problem 2.2

Program: Chemstat: Basic Statistics: One sample analysis.

Solution: The assumption of normality is valid only for the sample from the N(0, 1)
distribution. Table 3.3 lists statistical characteristics %, s* and limits L, and L, of the
95% confidence interval of the mean.

Table 3.3—Statistical analysis of samples from five distributions, with a false assumption of sample
normality; n = 50

Population The limits of the

distribution X s 95% confidence interval

X(u; 0?) L, L,
Normal —0.0574 1.088 -0.354 0.239

N(0; 1) i
Rectangular 0.488 0.0865 0.404 0.571 :
R(0.5; 0.083)

Exponential 1.0059 1.362 0.674 1.338

E(1; 1)

Laplace —0.0246 2.431 —0.468 0.419

1(0; 2)

Log-normal 4.077 74.57 1.622 6.532
LN(2.71; 47.21)

N W
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Conclusion: Although the mean in four sample distributions was estimated with a
false assumption of normality, the confidence interval always covers the true mean
value. For the Laplace and log-normal distributions the confidence interval is rather
broader.

3.3 POINT AND INTERVAL ESTIMATORS FOR SELECTED
DISTRIBUTIONS

Chemists would like to replace a large volume of experimental data with a few easily
grasped numbers. Under favorable circumstances in the EDA, the experimental data
are associated with a known function, a probability density function, which corre-
sponds reasonably with the data.

We shall describe some of the most useful probability density functions that the
chemist may meet in the laboratory. Most samples have normal distribution, but
there are some tasks when the random quantity is constrained on one side, i.e. it
must be in some interval. Then the normality assumption is not warranted. In this
section the point and interval estimates for one discrete and five continuous
distributions are described. These distributions cover all types of data commonly
found in chemical practice. Some details about these distributions may be found in
the textbook by Johnson and Kotz [3].

3.3.1 The Poisson distribution
This discrete distribution relates to the number of events that occur in a given interval
of time or space when the events occur randomly (in time or space) at a certain
average rate. Some examples of random variables for which the Poisson distribution
is assumed to apply are: the number of particles emitted from a radioactive source
in a given time, the number of typing errors per page of manuscript, the number of
calls received at a telephone exchange in a given time period, the number of goals
scored by a particular team in a football match. The sample space for the random
variable consists of the integers (0, 1, 2, ...).

Suppose a discrete random variable x has a range of possible integer values 0, 1,
2, ... which has a Poisson distribution with the probability function

p(x, 1) = A—xw (3.31)

where 1 is a positive parameter (Fig. 3.5).

For the Poisson distribution it can be shown that u = E(x) = 1 and ¢% = D(x) = A.
That is, for a Poisson distribution the mean and the variance are equal. For a set of
k + 1 elements, x =0, 1, 2, ..., k, the number n_ of observations which have a
magnitude x is estimated. From Egs. (3.31) and (3.1), for n, replicated values of x,
the likelihood function is

exp(—n,4)

— (3.32)

k
Ly = [ A x
x=1

After taking logarithms and differentiating

|
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Fig. 3.5—The probability density function for the Poisson distribution with 4 = 1.

n.x B
1 <A - nx> =0 (3.33)

The estimate /1 can then be calculated

dln L) &
ai "X

X

T ==t (3.34)

where n is the total sample size. The parameter estimate £ corresponds to the arithmetic
mean. To calculate the variance of 4, Eq. (3.33) must be differentiated again

d? In L(}) _ 1 X
a2z - _Fx; M
and since
k
E()Z:1 xnx> ~ ni .

use of Eq. (3.4) leads to
D) = i/n (3.35)

Construction of the confidence interval of parameter A for a large sample (n > 30)
is based on an assumption that the random variable \/;1(/? — /1)/\//_1 has a standardized
normal distribution. Although the square of a random variable with normal
distribution has the x*(1) distribution, the confidence limits 4, and 4, of 100(1 — ®)%
confidence interval of parameter 4 may be estimated by solving a quadratic equation
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2
22— [22 n X‘—‘nﬂ] A+12=0 (3.36)

The asymptotic confidence interval of parameter 4 based on Eq. (3.23) will be

NN TV RS NN (3.36a)

It is convenient to use the 100(1 — x)% confidence interval of parameter 4, calculated
from

1aad2hn) _ ;1@ +2)

) o (3.36b)

For large samples (n > 100) and for large values of 1 (e.g., 4 > 10) the simple
expression (3.36a) is recommended.

Problem 3.3 Confidence interval of cosmic ray “particles”

A laboratory counter was set up to measure cosmic ray “particles”. For the purpose
of this example, the number of particles arriving in 0.1-sec intervals was counted.
From 200 time intervals the mean of the measurements 4 = 10.5 was calculated. With
the assumption that the data are described by the Poisson distribution, calculate the
95% confidence interval of the number or particles in 0.1-sec intervals.

Data: the numbers of particles k and frequency of detected ray particles n, in sample
size n = 200 are as follows:

k: 01234 5 6 7 8 9 10 11 12 13

m: 0.0 0 2 1 11 12 12 20 22 17 30 20 20

k: 14 15 16 17 18 19 20 21 22 23

m: 10 18 6 4 3 1 0 O 1 O

Program: Chemstat: Basic Statistics: Exploratory discrete.
Solution: The 95% confidence interval of parameter A will be calculated from Egs.
\ (3.36), (3.36a) and (3.36b).
(1) Equation (3.36): with n = 200, yZ ¢s(1) = 3.842 and 1= 10.5 we obtain the
quadratic equation

A* —21.01924 + 11095 =0

which has two roots, 4, = 10.06 and 4, = 10.96. The 95% confidence interval of i
will be

10.06 < 1 < 10.96.
(2) Equation (3.36a): the 95% confidence interval will be

4
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0.4
f(x)

0.2

0.0

< ] x 9
™ o ™
|

Fig. 3.6—The probability density function of the normal distribution for ¢% = 1, 1.5, 2.

10.05 < 4 < 10.95.

(3) Equation (3.36b): since the values of yg ,,5(4200) and y2 4,5 (4600) are not
available in statistical tables, we use an approximate expression due to Wil-
son — Wilferty that

$(v) = o(1 — (2/9v + up./2/(9v))*
where up is the 100P% quantile of the standardized normal distribution:

For v = 4200, u, 5,5 = —1.96, we can calculate x5 ,,5 (4200) = 4022.26 and for
v =4202, Uy g,5 = 1.96, 1& 5,5 (4202) = 4383.57. The 95% confidence interval will be

10.06 < 4 < 10.96.

Conclusion: All three equations (3.36), (3.36a) and (3.36b) yield essentially the same !
confidence interval for parameter 2, 10.06 < 1 < 10.96.

3.3.2 The normal distribution
The most important and widely used distribution in chemical practice is the normal
or Gaussian distribution. Many continuous random variables encountered in practice
follow, at least to a good approximation, this distribution. These include variations !
in measurement processes; random experimental errors occurring in experiments in |
physical sciences such as chemistry and physics. In the life sciences, (biology,
agriculture, medicine) many directly measured experimental variables do not follow
a normal distribution, but transformations can often be made to improve normality
(e.g. taking logarithms).

The probability density function of a normally distributed continuous random

i,
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variable x defined in an infinite interval has a rather complicated mathematical form,
namely

—(x —

1 2
S = —= exp[ s ")] (3.37)

The mean of variable x is u = E (x) and the variance of variable x is 6% = D(x).
The graph of f(x) vs. x forms a bell-shaped curve symmetrical about the mean ordinate
x = u (Fig. 3.6).

Suppose we have a sample {x;}, i = 1, ..., n, with elements that are independent
and come from the same normal distribution. From the logarithm of the likelihood
function

1 n
InL= — = ln (2n6?) = Z x; — p? (3.38)
we can calculate the estimate of the sample mean
(3.39)

X

M=

=

ﬁ:
1

The second derivative of In L with respect to parameter y, together with Eq. (3.4),
yield the variance of this sample mean

D(p) = o2/n (3.40)

Analogously the estimate of the sample variance has the form

i (3.41)

31'-‘

The variance of this estimate is
D(6%) = 20*/n (3.42)

In practice, parameter u is unknown and is replaced by its sample estimate, /i = X.
Then the variance ¢2 defined by Eq. (3.41) is a biased estimate since E (%) = Ka?,
where K = (n — 1)/n. For an unbiased estimate of variance, we calculate instead the
sample variance

1 n
s = 6% = Y (x; — x)? (3.43)
n—1,25

The confidence interval of the mean is calculated from Egs. (3.26) and (3.27a) and
the confidence interval of variance from Eq. (3.29).

If we know that a random variable x has a normal distribution and the values of
u and o2 are given (we write x ~ N (u; 6?)) then we can calculate a probability
Pr(a < x < b) as the area bounded by the curve y = f(x), the x-axis and the ordinates
x = a and x = b for any a and b. To evaluate this area we proceed as follows. The
standardized normal random variable u is defined as
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flu)'

X X+s Xx+2s x+3s x

Fig. 3.7—The probability density function for the original variable x = N(u, 6?), and for the standardized
normal variable u ~ N (1, 0).

Thenu = N (0; 1),i.e. uis normally distributed with mean zero and variance 1 (Fig. 3.7).
Tables of the area under the standard normal distribution (either from —oo to u
or from 0 to u) may be found in standard statistical tables.

Problem 3.4 Estimation of the mass of aspirin tablets

A sample of n = 156 aspirin tablets were weighed (to the nearest mg). The declared
weight of one tablet is u = 330 mg. The mean calculated from all 156 tablets was
x = 330.43 mg and the variance s* = 2.32. Subsample A contained n, = 32 tablets,
with mean x = 330.6 mg and s? = 2.135. Subsample B contained ny = 10 tablets and
had mean x; = 330.7 mg and s = 2.05. Estimate the confidence interval of the mean
u and of the variance ¢, on the assumption that the population has a normal
distribution.

Data: (1) The complete sample of aspirin tablets, n = 156.
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32899 329.75 331.62 333.08 330.61 331.35 32842
330.63 33217 33015 33128 33092 32936 329.62
329.61 329.17 330.39 33347 330.59 330.52 329.49
329.01 331.63 330.64 33085 32606 329.92 330.66
32857 33145 331.54 33220 32943 327.76 334.06
33125 32843 330.57 329.68 33027 328.81 33226
33260 32732 331.28 33092 332.66 329.88 329.84
32992 329.32 33337 330.28 330.78 333.19 330.84
33070 329.73 328.87 331.71 329.76 329.82 330.59
328.57 33220 328.03 330.28 331.02 330.58 333.35
32986 331.22 329.99 330.34 331.85 332.88 331.99
33002 328.14 330.03 330.10 330.03 33047 330.62
331.78 32933 330.16 32946 331.89 330.65 329.35
331.84 33031 331.31 328.06 332.59 327.57 329.10
331.61 331.69 32947 33209 33045 32941 331.78
330.50 330.23 329.89 331.53 33149 330.52 329.59
33453 329.04 330.88 330.08 330.11 331.38 331.85
328.51 328.56 33226 33098 33091 330.18 32547
330,99 330.54 329.74 33255 329.70 32899 330.63
330.69 331.00 329.29 32802 330.16 333.56 331.72
32547 330.72 33193 32923 32787 331.83 330.58
33094 331.51 330.00 331.21 331.23 330.57 329.59
1 327.88 328.86

(2) Subsample A, n, = 32.

32899 329.75 331.62 333.08 333.61 331.35 32842
330.63 332.17 330.15 331.28 33092 329.36 329.62
329.61 329.17 33039 33347 330.59 330.52 329.49
329.01 331.63 330.64 330.85 326.06 329.92 330.66
328.57 33145 331.54 33220

(3) Subsample B, ny = 10.

32899 329.75 331.62 333.08 330.61 331.35 32842
330.63 332.17 330.15

Program: Chemstat: Basic Statistics: One sample analysis.
Solution: The 95% confidence interval of the mean is calculated from Egs. (3.26) and
(3.27b).

From the original sample, size n = 156: 330.19 < u < 330.67
From the subsample, size n, = 32: 329.96 < u < 331.09
From the subsample, size ny; = 10: 329.65 < u < 331.70.
The 95% confidence interval of the variance ¢? is calculated from Eq. (3.29).

From the elements of the original sample: 1.879 < ¢2 < 2.937

4
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From the subsample, size n, = 32: 1.372 < ¢% < 343
From the subsample, size ny = 10: 0.970 < ¢* < 6.83

Conclusion: Small samples from a population with normal distribution may lead to
inaccurate results. The hypothesis that u = 330 and ¢ = 1 is accepted here at level
o = 0.05, for sample sizes bigger than n = 100.

3.3.3 The Laplace distribution

When random elements are measured under condition of non-constant variance, the
Laplace (two-tailed exponential) distribution often occurs. The Laplace probability
density function f(x) of random variable x in the interval (— o, 00) is described by

fx) = 0.50" exp[— = 9'} (344

The mean of the Laplace distribution E (x) = 0, the variance D(x) = 2®?, and the
skewness and kurtosis are g, = 0 and g, = 6. The Laplace distribution has a more
peaked shape than the normal distribution, with longer tails. For example, for the

Laplace distribution the 1% quantile is equal to E (x) — 2.72,/D(x), but for the normal

distribution it is E (x) — 2.33./D(x). The Laplace distribution is taken as a natural
“robust” alternative for the normal one.
From Eq. (3.2), the logarithm of the maximum likelihood function is

InL=—-nln(2®) - @ " > |x,— 6] (3.45)

i=1
For the known parameter ® the maximum likelihood estimate of 6, say 0, minimizes
the sum

Z Ix; — 0|
i=1

and is equal to the sample median 0 = %, 5. Differentiation of the Eq. (3.45) with
respect to ® and equating to zero yields the maximum likelihood estimate as

Ix; — 0 (3.46)

M=

é =

S |-

i=1
Although the median X, 5 is unbiased, it does not have minimal variance for small
samples. The confidence interval of parameter 0 is derived from an asymptotic formula

Eq. (3.23) which leads to Eq. (3.30). Since the variance of & estimate is
D(®) = ®?/n (3.47)

the resulting confidence interval of parameter @ is calculated from Eq. (3.23).
When the mean value @ is known, the 100(1 — «)% confidence interval of @ is

22n¢5 <d< 2nd

348
o) 2a02n) (3.48)
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Problem 3.5 Confidence interval of parameters of the Laplace distribution

From a random sample of size n = 50 from the Laplace distribution L(0, 2) the

following estimates were calculated: = %, s = 0.0119 and & = 1.0596. Calculate the

95% confidence intervals for these parameters.

Data: as for Problem 2.2 :

Program: Chemstat: Basic Statistics: One sample analysis.

Solution: The variance estimate is s> = 202 = 2.246. Substitution of this value into

Eq. (3.30) yields the 95% confidence interval of parameter § as —0.282 < § < 0.306.
With the use of Eq. (3.47), Eq. (3.23) can be rewritten as

d—u_,,x @/ﬁs@s(ﬁ+u1_a/2 x &/ /n

The 95% confidence interval of parameter can be calculated as 0.765 < ® < 1.353.
With the assumption that § = %, 5 = 0, the estimate & according to Eq. (3.46), is
1.0596. Then, from Eq. (3.48), the 95% confidence interval of parameter ® is

0.818 < & < 1.428.
Conclusion: The confidence intervals of parameter @ calculated from Egs. (3.23) and
(3.48) do not significantly differ because the mean 6 is equal to zero.

3.3.4 The rectangular distribution
The simplest type of distribution is the rectangular distribution for a random variable

constrained on both sides.
a—h<x<a+h

Whena = 0and h = 0.5 x 107*, the rectangular distribution describes the distribution
of errors that appeared in the rounding-off to k decimal places.
The probability density function for a rectangular distribution is

fx)=1/2h (3.49)

wherea—h<x<a+h

The mean of the rectangular distribution E (x) = a, the variance D(x) = h?/3, and
the skewness and kurtosis are g, = 0 and g, = 1.8. The logarithm of the maximum
likelihood function is

InL= —nlIn (2h) (3.50)
for
a—h<min(x,,...,x,)<max (x,,...,x,)<a+h
Equation (3.50) reaches a maximum for a minimum value of A. It is evident that
min (xy, ..., X,) = X, and max (x,, ..., x,) = x,
The maximum likelihood estimate of parameter & is given by
h=05(x, — x) (3.51)

and the maximum likelihood estimate of parameter a is
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4= 0.5 (X + X1 (3.52)

The estimate 4 is identical to the midsum X, defined by Eq. (3.9).
The estimate A is biased. The unbiased estimate A, is calculated by correction of
the previous estimate of A:

hy=hx(@n+ 1)[n—1)
The variances of estimates i and 4 are calculated from

2 h?
mm=ajﬂa:5 (3.53)

and

2 K

DG = ———— 3.54
D= Dn+2 (3:54)
The variance estimates D(h) and D(4) are not correlated but not independent.
The confidence intervals for these parameters is calculated for large samples by

Eq. (3.25).

Problem 3.6 Examination of copper content

For one month the concentration of copper (II) ions (ug/1) in the cooling water from
an electric power station was measured. The sample of size n = 90 measurements
contained the smallest value x,, = 6 ug/l, and largest x,, = 30ug/l. Exploratory
data analysis indicated that the sample comes from a rectangular distribution.
Calculate the parameters of location and dispersion, and the corresponding 95%
confidence intervals.

Data: the concentration of Cu?*

in ug/l.:

18.744 22241 10.107 7.566 26358 6.000 15.117
24240 18578 12.794 26.177 10.118 21.149 21.482
19.605 20259 9.374 29.860 29.950 11.066 17.691
20274 24013 11.533 6290 17.696 28.167 25.056
14.600 25751 15941 8.088 9.528 19.419 7.266
11.207 15247 24.127 26467 22971 12378 27.074

6.948 15771 26.146 10.116 13.811 13.072 26.211
21.274 8.838 28.514 29.339 27463 10.702 11.517
26.881 17.015 15.607 26432 25.141 21.155 16.466
17.813  9.247 15693 28386 28468 9946 6.109
25.531 27.227 28519 22850 10.568 7.973 19.874
13.189 12.783 23.244 28.047 20.710 30.000 29.166
18.310 14.841 24431 19.203 21.527 11.599

Program: Chemstat: Basic Statistics: One variable analysis.
Solution: From Eq. (3.52), the parameter 4 = 18 and for h = 12, the variance of 4 ’
from Eq. (3.54) is D(4) = 0.077. The parameter d represents the estimate of the mean.
The 95% confidence interval of parameter a from Eq. (3.28) is

¥

I
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17.45 < a < 18.55

Substitution in Eq. (3.51) of A = 12 gives the unbiased estimate of h as A, = 12.27.
The variance estimate 6 is ¢? = 50.18. From Eq. (3.53), D(h) = 0.0368 and the 95%

confidence interval of parameter h is
11.62 < h <1238

Conclusion: The point estimates of location and dispersion are & = 18 ug/l and
h = 12.27 pug/l. The 95% confidence intervals of the parameters, a and h, are

1745 < a < 18.55 [ug/1]
and
11.62 < h < 12.38 [ug/1].

3.3.5 The exponential distribution

The exponential distribution is constrained on one side (upper part) and concerns
the time elapsed between consecutive events in a Poisson process. Examples could
be listed corresponding to those given for the Poisson distribution. Often, the lifetime
of a component in a piece of apparatus is assumed to have such a distribution.
Another example of an exponentially distributed random variable could be the
distance travelled between successive collisions in a low pressure gas.

3.3.5.1 The one-parameter exponential distribution

This distribution describes the behaviour of a continuous random variable for which
the sample space is the positive half of the real line, x > 0. We say that this random
variable x has the one-parameter exponential distribution of probability density
function f(x) described by

f(x) = 07" exp(—x/6) (3.55)

The mean of this distribution is defined by E(x) = 0, the variance D(x) = 62, the
skewness g, = 2 and kurtosis g, = 9. The median is X, s = 6 x In 2. The logarithm
of the likelihood function is

n

InL=-nlnf— 3% x,/0 (3.56)

i=1
From Eq. (3.3), the maximum likelihood estimate is

=17 x (3.57)
n;=

and from Eq. (3.4) its variance is
D) = 6*/n (3.58)

Construction of the confidence intérva] is based on the fact that the random variable
2 On/6 has the x*(2n) distribution. The 95% confidence interval of parameter 0 is

2 nf 2 nb

<0< (3.59)
Xf - a/2(2n) Xi/z(zn)

)
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For large samples the confidence interval defined by Eq. (3.28) can be also used.

Problem 3.7 Decomposition kinetics of DTBP

Di-tert-butyl peroxide (DTBP) decomposes at 154.6°C in the gas phase by a first-order
process with rate constant k = 3.46 x 10 *sec™!. Calculate the time (called the
half-life) when 50% of the molecules have decomposed.

Solution: The number of DTBP molecules remaining at time ¢ is given by N, = N,
exp(—kt), where n, is the number of molecules present at ¢ = 0. The probability that
one of the original molecules will survive for this time t < T<t + dt, is

Pi<T<t+df)= — (jVN’ = k exp(—kt) dt (3.60)
0

since the probability density function (3.55) of the survival time is f(t) = k exp(—kt),
where in Eq. (3.55) # = 1/k, the average survival time of the DTBP molecules is
E (x) = 1/k = 10*sec/3.46 = 2.89 x 103sec.
Conclusion: 50% of the DTBP molecules disappeared in 2.00 x 103sec, the time that
corresponds to the median X, s (usually called the half-time), the time satisfying
f(t) = 0.5, that is t, 5 = (In 2)/k. Thus, fewer than half of the molecules survive for
that average time.

3.3.5.2 The two-parameter exponential distribution
This distribution describes the statistical behaviour of a constrained random variable
which can reach only values x > u. The probability density function is defined by

fx)=07"1 exp[%] (3.61)

The mean of this distribution is E (x) = u + 6. The variance, skewness and kurtosis
are the same as for the one-parameter exponential distribution. The logarithm of the
likelihood function is

InL=nlnf— i (x; — w/0 (3.62)

i=1

and the maximum likelihood estimate fi of Eq. (3.62) is then
A =min(x,, ..., x,) = X, (3.63)

For the maximum likelihood estimate of § on the basis of Eq. (3.3)
Y (= AR E—xg) (3.64)

The estimate 4 has expectation

E(@)=u+ 6/n (3.65a)
and variance
D(j) = 6*/n? (3.65b)

Y
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For an estimate § from Eq. (3.64)

E(®) =60 — 1/n) (3.66a)
and
D) = 0>(1/n + 1/n* + 2/n?) (3.66b)

The maximum likelihood estimates /2 and @ are clearly biased. Unbiased estimates
fio and 0, take the form

. Xy, — X
_ .67
fo = —— (3.67a)
with variance
92
D) = s (3.67b)
and
0, = X — X)) (3.68a)
n—1
with variance
02
D(éo) = (3.68b)
n—1

However, the estimates fi, and 8, are correlated, with correlation coefficient of

(—1/3/n).

The estimate of a confidence interval is based on the fact that the random variables
In(x,,, — 1)/0 and In — 1)8,/6 are independent and have the y2-distribution with 2
and 2(n — 1) degrees of freedom. Therefore, the 100(1 — a)% confidence interval of
parameter @ is calculated from

2(n — 1)0, 2(n — 1)0,
; ( 104 Zb= l( )9
A1 ﬂ‘/z(zn -2 Xa/2(2n -2
Since the ratio n(x,, — w)/0, has Fisher-Snedecor F distribution with 2 and 2n — 2

degrees of freedom, the lower limit u, of the 100(1 — a)% confidence interval of
parameter u 1s given by

(3.69)

e =Xy — By Fi_,(2,2n — 1))n (3.70)

The upper limit u, is equal to the smallest sample element, x,,. For
determination of quantiles of the F-distribution, the following approximate expression
may be used

Fp2, 21 —2) = (n — [(1 — P)~Vn=1 _ ] (3.71)
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Problem 3.8 Examination of data for biologically cleaned flowing sink-water

For 4 months, BSK ; values in g/m? were recorded for biologically cleaned outflowing
sink-water. In the sample of size n = 125, the smallest value was x;, =9 g/m3 and
the arithmetic mean was X = 27 g/m>. Exploratory data analysis proved that the :
distribution was exponential. Estimate values for the parameters of location and [
dispersion with their 95% confidence intervals. ;

Data:

20948 26.818 11962 10.065 38.752 9.338 16.541

31.521 20.717 14.252 37989 11970 24741 25.346

22203 23229 11.391 90.195 106.359 12.741 19.536

23.253 30910 13.135 9.192 19.543 49.589 33.930

16.002 36.321 17.439 10436 11.509 21924 9.855

12.859 16.678 31.214 39.235 28378 13.875 42.205
9.636 17249 37.861 11969 15213 14.508 38.130

24965 10986 52.896 65.683 44458 12441 13.122

41.200 18.693 17.068 39.077 34205 24.752 18.040

19.694 11294 17.163 51.594 52413 11.834 9.072

35.525 43.054 52956 28.108 12.332 10.354 22.617

14.618 14241 29.003 48.586 23978 100.200 62.008

20.351 16.250 32.053 21.604 25430 13.192 20.004

43.407 39.788 61.421 10.680 40.342 10.595 26.927

21.804 11.014 18.395 46.739 31923 20.167 27.753

13.546 46.334 22.184 24920 11.151 37.217 19.819
9.267 14.745 51224 16.619 35590 51.926 14.082 !

17.200 12.859 40.870 48.021 11.344 9.000 :

Program: Chemstat: Basic Statistics: One variable analysis.

Solution: From Eq. (3.63), i =9, and then from Eq. (3.64), § = 18. Equation (3.67)
gives the unbiased estimate A, = 8.854 and D(4,) = 0.0212. Analogously, from Eq.
(3.68) the unbiased estimate 0, = 18.15 and D(0,) = 2.655. The 95% confidence
interval of parameter 6 is 15.31 < 6 < 21.64. Because for P = 0.95, F, 45(2,248) = 3.03,
the lower limit of the 95% confidence interval of parameter u [Eq. (3.70)] is u, = 8.56.
Conclusion: The confidence interval of parameter 6 is broad compared with that of
parameter pu.

3.3.6 The log—normal distribution

This distribution is one of the commonest distributions related to the normal one.
For many types of physical measurements and other types of chemical data, the
measured values are either positive only (pressure, volume, concentration, weight,
absorbance, etc.) or have a defined origin (e.g., absolute zero for temperature). When
the measured values are far from an origin, the normal distribution is found to be
appropriate, but when measured values are near an origin the approximation by the
normal distribution is not convenient, and the log-normal or other distribution should
be used. This distribution may be found in the analysis of samples containing low
and very low concentrations, i.e. in trace analysis. The log—normal distribution is also
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applicable to the distribution of powder particles in the atmosphere or the size
distribution of powder pigments. A total error that is a product of partial small errors
belongs to a log-normal distribution.

The log-normal distribution is derived from the logarithmic transformation of the
normal distribution. The random variable x of the log—normal distribution is related
to the random variable u of the standardized normal distribution by

u="[In(x—0)— ul/o ‘ (3.72)

where y, o and 6 are parameters. The probability density function of the log—normal
distribution is defined by

_In(x—0)—pp

1
T = e P [ 2 o7 ]

3.3.6.1 The two-parameter log—normal distribution

This distribution concerns the positive random variable defined in the range
0 < x < 0. The probability density function is defined by Eq. (3.73) when 6 = 0. The
random variable x has a two-parameter log-normal distribution if the random variable
In x has a normal distribution N (u, ¢?). The mean and variance of the random
variable x are calculated from

E (x) = exp(u + 0.5¢6%) (3.74)

(3.73)

and
D(x) = expu)w(w — 1) (3.75)

where w = exp ¢°. The skewness g, and kurtosis g, depend only on the variable »
according to

g1 =vo—Hw+2) (3.76a)
and
g, = 0* + 20° + 30? — 3 (3.76b)

The coefficient of variation ¢ defined by Eq. (3.17) is a function of parameter
only for the log-normal distribution.

o= /ow—-1 (3.77)
The mode %\, and median X, 5 are given by

Xy = exp(u — d?) (3.78a)
and

Xo.5 = exp(u) (3.78b)

The logarithm of the likelihood function of the two-parameter log—normal
distribution is

4
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nLe —"lnem-"lnol =Y Inx—o Y (nx — 4 (3.79)
2 2 i=1 ' 20° i=1 '
From Eq. (3.3), the maximum likelihood estimate of parameter yu is
1 ‘
-~ Y In (3.80)
=

and of parameter o2

i (In x; — (3.81a)

I\JI'—‘

which is biased. The unbiased estimate &; is calculated from
6t=62n/n—1) , (3.81b)

The variance of parameter /i is calculated from Eq. (3.40) and of variance ¢ from
Eq. (3.42). The confidence interval of parameters u and o? is found in the same as
for a normal distribution (Section 3.3.2).

There are some cases when the investigation of data in logarithmic transformation
is not convenient, and parameters of location and spread with their confidence intervals
should be calculated in the original data scale. The 100(1 — «)% confidence interval
of median X, 5 is then calculated from

exp(l — t,_yo(n — 16/3/n) < X5 < exp(l + 1, _y2n — 1)3/3/n) (382)

The confidence interval for the coefficient of the variation, the skewness or kurtosis
may be calculated analogously as they are functions only of parameter o2. The
100(1 — &)% two-tailed confidence interval of the coefficient of variation is estimated

by

(n—1) 6 :|1/2 |: (n—1) 62 ]1/2

ex ————-—-1 <0 exp———l (3.83)
l: P Xl a/Z(n 1) Xa/z( 1)

The point estimate of the mean M = E (x) and the corresponding estimate of the
variance V= D(x) for the original data scale is given by

M = exp() g(0.56?) (3.84)
and
N R n—2) é*
- exr)@#)[g( 2 - g{(—_)l—}] (385)
In both expressions the function g(t) is found from an infinite series
(n 1)21'—1 t

(3.86)

—1
oo=1+" n t+zn’(n+1)(n+3) ST

For large samples with n > 50, or for sufficiently small values of the variance a?,
the following approximation [3] may be used
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1 2 2
1_t(t+ )+t(3t +22t+21):| (3.87)

g9(t) = Cxp(t)[ " onZ

The variances of the M and ¥ estimates are calculated from the expression [3]
D(M) = ¢* exp(2p) (1 + 0.562)/n ‘ (3.88)
and
D(V) = 262 exp(p) w?*[2(w — 1)* + 6% 2w — 1)?] (3.89)

For large samples, the approximate confidence intervals of M and ¥ can be
calculated from Egs. (3.23) and (3.28). The confidence interval of the mean M may
be calculated with the use of an estimate £ and its variance D(f)

t =1 + né?*/(2(n — 1)) (3.90a)
and
D(?) = 6*/(n — 1) + n?c*/(4(n — 1)) (3.90b)

By using the estimate £ and D(f) the 100(1 — a)% confidence interval of the mean
M may be expressed as

exp[f — st _yon/DA] < M < expl + g1y _ 03/ DID)] (391)

In the case of the log-normal distribution, the data should be analysed in logarithmic
transformation, or the estimates M and Vshould be used, except in cases when 6% < 1.

Problem 3.9 Examination of trace concentrations of copper in kaolin
A set of n = 32 samples of kaolin was used to determine the trace concentration of
copper in raw kaolin. Exploratory data -analysis indicated that the sample came from
a two-parameter log-normal distribution. By analysis of logarithms of the measured
quantities, the arithmetic mean 4 = 23 and the sample variance ¢? = 0.0004 were
estimated. Calculate point and interval estimates of parameters of location and of
dispersion by analysing the original measured quantities.
Data

9467 9.785 9806 9.863 9.867 9.889 9915

9.933 9951 9950 9.969 9.994 10.025 10.059

10.078 10.088 10.093 10.091 10.094 10.097 10.124

10.134 10.185 10.195 10.209 10.222 10234 10.235

10.317 10446 10313 10.502

Progam: Chemstat: Basic Statistics: One variable analysis.
Solution: From Eq. (3.27b) the 95% confidence interval of parameter u is calculated
to be 2.297 < u < 2.307. The confidence limits are the arguments of the exponential
in Eq. (3.82). The 95% confidence interval of the median %, 5 of the original data is
10012 < %, 5 < 10.167.

The 95% confidence interval of the coefficient of variation & (Eq. (3.83)) is
0.0160 < 6 < 0.0266. Equation (3.87) gives the values ¢(0.56%) = 1.0002,

7
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Introduction of the maximum likelihood estimates /() and 6%(0) into the logarithm
of the likelihood function yields a modified maximum likelihood function:

In L, = —n[A(6) + 0.5 In 6(6)] (3.92a)

This function depends on just a single parameter, 0. A graph of the function
In L, = f(6) is shown in Fig. 3.8. The first step is a search over the interval in which
the function In L, is unimodal. The second stage is to search iteratively in this interval.

Problem 3.10 Examination of trace concentration data on antimony in a copper ore
The set of n =40 samples of copper ore was analysed to determine the trace
concentration of antimony (in ppm). Exploratory analysis indicated that the antimony
concentration is described by a log-normal distribution. Estimate the point parameters
of location and dispersion.

Data:
1454 1516 83.7 1096 1241 1244 128.1 139.7
140.3 1454 1560 1603 160.6 163.1 1656 172.5
1820 187.7 193.1 199.6 2019 203.1 2042 2050
2054 2067 2170 2206 240.6 2424 2472 2538
259.6 2658 266.1 308.8 311.7 401.3 4493 5363

Program: Chemstat: Probability models.
Solution: On maximizing Eq. (3.92a), with the use of Egs. (3.80) and (3.81) with x;
replaced by (x; — ), the maximum likelihood estimates 4 = 5.065, ¢ = 0.478 and
# = 36.5 are calculated. The maximum of the In L function reaches the value
In L = —258.5. Figure 3.9 shows a graph of the log-normal distribution with its
simple nonparametric estimate.

By taking the minimum value 6 = 0, the estimates j, = 5.29, ¢, = 0.384 and
In L = —258.8 are calculated.
Conclusion: The difference between the estimates results from the choice 8 = 0; the
estimates calculated from original data are not influenced. For the three-parameter
model the median is,

%05 = 0 + exp(u) = 194.88
whereas for the two-parameter model

%05 = exp(fi,) = 198.34.

34 ROBUST ESTIMATES FOR PARAMETERS OF LOCATION AND
SPREAD

The sample mean x and the sample variance s* are efficient estimates of the parameters
of location and spread only for data from the normal distribution. If the sample is
not normally distributed, or if some outliers are present, the efficiency of both x and
s? decreases. We shall introduce many statistical techniques based on normal
distribution of the original observations, and these still remain approximately correct

‘—_
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Fig. 3.9—The probability density function for the sample log-normal distribution and its nonparametric
estimate distribution.

for reasonable departures from normality. In this regard they are said to be robust
to non-normality. Robustness can relate to the separate effects of deviations from
normality, independence, equal variance, and randomness.

3.4.1 The median
The median X, 5 is the oldest robust estimate of the parameter of location. Despite
other robust statistics, the median has a precise interpretation for a symmetrical and
also for a non-symmetrical distribution: the median X, 5 is the second quartile or
50%-percentile, which divides the probability distribution area into two equal areas.
Thus, the probability of x being less than X, 5 is 1/2 and equal to the probability of
x being greater than X, ;. When the sample size n is odd, the sample median x, 5 is
defined to be the middle value in order of size; when n is even it lies between the
two middle values, and usually we take the average of these two as its value.

For an unknown distribution and when some outliers are present, the nonparamet- i
ric estimate of the standard deviation of a median is calculated from

_ Xn—k+1) ~ Xy (3.93)

s
M 2 u,,

where

n+1
k= — lt,2] /1/4 (3.94)

Best results are obtained with a = 0.05, for which |u, 4,5| = 1.96.
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For small samples, the Marritz-Jarret estimate of the standard deviation of median
can be used.

n n 2711/2
Sy = I:Z WiXgy — [z wix(,.,:l ] (3.95)
i=1 i=1

where

i—05 " i—05]]!
R

and function J (x) is defined by

!
J(x) = (m—"'F x x™(1 — x)" (3.95b)

where m = int((n — 1)/2) and int(x) means the integer part of a number x.
The random variable t,, defined by

oo Xos — Me _Xos — Me
M~ ~ *
Sm SM

(3.96)

has approximately the Student distribution with (n — 1) degrees of freedom. The
symbol Me means the median of the population from which the sample comes.

Problem 3.11 Robust sample estimates of five distributions
Apply robust analysis to five samples of size n = 50, from the normal, rectangular,
exponential, Laplace and log-normal distribution, with the use of the median
measures.
Data: n = 50, data from Problem 2.2
Program: Chemstat: Basic Statistics: One sample analysis.
Solution: Results of the robust analysis of the five sample are shown in Table 3.4.
These are the median %, s, the square of interquantile deviation R? (Eq. (3.19)), the
standard deviations of median sy and the limits of the 95% confidence interval L,
and L, (Eq. (3.96)).

Comparison of the results of Table 3.4 with those of Table 3.3 shows that

(a) for the normal and rectangular distribution, the median characteristics give
nearly the same results as the mean characteristics;

(b) for the exponential distribution the confidence interval is nearly the same, but
the median is too robust, compared with the mean.

(c) for the Laplace distribution the median characteristics are better than the mean
ones; '

(d) for the log-normal distribution the median characteristics are not objective
enough and the 95% confidence interval does not contain the mean value.




128 Statistical analysis of univariate data [Ch. 3

Table 3.4—The median characteristics of five samples with various population distributions, n = 50

Population

distribution %o.s R? Sm by L, L,
X(u, 0%

Normal 0.0309 1.334 0.032 0.423 —-0.329 0.391
N(©; 1)

Rectangular 0.506 0.242 0.0061 0.279 0.349 0.663
R(0.5; 0.083)

Exponential 0.705 0.923 0.024 0.423 0.395 1.02
E1; 1

Laplace 0.0115 1.964 0.032 0.423 —0.347 0.371
10; 2)

Log—normal 1.293 4.109 0.190 0.660 0.415 2.169

IN (2.71; 47.21)

Conclusion: The median and other robust characteristics are not suitable for
asymmetrical distributions, because robust techniques “cut” good values and make
the population look symmetric. Robust techniques cannot be adopted for general use.

3.4.2 The trimmed mean
One of the simplest and most efficient robust estimates of location is the trimmed
mean X(x) defined with the use of the order statistics x;, as

1 n—-M

X6 = n—2M i=§+l

X (3.97)
where M = int (x x n/100). The parameter » determines the percentage of order
statistics x; that are to be trimmed off at each (low and high) tail. The usual value
of » is 10%, and this results in the 10% trimmed mean, X(10). When there are many
outliers, X(25) is preferred.

The trimmed mean is used with the winsorized sum of squared differences

n-M-—1
Sy(x) = Z (x(i) - X, ()* + (M + 1)[(X(M+1) — Xy (»)?
i=M+2
+ (X any — Xu ()] (3.98)
where X, (x) is the winsorized mean defined by
1 n-M-1
X, () =~ |:(M + 1)(x(M+ y+ x(n—M)) + Z x(i):| (3.99)
n i=M+2

Tukey and McLaughlin [2] recommend for statistical testing about parameter of
location u the test statistics

I
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(X(%) — ) /h(h — 1) (3.100)

S.(%)

where h = n — 2M. The test statistic tg(x) has approximately the Student distribution
with (n — 1) degrees of freedom. For small samples from n = 5, the recommended
value for constant M is 1, ie. ¥ = 20%. It may be concluded from Eq. (3.100) that
the winsorized variance is equal to s3(x) = S(#)/(h — 1).

For asymmetric and strongly skewed distributions the asymmerric trimmed mean
X(%,, %,) is defined by

Z X(iy
X(s, =_1=h 3.101
X(xy, %5) n,—n, + 1 ( )

tr(%) =

where n, = int(»x; x n/100) and n, = n — int(x, x n/100). When », and x, are chosen
so that resulting trimmed sample has a symmetrical distribution, the variance of
asymmetrically trimmed mean may be calculated by

1 _
szv("la %) = h(h_-i-_l) ':"1(x(nl) — X(%,, ”2))2

n—1

+ Y (xg — XOep, %) + (0 — ny + 1)(Xg,,, — Xy, %,))

i=n+1
—((n, — 1)(x(m) — X(q, %5)) + (n — nz)(x(nz) — X(o,, ”2))2]

(3.102)

where h = n, — n; + 1. If the resulting trimmed sample is already symmetrical, the
test criterion

Xy, %) — | (3.103)

tr(xy, %) =
Sw(%l’ %2)

has approximately the Student distribution with v = [(n, — n, + 1) — 2] degrees of
freedom.

Various selector criteria are available for choosing the magnitude for trimming off
data. These serve as the estimates of the length of tails or of skewness of the sample
distribution. The Q,-criterion for estimation of the relative tail length of the sample
distribution is defined by

_ U(0.05) — L(0.05)
Qi = U (0.5) — L(0.5)

(3.104)

and also for estimation of the relative skewness of the sample distribution by

U005 — M (0.5)

27 M(0.05) — L(0.05) (3.105)

4
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where U(p) is the average of the nf largest ordered values, L(p) is the average of the
nf smallest ordered values, and M (f) is the average of ordered values from the middle
part of the distribution. When nf is not an integer, it is found as a ratio of neighbouring
ordered values by linear interpolation.

According to the values of Q, and Q,, the parameter » of the trimmed mean X(x)
is chosen as follows.

(@) When Q, ~ 0 and the sample distribution is symmetric, x is selected according
to sample size (Table 3.5).

(b) When the sample distribution is symmetric and 90% efficiency is desired,
parameter » is chosen such that x» =15% for Q, <29, x=25% for
29<Q, <35and »x =35% for 0, > 3.5.

Table 3.5—The choice of best trimming parameter, k in %. Q’l' is
calculated from Eq. (3.104), with difference [U (0.2) — L(0.2)] in the

numerator

n K(%) 0:
<10 6.35 for all Q*
12.5 Q7 <184
10—20 25 Q7 > 1.84
9.375 0F <181
20—-30 18.75 1.81 < QF < 1.87
28.125 Qf > 1.87

(¢) When Q, # 0, the asymmetrically trimmed average may be used, and parameters
%, and %, are selected as follows:

for Q, < 1.4 and Q, > 2.68, %, = 25% and », = 25%,
for @, > 1.4 and Q, < 1.98, %, = 0% and x», = 50%,
for Q, > 1.4 and Q, > 2.68, %, = 25% and %, = 25%.
More detailed information is available [1].
Problem 3.12 Trimmed mean and winsorized variance of samples from five distributions
Apply robust analysis to five samples of size n = 50 from the normal, rectangular,

exponential, Laplace and log—normal distributions, with use of the trimmed mean
and winsorized variance.
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Data: from Problem 2.2

Program: Chemstat: Basic Statistics: One sample analysis.

Solution: Table 3.6 lists the trimmed mean x(x) and the winsorized variance s2(x) for
two values of », » = 0.05 and » = 0.10.

Table 3.6—The trimmed mean X(x) and the winsorized variance si(z) for (a) » = 0.05, and (b) x = 0.10,
and the limits L, and L, of the confidence interval of the mean %,

(@)

Population » = 0.05

distribution

X(u, 6%) (%) s2() L, L,
Normal —0.046 0.825 —0.325 0232
N@©; 1)

Rectangular 0.486 0.088 0.395 0.578
(0.5; 0.083) :

Exponential 0.836 0.519 0.615 1.06
E(1; 1)

Laplace —0.088 1.271 —0434 0.259
L(0; 2)

Log-normal 2.551 22.65 1.087 4.02

LN (2.71; 47.21)

(b)

Population » =0.10

distribution

X(u, o) X(x) 5309 L, L,
Normal —0.053 0.787 —-0.340 0.234
N(@©O; 1)

Rectangular 0.489 0.092 0.391 0.587
(0.5; 0.083)

Exponential 0.805 0.512 0.573 1.036
E(L; D

Laplace —0.049 1.119 —0.392 0293
Lo; 2

Log-normal 1.796 7.30 0.921 2.671

LN (2.71;47.21)
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Table 3.7—The selector statistics Q,, Q7 and @, for five samples from various distributions with n = 50

Population

distribution 9, o7 2,
X(p, 0?)

Normal 2.856 1.795 0.919
N(0; 1)

Rectangular 1.922 1.571 0.054
R(0.5; 0.083)

Exponential 3.576 1.784 6.175
E(; 1)

Laplace 3.66 1.885 1.358
L(0; 2)

Log—normal 5.02 2.064 25.182

LN (2.71; 47.21)

When these results are compared with those of Table 3.3, it is evident that (1) for
the symmetric distributions N, R and L, the trimming leads to shortening of the
confidence interval,

(2) for the asymmetric distribution E and LN the trimming for » = 0.10 causes
negative results, and for the log-—normal distribution the 95% confidence interval
does not contain a true value. A small amount of trimming » = 0.05 always leads to
confidence intervals which are narrow and contain the true value u. Table 3.7 lists
some selector statistics @, and Q, which indicate the differences in skewness and
kurtosis of the samples. Use of selector statistics in the symmetric distributions does
not cause significant improvement.

Conclusion: Trimmed means in connection with selector statistics enable determina-
tion of robust estimates even for asymmetric distributions.
3.4.3 The robust M-estimates
The robust M-estimates represent the maximum likelihood estimates of parameters
for some special distributions. Maximization of the likelihood function according to
the parameter py leads here to a minimization of the function

n

y [x—_—’i‘] = min (3.106)

i=1 4
The shape of the function p(u) determines the property of the estimate. Among
M-estimates are the arithmetic mean and median.

The M-estimate of location parameter 1y is generally defined by

W, X

IR

-~
Il
—

(3.107)

.:)
£
l
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where w; = W[(x; — py)/o] and W(u) = d p(u)/dt. For a robust estimate the function
W(u) must be bounded. The bi-quadratic function W(u) of the following type is
recommended

u 27)2
W(u) [1 - [Z@] ] for [u| < 4.69

0 for |u| = 4.69 (3.108)

where the numerical constant 4.69 means that for normally distributed data the
asymptotic efficiency of estimate f is equal to 0.95. Since the standard deviation ¢
is usually unknown it is replaced by a suitable robust estimate. Du Mond and Lenth
[5] recommend for the M-estimate of standard deviation the expression

n 1/2

Z Vi (x; — fiy)?

sy=— | FH——— (3.109)
Vi

=1

V= W[[A[i‘is_—’ﬂ]m] (3.110)

The weight function W() is defined by Eq. (3.108) and A(u) is a deviation function,
for which:

where

A(u) = (3.111)

u?—In w?)—1 for u#0
for u=0

Du Mond and Lenth [ 5] procedure for ji, and S\, estimation

(1) For initial guesses ) and s\ the median %, and the interquantile range

6g = 0.75 (X9.75 — X4.,5) are computed.

(2) For initial guess A and s\’ the weights w; and V; are calculated from Egs.
(3.107) and (3.109), then the refined estimates ;' and s{;’ are obtained.

(3) In the second iteration new values of weights w; and V; are calculated and hence
new refined estimates A2 and si7.

(4) Tteration refinement terminates when the estimates from two iterations do not

differ significantly.

Because the robust M-estimate fi,, represents the weighted arithmetic mean, its
variance is expressed by:

Diig) = 50/ ¥ W, (3.112)

In constructing confidence intervals and statistical testing the random variable
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n 1/2
(um — ﬁM)|: Z Wi]

i=1

(3.113)

thy, =
M SM
which has approximately the Student t-distribution with v = n — 1 degrees of freedom
can be used.
Two weight functions are compared in Fig. 3.10.

5.0 1.3
W (x) w )
2.5 0.7
0.0l 0.0
2 2 x 9 2 < x 9
1) <} Iy ) o 0
|

Fig. 3.10—Comparison of two weight functions of M-estimates: (a) for the median, and (b) for the
bi-quadratic function.

Problem 3.13 Robust bi-quadratic sample estimates from five distributions

Apply robust analysis to five samples of size n = 50 from normal, rectangular,
exponential, Laplace and log—normal distributions with the use of bi-quadratic
estimates. %

Data: from Problem 2.2

Program: Chemstat: Basic Statistics: One sample analysis.

Solution: Robust estimates fi, variances D() and the limits of the 95% confidence
interval of the mean are listed in Table 3.8. For the symmetric distributions N, R
and L the robust analysis gives accurate estimates quite near to the true values, and
the confidence interval is narrow.

Worse results were achieved with the asymmetric skewed distributions: for the
exponential and log-normal distributions the 95% confidence interval does not
contain theoretical value u.
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Table 3.8—Robust analysis of samples from five distributions with the use of bi-quadratic estimates

Population

distribution fim D(fiyy) L, L,
X(u, %)

Normal —0.0458 1.039 —0.349 0.257
N(©; 1)

Rectangular 0.488 0.089 0.399 0.577
R(0.5; 0.0833)

Exponential 0.762 0.442 0.561 0.964
E(1;1)

Laplace —0.124 1.464 —0.490 0.242
Lo; 2) ‘

Log—normal 1.375 2378 0.893 1.858

LN (2.71; 47.21)

Conclusion: The robust M-estimates of this type are not suitable for analysis of skewed
distributions.

Problem 3.14 Comparison of various estimates of location and spread for data with
outliers
The advantage of robust estimates is their lower sensitivity to outliers in data. A
sample of size n = 50 was generated in which 47 observations came from the normal
distribution N (0, 1) with 4 = 0 and ¢? = 1, and the remaining three from the normal
distribution N (A4, 1) with the population mean u = 4 and variance ¢ = 1. For three
different values of 4, 100, 50 and 10, three samples were synthesized. Calculate the
sample mean X, variance s2, median X, , squared interquantile range R 2, trimmed
mean x(10), winsorized variance s2(10), bi-quadratic estimate of a mean fi, with its
corresponding variance, and comment on each estimate.
Data:
(1) n = 50, 47 elements from N (0, 1) and 3 elements from N (100, 1):
—1.008 —0.500 0.749 1.723 0.076 0.569 —1.389

0.087 1.112 —0.235 0.519 0279 —0.758 —0.588
—0.594 —-0.885 —-0.072 1.980 0.063 0.016 —0.673
—0.993 0.752 0.092 0236 —2962 —0.383 0.109
—1.285 0.634 0.690 1.134 -0.711 —1.825 2.374

0.500 —1.380 0.046 —0.544 —0.150 —1.129 1.173

1.401 —-2.121 0.521 0.280 1.440 99.585  99.557
99.616

(2) n = 50, 47 elements from N (0, 1) and 3 elements from N (50, 1): replace last three
points with 49.585 49.557 49.616
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(3) n = 50, 47 elements from N (0, 1) and 3 elements from N (10, 1): replace last three
points with 9.585 9.557 9.616

Program: Chemstat: Basic Statistics: One sample analysis.

Solution: The parameters of location and spread are listed in Table 3.9. Whereas x
and s* are quite far from the true values, all the robust methods leads to estimates
that are not influenced by the outliers.

Table 3.9—Parameter estimates of location and spread for three samples containing outliers.

Magnitude

of outlier % s? Xo.s R? x(10)  s2(10) Ay o

100 5.94 5722 0082 1.56 0.092 114 0020 1152
50 2.94 1428 0.082 1.56 0.092 114 —0018  1.136
10 0.54 64 0082 1.56 0.092 118 —0017  1.120

Conclusion: The main advantage of robust estimates is the low sensitivity to outliers.
Robust statistics are convenient for statistical data analysis when the data are not
homogeneous.

3.4.4 The analysis of small samples

The analysis of small samples is not reliable and results are usually rather uncertain.
Small samples are used in cases when experiment repetition is expensive or scarcely
possible.

For n = 2, statistical analysis is very difficult. If observations are close enough, the
arithmetic mean is calculated. If observations do not agree, it is not possible to say
which is the outlier. The 100(1 — «)% confidence interval of the mean u may be
calculated by an approximation

Xy + X, ><|x1—x2| (xy + x,)

[x; — X,
<p< 4T x X1 %l
2 * 2 a

2 * 2
The critical value of T, depends on the distribution of the data population that the
two values come from. For the normal distribution it is T, = cot(na/2), and for
a = 0.05, T is 12.71. For the rectangular distribution T, = 1/a — 1,i.e. Ty o5 = 19 [6].
For n=3 it is also difficult to use statistical analysis. The calculation of the
arithmetic mean X from two near observations is better than the use of the median
from all three values. The 100(1 — «)% confidence interval of the mean u is then
calculated by an approximation

S—sx T,/ \/3<p<x+sxT,./3

@

For the normal distribution, T, ~ 1/\/x — 3,/a/4 + ...., and when & = 0.05, T,
is 4.30. For the rectangular distribution T o5 = 5.74 [6].

For 4 < n < 20 a procedure based on order statistics was introduced by Horn [7].
This is based on the depths which correspond to the sample quartiles (the letter F),
cf. Section 2.2. The pivot depth is expressed by H, =int[(n + 1)/2]/2 or

N S
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Hy = int[(n + 1)/2 + 1]/2 according to which of the H, is an integer. The lower pivot
is X = Xy and the upper one is Xy = X, -, The estimate of the parameter of
location is then expressed by the pivot halfsum

Py =0.5(x; + xy) (3.114)
and the estimate of the parameter of spread is expressed by the pivot range

R, = xy— X, (3.115)
The random variable

P Xy + Xy

T =———
- Ry 2(xy —xp)

(3.116)

has approximately a symmetric distribution and its quantiles are given in Table 3.10.

Table 3.10—The quantile t; ; _,(n) of the T -distribution

-« 0.9 0.95 0.975 0.99 0.995

n
4 0.477 0.555 0.738 1.040 1.331
5 0.869 1.370 2.094 3.715 5.805
6 0.531 0.759 1.035 1.505 1.968
7 0.451 0.550 0.720 0.978 1.211
8 0.393 0.469 0.564 0.741 0.890
9 0.484 0.688 0.915 1.265 1.575
10 0.400 0.523 0.668 0.878 1.051
11 0.363 0452 0.545 0.714 0.859
12 0.344 0.423 0.483 0.593 0.697
13 0.389 0.497 0.608 0.792 0.945
14 0.348 0437 0.525 0.661 0.776
IS 0.318 0.399 0.466 0.586 0.685
16 0.299 0.374 0.435 0.507 0.591
17 0.331 0.421 0.502 0.637 0.774
18 0.300 0.380 0.451 0.555 0.650
19 0.288 0.361 0423 0.502 0.575
20 0.266 0.337 0.397 0.464 0.519

The 95% confidence interval of the mean is expressed by pivot statistics as
Py — Ry X1y 0.975(M) <t < P+ Ry X 1y g.975(n) (3.117)

and analogously hypothesis testing also may be carried out. For small samples
(4 < n < 20), the pivot statistics lead to more reliable results than the application of
Student’s t-test or robust t-tests.

Problem 3.15 Analysis of a small sample (n = 5) taken from five distributions
Make an analysis of a small sample (n = 5) taken from normal, rectangular,
exponential, Laplace and log-normal distributions. Try to use Horn’s procedure [7].
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Data: n = 5.

N, 1) —1.008 —0.500 0.749 1.723 0.076
R(0.5, 0.083) 0.531 0.677 0.171 0.065 0.848
E(1,1) 0.757 1.129 0.188 0.067 1.885
10, 2) 0.064 0436 —1.072 —2.036 1.192
LN (2.71, 47.21) 0.191 2.118 0.380 0.264 3.374

Program: Chemstat: Basic Statistics: One sample analysis.

Solution: The classical and pivot approaches are compared. In the first half of Table
3.11 the classical statistical measures (%, s> and limits L,, L, of the 95% confidence
interval of the mean) were calculated, and the second half contains the pivot statistics
(P., R, and limits L,, L, of the 95% confidence interval of the mean).

Conclusion: For a small sample size, the pivot approach seems to lead to more reliable
parameter estimates.

Table 3.11—Horn’s procedure for analysis of a small sample (n = 5), in comparison with the classical
statistical approach

Population Classical approach Pivot approach
distribution

X(u, 8) X s? L, L, P, R, L, L,
Normal 0208 1.146 —1120 1.536 0125 1249 -0.084 0333
N(©; 1)

Rectangular 0458  0.110 0.046  0.081 0424 0506 —1.332 2180
R{(0.5; 0.083)

Exponential 0.805 0550 —0.115 1.725 0.658  0.941 —0.806  2.123
E(1;1)

Laplace —0.283  1.628 —1866 1299 | —0318  1.508 —0.760  0.124
L(0; 2)

Log-normal 1265 2029 —0502 3033 1.190  1.855 —0.154  2.536
IN (2.71; 47.21)

3.4.5 The nonparametric estimates of variance
A survey of various nonparametric methods for estimating variance was made by
Efron [8]. Here only two techniques, the Bootstrap method and Jackknife method,

R
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will be demonstrated. Both methods enable a calculation of confidence interval of
variance and both are computer-assisted.

The Bootstrap method is based on the estimate § of parameter 8 which is a known
function of n independent random observations x,, ..., x [ie, § = f (g5 ees X))
The sample arises from an unknown distribution Fg. The variance of estimate §
depends on the unknown distribution function Fy. The Bootstrap method substitutes
the Fy distribution by a discrete distribution with probability p, = 1/n in points x;,
i=1,...,n
The Bootstrap procedure:

(1) From the original sample (X;), i = 1, ..., n, random sampling with replacement
is used to create the B Bootstrap samples of size n. The ith element of the original
sample may be present in the ith Bootstrap sample several times while another element
may not be present at all. A selection of Bootstrap sample elements is made on the
basis of random index i

i=int[rnd(0) x n + 1] (3.118)

where rnd(0) is the pseudorandom number from a generator of rectangularly
distributed pseudorandom numbers between 0 and 1. When rnd(0) = 1, then i = n.
(2) Calculation of parameter estimates § = g(x,), i = 1, ..., B, where X; stands for
the ith Bootstrap sample of size n.
(3) Calculation of the estimate of variance

B
(gi - BB)Z
6% = =1 (3.119)
B B—1 :
where
B
6=7Y 0,/B

represents the estimate of the mean. Usually the number of Bootstrap samples B is
set between 200 and 1000.

(4) For construction of the confidence interval of the mean parameter and statistical
tests the criterion

w (3.120)
Gp

is used; for large B values this has a standardized normal distribution.
The Jack-knife method is based on the use of “pseudovalues”, y; defined by

yi=nx0—(n—1)x 80, (3.121)

where 0, is an estimate computed from all sample elements except the ith one. The
mean 8, is calculated from

g =

n

1 . n
J nx z yl n n =

i=1 i

n—1

0, (3.122a)
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With large or medium sample sizes, the pseudovalues y are taken to be approximately

normally distributed. The random variable
0.—0

— _J

t; =

(3.122b)

OA.J
has the standardized normal distribution. The variance of the Jack-knife estimate o2
is calculated from
1 " _
_ . —0.)? 3.122¢

L 0= ) (3.1220)

Both nonparametric estimates ¢ and 67 enable determination of a variance of
various types of estimators of parameter 6.

A2 _
6; =

Problem 3.16 Confidence interval of variance by Bootstrap and Jack-knife methods
Calculate the 95% confidence interval of the sample variance s* for a sample of
n = 30 taken from the Laplace distribution, with the use of the Bootstrap and
Jack-knife methods.
Data: n = 30.

0.064 0436 —1.072 —-2.036 1.192 —3.162 —0.275

0.734 0.049 —0.569 1.144 —1.070 0.304 0.343

0.144 0.209 —1.269 4452 5.477 —0.862 —0.026

0210 0.695 —-0.774 —3.723 —0.026 1.879 0.887
—0.333 1.038 ;
Solution: (a) The Bootstrap method: 400 simulated Bootstrap samples were selected. ]
The average variance 55 = 3.12 and Bootstrap variance 63 = 1.53. From Eq. (3.120) g
the limits of the 95% confidence interval of the variance are calculated as

L ,=5 1195 x 65 =312 + 241.

A histogram of the values generated is shown in Fig. 3.11.
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Fig. 3.11—The histogram of the 400 Bootstrap sample values simulated from an original sample size of
n = 30 from the Laplace distribution.
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(b) The Jack-knife method: the average value of variance 57 is 3.2 with variance
87 = 1.289. From Eq. (3.122) the limits of the 95% confidence interval

L, =35 +195x ¢} =32+ 251.

Conclusion: The values for the confidence interval of the sample variance estimated
by the Bootstrap and Jack-knife methods are in reasonable agreement.

3.5 STATISTICAL HYPOTHESIS TESTING

In many applications of statistics we are interested in making inferences about
population (or ensemble) characteristics on the basis of observations made on a random
sample of items from the population. The characteristics of interest may often be
expressed in terms of population parameters, such as the population mean u, or
variance 62, or the proportion p of the population which has a certain characteristic.
In other situations we may wish to make inferences about the difference between two
(or more) populations, such as the difference between two population means p, and g, .

A statistical hypothesis is a statement about the population distribution of some
random variable. Hypothesis testing consists of comparing some statistical measures
called test criteria (or statistics) deduced from a data sample with the values of these
criteria taken on the assumption that a given hypothesis is correct. In hypothesis
testing, one examines a null hypothesis H, against one or more alternative hypotheses
H,, H,, ..., H, which are stated explicitly or implicitly. To reach a decision about
the hypothesis, we select a value of a, which is termed the significance level for the
test. Significance level « is usually arbitrarily selected to be fairly small, for example,
a might be 0.05 or 0.01. The significance level « is related to the confidence coefficient
l—a

Since the alternative hypothesis is the hypothesis which is accepted when a null
hypothesis is rejected, the procedure of hypothesis testing seems to be, in fact, a
process of rejection of alternative hypotheses.

For hypothesis testing the test statistic (or the test criterion) is set up. When this
statistic falls into the the range of acceptance, the null hypothesis is not rejected. When
this statistic falls into the region of rejection (or the critical range) the null hypothesis
is rejected. The probability of the test statistic falling in the region of rejection is
equal to the significance level. Tt is expressed in %, e.g 5% or 1%.

A region of rejection can be set up as two-tailed (or two-sided) leading to a two-tailed
test, or as a one-tailed test. The two-tailed test is used when test statistic can take
values with either positive or negative sign. The significance level « is then split into
two equal parts of magnitude «/2.

3.5.1 Procedure for hypothesis testing A
The procedure of statistical hypothesis testing is as follows:

(1) The null hypothesis H, and an alternative one are formulated.
(2) The significance level a is selected.
(3) The test statistic is chosen.
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foy| O

Sa
Ta 12 3 Ty_an

Fig. 3.12—Regions of rejection (Oy) and acceptance (Op) for a symmetrical (two-tailed) hypothesis test.

(4) The region of rejection of the test statistic, on the basis of its probability
distribution and the significance level, is determined.
(5) For the sample, the test statistic is calculated, and the limits of the region of
rejection (Fig. 3.12).
(6) (a) The null hypothesis is rejected and the alternative one accepted when the
value of the test statistic falls into the region of rejection;
(b) the null hypothesis is not rejected when the value of the test statistic does
not fall into the region of rejection.

In judgement, it is necessary to remember that

(i) rejection of a null hypothesis H, does not necessarily mean that the tested null
hypothesis is not valid. The rejection of a null hypothesis H, means only that we do
not trust its validity because of the statistical test performed. It is understood in the
following work that if the H, hypothesis is not valid then the alternative one H , is
valid;

(ii) no rejection of a null hypothesis H, does not imply its acceptance. When we
do not reject a null hypothesis H,, it means only that hypothesis testing did not
provide sufficient reason for rejection of the hypothesis. If the H, hypothesis is not
rejected, it can usually be assumed that either the H, (or some other hypothesis close
to H,) is valid.

We illustrate the procedure of hypothesis testing with an example in which we
want to test the parameter 6. The sample size is large enough to allow us to use Eq.
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(3.23). The null hypothesis H,: 6 = K where K is a known number, is tested against
the alternative H ,: 6 # K. The test statistic

L 10— K]
V)

will have a normal distribution if the null hypothesis H, is valid. Testing the H,
hypothesis can lead to the following results:
(1) the test statistic falls into a region of acceptance of the null hypothesis i.e.

Upa < U < Uy _gp2

and therefore H is not rejected. If H,, is valid the probability that u_ will fall out of

range O, is equal to the significance level «. The magnitude of o determines the

magnitude of the error of the first kind, i.c. wrong rejection of correct hypothesis H,.
(2) The test statistic falls into a range of rejection Oy i.e. into the interval

U <u,, Or u >u;_,,, respectively.

The null hypothesis H, is then rejected in favour of the alternative H ,. The probability
that u falls into the region of acceptance O, even if H, is wrong represents the
magnitude of the error of the second kind, . This error results when a wrong hypothesis
H , is accepted. The two types of error are illustrated in Fig. 3.13.

Both errors should be minimized. The probability that we will not make an error
of the first kind is (1 — «). This is the probability of making the correct decision about
the test hypothesis. The second correct decision is made with probability (1 — f).
This is the probability of not making an error of the second kind. We call the power
of the test to discriminate S =1 — . It represents the hope of making a correct
decision when the hypothesis is actually wrong.

The power of the test is affected by the sample size n: with bigger sample sizes,
more information is available, and therefore the wrong hypothesis will be rejected
with more confidence in favour of the alternative one. For n — o0, § — 1.

Attention should be paid to the choice of significance level « in hypothesis testing:

(1) When the null hypothesis H,, is not rejected at the significance level o = 0.05,
the difference between the theoretical value K and the estimated parameter 8 is
not significant.

(2) When the null hypothesis H, is rejected also at the significance level « = 0.01,
the difference between the theoretical value K and the estimated parameter 0 is
statistically significant.

(3) When the null hypothesis H, is rejected at the significance level o = 0.05 but
not at a = 0.01, the sample size did not give sufficient information for a correct
decision.

3.5.2 Hypotbhesis tests for the parameters of one population
Tests on the parameters of a single population enable the chemist to tell if the
population mean (or variance) of a new product or variable (1) is different from, (2)
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f0)

Fig. 3.13—Relationship between an error of the first kind and an error of the second kind.

exceeds, or (3) is less than the population mean (or variance) of a standard product
or variable.

The hypothesis selected assumes that we know the value of the standard population
parameters, y,, (or o, respectively) from past experience or otherwise. As indicated
in the third column of Table 3.12, a decision can be reached as follows:

(1) If the inequality proves to be true, i.e. if the calculated difference exceeds the
right-hand side of the inequality, the hypothesis is accepted.

(2) 1If the inequality does not prove to be true, i.e. if the calculated difference does
not exceed the right-hand side of the inequality, then the hypothesis is rejected,
and there is little likelihood that the hypothesis is correct.

For a hypothesis test of a normal distribution based on a random sample x;,i = 1,
..., n, with mean x and variance s2, the random variables u (for large samples) and
t (for small samples, n < 30) are used as test statistics:

u=f—;ﬂxﬁzN(0;l) and t=x—s”°\/ﬁ

where x is the sample mean, s is the sample standard deviation and n is the sample
size. The null hypothesis H,: u = p, is followed by the alternative hypotheses (1) H ,:
U> o, (2) Hy: p < pg, (3) H 4o p # g, (see Table 3.12).
To test the hypothesis H,: 62 = o7 the test statistic
, (=15

X =————Q>=
)

I €
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is used. The tests assume that the observations are taken randomly from a normal
random variable.

(1) Test the hypothesis Hy: p = pg vs. H ;- p > p,. In this case, large positive values
of t (or u) are evidence in favour of H,. Values of ¢ around zero are evidence in
favour of H,. Large negative values-of t(or u), while they are unlikely if H,, is true,
are even more unlikely if H is true.

Hypothesis testing may be carried out also by calculating the probability
o = P(t, _, > t) as an one-tailed (upper tail) test:

(@ If «>0.05 we say that ¢ (or u) is not significant and there is no evidence for
rejecting H,, in favour of H,.

(b) 1f o lies in the region 0.05 > « > 0.01 we say that ¢ (or u) is significant at the 5%
level and there is some evidence for rejecting H, in favour of H .

(c) If « lies in the region 0.01 > a > 0.001 we say that ¢ (or u) is significant at the
1% level and it is generally interpreted as strong evidence for rejecting H, in
favour of H ,.

(d) 1£0.001 > o we say that ¢ (or u) is significant at the 0.1% level and there is almost
conclusive evidence for rejecting H,, in favour of H .

In the formulation of statistical hypothesis testing given above, the results of the
tests are presented as evidence at various levels (none, some, strong, almost conclusive)
in favour of the alternative hypothesis H ,.

An alternative formulation of statistical hypothesis testing is as follows: before the
experiment takes place we decide on a fixed value of a (usually, but not necessarily,
one of the values 0.05, 0.01, 0.001). This will determine a critical region in the tails
of the distribution, such that if ¢ falls within the critical region H 41s accepted, otherwise
H, is accepted. It will be noted that even if H,, is true there is a probability o that
t,(v) will fall into the critical region. Thus « may be interpreted as the probability of
accepting H, when H,, is true; that is o = P (accepting H /H,). The probability of
incorrectly accepting H,, when H, is true could obviously be reduced by decreasing a.

(2) Test of the hypothesis Hy: p = po vs. H,: u < p,. This time large negative values
of t (or u) are evidence in favour of H . We calculate « = P(t, _, < t) and the values
of « obtained are interpreted as in the previous case. This test is a one-tailed (lower
tail) test.

(3) Test of the hypothesis H,: = p, vs. Hy: p # pg. As in (1) and (2) we calculate
t=(x— yo)\/ﬁ/s (or u=(x — uo)ﬂ/o). This time both large positive and large
negative values of ¢ (or u) are evidence in favour of H,. We calculate

o= Pt | —[t])
= P(t,_, <[t)) + P{t;, > t])

= 2P(t, _, > |t]) from symmetry.

Again the values of o obtained are interpreted as in (1). This third type of test is
referred to as a two-tailed test.
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The critical regions for the three types of tests are shown in Fig. 3.14.

Fig. 3.14—Critical regions for (a) a one-tailed test (lower tail), (b) a two-tailed test, (c) a one-tailed test
(upper tail).

To investigate whether t (or u) is significant, and if so, at what level, it is not
necessary in practice to calculate the value of o. We simply compare the value of ¢
(or u) with the critical values ¢, _, (or u, _,) obtained form critical statistical tables.

f(x)

| x— M

Fig. 3.15—The test of accuracy of a result u, Hy: p = pg vs. H o p # pg.
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Table 3.12—Tests for comparing (a) the mean u of a new product with a standard
Mo, and (b) these two products with regard to their variability: (a) Hy: p=p,y, o
unknown, s from sample used ¢, _,(n — 1) or z, _,,(n — 1)is the quantile of the Student
distribution. Instead of ¢, the u quantile may be used (see also Fig. 3.15).

H, Hypothesis Region of rejection t-test
u# & —u)
Ho 2 \/n 2t _,an—1) Two-tailed
s
> % —uy) -~
o Bl fnztn-1) One-tailed
s
n<p (x—n) -~
¢ 2 \/n <t (n=1) One-tailed

(b)Hy:0% = ag, 170 — 1), x5 _o(n — 1), x25(n — D and x} _, ,(n — 1)are the quantiles
of the Pearson y? distribution.

H , Hypothesis Region of rejection x*-test
o # ag s s2n—1) , .
Lt =1 < T S Ao, Two-tailed
%

a*>q ssn—1) .
7 20— One-tailed
]

o*<o sn—1) .
7 <x,m—1) One-tailed

%

Problem 3.17 Test of the sample mean from the log-normal distribution

A random sample is taken from the log-normally distributed population of copper
in kaolin (Problem 3.9). Test whether the sample mean is equal to the expected value
M =10,ie. Hy: M =10 vs. H: M # 10.

Data: from Problem 3.9.

Solution: Since n=32>30, we use the test statistic for large samples
u = |M — 10|/./D(M ), which has the standardized normal distribution. Calculation

of u=19.976 — 10|/,/0.02 = 1.2 leads to a lower value than the Uy _,, quantile
(41 -0.05/2 = 1.96 for & = 0.05), 1.2 < 1.96 and hence the hypothesis H, is accepted.
Conclusion: the sample mean is equal to the expected value of 10.

3.5.3 Hypothesis tests for the parameters of two populations
Comparison of two samples {x;},i=1,...,n, and {y;},i=1,..., n,, is a frequent
problem in the instrumental laboratory, for

4
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(1) comparing results of different instrumental methods or laboratories,

(2) examining the need to separate heterogeneous samples into homogeneous classes,
and

(3) classifying the difference between various materials or various instruments.

Sometimes the problem of two populations may be tested as the problem of one
population. If the elements x; represent some response before a treatment of a material,
and elements y, the same response after the treatment, the difference between the
responses of a pair of values, d; = x; — y;, then gives a measure of the effectiveness
of the treatment. Let d and s, be the mean and standard deviation of these differences.
If the differences d are independently normally distributed (or nearly so) with mean
zero and (unknown) variance ¢ it can be shown that the statistic

t=d><\/;/sd

has Student’s ¢-distribution with v = n — 1 degrees of freedom. Here n is the number
of matched pairs in the experiment (Fig. 3.16). It is assumed here that each set of

ro) D;=x;-Y;
L
.
L
\ ! l \
X X D=x—y y y
L_..._._MQO—OQ.-O-.-.-O-O—OOO(MOW

Fig. 3.16—The pair test.

measurements may be regarded as a sample from a normal population. This statistic
may be used to test the hypothesis Hy: up = p, — u, = 0, (i.e. there is no treatment
effect) vs. H,: pp # 0. From the hypothesis H ,: u, # p, we see that a two-tailed
test is required.

Before statistical testing, the methods of exploratory data analysis should be applied
to both samples {x;} and {y;},i = 1,..., n. For each sample the box-and-whisker plot
G4 and notched box-and-whisker plot G5 are examined. The assumption that both




Sec. 3.5] Statistical hypothesis testing 149

samples have the same distribution is examined by the empirical quantile —quantile
plot G14 (Q—Q plot) with the ordered quantities y;, on the y-axis and x;, values
on the x-axis. When both samples have the same distribution, the points (x, )
should lie on a line y = x with slope equal to 1. When the empirical Q —Q plot has
theequation y = kx + g,mean y = kx + gand variance sf = k2s. A nonlinear pattern
in the Q—Q plot indicates that the distributions of the samples differ significantly.

For different sample sizes, n, > n,, the empirical Q—Q plot is drawn for the
ordered elements of the smaller sample i.e. for y here. The values of the quantiles
of the larger sample X; are computed according to

X;=(1—2)xg) + 2x444) (3.123)
where k = int(v;) is the integer part of real number v,
v;=(—05n,/n,+05

and z = v; — k. An empirical Q — Q plot is constructed from n, pairs of points (y;,, X;).
After exploratory data analysis, the classical tests of significance of difference in
the parameters of location and spread is applied. Classical tests assume that

(1) the two samples (x;),i=1,...,n,,and (y;,),i =1, ..., n, are independent,
(2) the two populations distributions are normal, x; >~ N (4, ) and y, ~ N (1, al).

3.5.3.1 Comparisons of population means
Consider a random sample of size n,, with mean x and variance s2, from a population
P, with unknown mean g, and unknown variance o2, and an independent random

f x) fly)

Fig. 3.17—The test for comparison of mean values.

)




150 Statistical analysis of univariate data [Ch.3

sample of size n, with mean y and variance s;, from population P, with unknown
mean p, and unknown variance o' . The hypothesm Hg: p, = p, is tested against the
alternatlve H,: p, # p, (Fig. 3. 17)

To proceed further we distinguish two cases:

(1) If we know that ¢? = af , the test statistic

X — I % ["1"2("1 t+n, — 2):"/2
Sy = Ds2 + (n, — s, ny+n,

has Student’s ¢-distribution with v = n; + n, — 2 degrees of freedom and significance
level o. When t, >, _ a/z(v) the null hypothesis H, is rejected.
(2) If we know that o2 # a , the test statistic

= 1% — J| (s2/ny + sy/ny) "2 (3.125)
has Student’s ¢-distribution with v degrees of freedom expressed by

2 2
y = — S/t sy I (3.126)

Sy s,

wny — 1) ' 3 — 1)

When t, > t, _,»(v), the null hypothesis H,, is rejected at the sxgmﬁcance level a

In some problems of comparison of means, the variances o2 and a are unknown
Posten, Yeh and Owen [9] found that for n, = n, > 8 the test statlstlc t, can be
applied even for o2 # a

For different sample sizes n, # n, and variance ratio o> /o ~ 1 the test statistic
t, can be used. If n, > n, and also n, is large enough, the test statistic t, can be used
provided that

(3.124)

t, =

2
n N
2 x34+1
n N
082 <15 <
Sx n2
SZ

1.17 (3.127)
y By
where s2 > 5. Test statistic t, is non-robust when the variance of data is not constant.
The test criterion ¢, is not robust against heteroscedasticity i.e. against a case of data
being measured with different precision. For such case the test criterion ¢, is preferable
because it is more robust. However, the number of degrees of freedom v calculated
by Eq. (3.116) are less than n; + n, — 2, so that the power of test ¢, is lower than
that of t,, and also the probability of a Type II error § increases.

When both samples are not from a normal distribution, the modified test criterion
t; is used

X — y| + C + D(x — y)?

Vi sy,

3 3 2 271-1
c=%[9_1;x Se iy S ][S—+S—y] (3.129)
1

ty = (3.128)




Sec. 3.5] Statistical hypothesis testing 151

1 [g‘1 s 4, s> N[s2  s27]°2
)P TSV S TV | (3.130)
30 n \/—rz ny \/E hy ny

Here §,, and §,, are sample skewness. In order to use the quantiles of Student’s
t-distribution for a declared significance level o, another statistic t 3 should be used

ty=t,+B,—B, (3.131)
where
A 3 A 2/ _ 52 2 27]-1/2
B.— gl,cs,c2 —+ g1.8x(% szy) | [Z_x + Z_vJ (3.132)
N N
6nf\/'71[—"+—y] 3n§\/n_z[—"+—y] L
n, n, ny N

Quantity B, is calculated analogously with g, ,, 05 and n,. The test criterion t; for
H, has the Student ¢-distribution with v =n; + n, — 2 degrees of freedom. This
statistic is robust for distorted samples distributions, also for heteroscedasticity in
data and different sample variances o> # af.

The Brown and Forsythe test concerns comparison of population means on the
basis of small samples taken from normal populations. The null hypothesis is H,:

Uy = py =...= . Suppose that there are k samples, each of size n; from a normal
distribution with sample mean X, and variance s,.2 ,i=1,..., k. The test statistic
k
Z ny(x; — %)
F= :’—n— (3.133)
[1 - ~] 52
i=1 n
where
1 k
==Y nx, (3.134)
=
and
k
n=>Y n (3.135)

has in H, the Fisher-Snedecor distribution with (k — 1) and v degrees of freedom.
When the sample value F is greater than the quantile F, _,,(k — 1, v) at the 5% level,
H, is rejected. The number of degrees of freedom is here given by

d (3.136)

0; = |:[1 - "i/'_’]siz]/[zn: [1- ”i/ﬁ]si{l (3.137)

i=1

5
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Data: (A) The sample from N (0, 1):

—1.008 —0.500 0.749 1.723
0.087 1.112 —0.235 0.519
—0.594 —-0.885 —-0.072 1.980
—0.993 0.752 0.092 0.236
—1.285 0.634 0.690 1.134
0.500 —1.380 0.046 —0.544
1.401 -—2.121 0.521 0.280
—0.384
(B) The sample from N (3, 1):
1.992 2.500 3.749 4723
3.087 4122 2.765 3.519
2.406 2.115 2.928 4980
2.007 3.752 3.092 3.236
1.715 3.634 3.690 4.134
3.500 1.620 3.046 2.456
4.401 0.809 3.521 3.280
2.616
(C) The sample from L(0, 2):
0.064 0436 —1.072 —-2036
0.734 0.049 —0.569 1.144
0.144 0209 —1.269 4452
0.210 0.695 —0.774 -—-3.723
—0.333 1.038 —0.188 —1.749
—0.835 —0.261 0.715 1.223
—2.538 —0.206 1.136 —1.070
0.319
(D) The sample from L(2, 2):
2.064 2.436 0928 —0.036
2.734 2.049 1.431 3.144
2.144 2.209 0.731 6.452
2210 2.695 1.226 —1.723
1.667 3.038 1.812 0.251
1.165 1.739 2.715 3.223
—0.538 1.794 3.136 0.930
2.319

0.076
0.279
0.063
—2.962
—0.711
—0.150
1.440

3.076
3.279
3.063
0.038
2.289
2.850
4.440

1.192
—1.070
5.477
—0.026
—1.224
0.535
—-0.429

3.192
0.930
7477
1.974
0.776
2.535
1.571

Statistical hypothesis testing

0.569
—0.758

0.016
—0.383
—1.825
—1.129
-0415

3.569
2.242
3.016
2.617
1.175
1.871
2.585

—3.162
0.304
—0.862
1.879
0.126
—0.632
—0.529

—1.162
2.304
1.138
3.879
2.126
1.368
1.471

Program: Chemstat: Basic Statistics: Two sample testing.

Solution: Examining the variance of the two samples by the Fisher-Snedecor test
proved (¢f. Problem 3.19) that ¢} = o3 and therefore statistics ¢,, t; and t, can be
used. Table 3.14 shows the test statistics with the quantiles of the Student ¢-test for
significance level a = 0.05.

~1.389
—0.588
—0.673
0.109
2.374
1.173
—0.443

1.611
2412
2.327
3.109
5.374
4173
2.557

-0.275
0.343
—0.026
0.887
—2.249
1.411
1.153

1.725
2.343
1.974
2.887
—0.249
3411
3.153

153

3



154 Statistical analysis of univariate data [Ch.3

Table 3.13—Testing of the sample means of two populations (a) N (0, 1) and N (0,
3), and (b) L (0, 2) and L (2, 2) at significance level a = 0.05.

Test Sample from N (0, 1) Sample from L(0, 2)
statistic and sample from N(3, 1) - and sample from L(2, 2)
t 15.65 442

quantile 1.985 1.985

15 14.72 4.7

quantile 1.984 1.985

ty 16.11 5.22

quantile 1.988 1.988

Conclusion: All the test statistics indicate a significant difference between the means.

3.5.3.2 Comparisons of the variances of two populations

The comparison of variances is particularly important for analysis of responses
obtained from experimental design. A random sample of size n, is taken from a
normal population with unknown mean p, and variance o’ and an independent

f
F 1x) (y)

Fig. 3.18—The Fisher-Snedecor test for identity of two variances.
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random sample of size n, from a second normal populatlon with unknown mean y,
and variance a . We take 62 = s2 and 62 =5, 2 where 52 and s? s, are the sample variances.

For normal and mdependent populatlons the hypothes1s Hy: 6% = o’ against H ,:
o2 # a can be tested by using the statistics

2 2
F = max (82, s;) (3.145)
¥y Sx
When s2 5 > sy , the F statistic has the Fisher—Snedecor F- dxstrlbutlon withv, =n_—1
and v, = n, — 1 degrees of freedom. In the case when s > 52 the order of degrees of
freedom must be changed. The test is illustrated in Flg 3.18.
Fisher-Snedecor test is sensitive to the assumption of normality: if the kurtosis of

the samples differs from the normal distribution, for the quantile F, _ «2(V1, v3) the
numbers of degrees of freedom v, and v, should be calculated from

vi = — DI+ §,./2) (3.146)
v = (1 = DAL + §2./2) (3.147)

where

2(n1+n2>[2' =%+ Y (y,.—w]
-3

0r = - i=1 - i=1 5 (3.148)
[Z =X+ Y, (- i)z]
i=1 i=1
When more than two sample variances are to be tested, H,: 67 = 62 = ... = o7,
the Jack-knife test is recommended. The Jack-knife statistic is calculated by
F;= [”1(2"1l =2 + my(z, “"22)2](”1 +n,-2) (3.149)
Y @ui—z)+ Y (22— Z,)
i=1 i=1
where
5= M2t (3.150)
ny +n,
J Zﬁ
z;= =‘n , j=1,2 (3.151)
zy=ny xInsl—(n; — 1) x In s, (3.152)
Sty = —— 2 Z (x; — %)? (3.153)
J#i

In Eq. (3.153) the sample mean X, is calculated from a sample with the ith element
omitted

1=
Yo =0 J; X; (3.154)
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Analogously, for the sample y;, i = 1,..., n, the z,;, sf, ... etc. are calculated. The
Jack-knife statistic has the Fisher-Snedecor distribution with v, =2 and
v, = n, + n, — 2 degrees of freedom. When the sample value F is greater than the
quantile F, _,,(v,, v,), the H, is rejected at the significance level .

Problem 3.19 The variances of two samples

For the two pairs of samples from Problem 3.18, test whether both samples in the
pair have the same variance. Do the test at significance level a = 0.05.

Data: As for Problem 3.18

Program: Chemstat: Basic Statistics: Two sample testing.

Solution: The variances of two samples are tested with the use of two statistical tests,
the Fisher—Snedecor test (F ) and Jack-knife test (F;). Table 3.15 compare the results
of the tests.

Table 3.14—Test statistics and quantiles for the 5% level, for data from Problem 3.18

Test Sample of N (0, 1) Sample of L(0, 2)
statistics with sample of N (3, 1) with samples of L(2, 2)

F 1.006 1.003
quantile 1.762 1.762

F 0.0003 221 x 1073
quantile 3.831 3.831

Conclusion: Both tests prove the validity of the H, hypothesis, the variances are the
same. Generally, F-tests are more sensitive to the classical assumptions of an actual
distribution than the T-tests.

3.6 SUMMARY OF PROCEDURES FOR UNIVARIATE DATA ANALYSIS
Univariate data analysis involves the following steps:

1. Confirmatory data analysis, examining assumptions about data
1.1 Examining the independence of sample elements.
1.2 Examining the normality of the sample distribution.
1.3 Examining the outliers by the use of modified external hinges [V VE]L
1.4 Examining the minimum sample size n;,
In addition to these four tasks, other diagnostics of exploratory data analysis may
be used to verify the actual sample distribution.

2. Determination of point and interval estimates of parameters.

The choice of the type of statistical characteristics depends on the distribution of
the population the sample comes from. With an assumption of normality, indepen-
dence and homogeneity of sample, the moment characteristics are calculated. If outliers
are present in the data, robust characteristics are calculated.
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2.1 The moment characteristics of location and spread include the arithmetic mean

%, Eq. (3.39), with its variance D(x), Eq. (3.40), and the confidence mterval Eq. (3.27),
in which the true value p exists; the estimate of sample variance s?, Eq. (3.43), and
its confidence interval, Eq. (3.29), the mean absolute deviation d, Eq. (3. 16), the variance
coefficient &, Eq. (3.17), with its variance D(8), Eq. (3.18); the weighted arithmetic
mean X, Eq. (3.11), with its variance D(x,,), Eq. (3.12).

2.2 The characteristics of shape give information about the distribution shape; they
include the skewness §,, Eq. (3.19), with its variance D(g,), Eq. (3.19); the kurtosis
d,. Eq. (3.20), with its variance d (4,), Eq. (3.20a); and also the selector characteristics
Q,, Eq. (3.104), and Q,, Eq. (3.105).

2.3 The quantile and robust characteristics of location and spread are less sensitive
to outliers than the moment characteristics. These characteristics include the median
%o 5 (Section 3.4.1) with its nonparametric estimate of variance su, Eq. (3.93), or s%,
Eq. (3.95), and the confidence interval of the median; the mode (Section 3.1); the
upper %, -5 and the lower X, ,5 quartile, which are useful for the calculation of the
interquantile range R, Eq. (3.15). The simplest and the most effective robust estimate
of location is the trimmed mean X(x), Eq. (3.97), with its winsorized variance s,(x),
Eq. (3.98), and also the asymmetric trimmed mean X(x,, x,), Eq. (3.101), with its
variance s2(%,, %, ), Eq. (3.103), which is suitable for asymmetric skewed distributions.
To select the extent of trimming, some selector criteria are used: the relative tail
length Q,, Eq. (3.104), or the estimate of relative skewness Q,, Eq. (3.105). When a
sample contains outliers the robust M-estimates with bi-quadratic function are used.
This leads to the value of location fi (3.107) with its variance D(fiy), Eq. (3.112), and
the confidence interval calculated with use of the random variable ty, Eq. (3.113).
For small samples, the pivot halfsum P, Eq. (3.114), and the pivot range R, Eq.
(3.115), are used. The random variable T, Eq. (3.116), is used for calculation of the
confidence interval of the mean p.

2.4 The nonparametric estimates of variance permit calculation of an estimate of
the variance of any parameter of distribution 6 and also construction of the
corresponding confidence interval. The estimate of location 0y and varlance é3, Eq.
(3.119), by the Bootstrap method or 0,, Eq. (3.122a) with its variance 1, Eq. (3.1220),
by the Jack-knife method, are used.

2.5 The maximum likelihood estimates for distributions other than normal are
calculated as follows:

(1) For the Poisson distribution 1, Eq. (3.34), D(4), Eq. (3.35), and the confidence
interval of parameter 4, Eq. (3.36a,b);

(2) For the Laplace distribution $, Eq. (3.46), D($), Eq. (3.47), and the confidence
interval of parameter ¢, Eq. (3.48).

(3) For the rectangular distribution In L, Eq. (3.50), h, Eq. (3.51), 4, Eq. (3.52), with
their variances D(h), Eq. (3.53), D(d), Eq. (3.54), and the confidence interval, Eq.
(3.28).

(4) For the exponential distribution (one-parameter) 0, Eq. (3.57), D(0) Eq. (3.58) and
the confidence interval for 6, Eq. (3.59).

F
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(5) For the exponential distribution (two-parameters) 0, Egs. (3.64, 3.65a, 3.66a), :
D(0), Egs. (3.65b, 3.66b) and unbiased estimates, Eqs. (3.67, 3.68), the confidence
interval of parameter 6, Eq. (3.69) and Eq. (3.70). 1

(6) For log—normal distribution (two-parameters) E (x), Eq. (3.74), D(x), Eq. (3.75),
91, Eq. (3.76a), 4, Eq. (3.76b), 4, Eq. (3.77), %y, Eq. (3.78a), X, 5, Eq. (3.78b), the
confidence interval X, 5, Eq. (3.82) and , Eq. (3.83). The estimate of the mean
value is M, Eq. (3.84), with variance ¥, Eq. (3.85), with variances D(M ), Eq. (3.88)
and D(P), Eq. (3.89). The confidence interval of parameter M is calculated from
Eq. (3.91).

(7) For the log-normal distribution ( three-parameters) {i(6), Eq. (3.80), and ¢%(0), Eq.
(3.81).

3. Statistical hypothesis testing

The simple test of the parameters of population on the basis of one sample uses
the 100(1 — #)% confidence interval of parameter 6. If the given value 6, lies in this
interval, the null hypothesis H,: 6 = 0, is accepted, otherwise the alternative one,
H,:0+#40,.

For testing hypotheses about two populations on the basis of two samples, the
first step is the test of homogeneity of variances of the two samples by the
Fisher-Snedecor F-test, Eq. (3.145). However, this test is rather sensitive to any
deviation of the distribution from normality; the Jack-knife test F,, Eq. (3.149) or
some robust test of location ¢,, Eq. (3.138) or ¢5, Eq. (3.139) are more suitable.

The classical Student ¢-test ¢, Eq. (3.124), or t,, Eq. (3.125), is robust enough when
the actual distribution deviates from normality, but the two sample sizes are the
same. When both samples deviate in skewness from the normal distribution, the test
characteristic t5, Eq. (3.128), is more convenient.

3.7 ADDITIONAL SOLVED PROBLEMS

Problem 3.20 Probability calculation for data from the normal distribution
For normally distributed data N (i, ) evaluate

(a) the relative number of sample elements which lie in the interval {u, u + ¢);
(b) the relative number of sample element which lie above the limit u + 20;
(c) the limiting element x,, above which just 1% of all sample elements lie.

Solution: (a) The probability P of existence of a random element in the interval
{xy, X, is equal to the difference between values of distribution function,
P = F(x,) — F (x ). The relative number of sample elements in the given interval as
a percentage is equal to P x 100%. The relative number of sample elements in the
interval (y, 4 + o) can be computed by the use of the tabulated distribution function
for normalized variable

u=(x—pfo
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For this case
uy=pu-—plo=0,
=(u+to—wo=1
and
P=F(l)— F(0)=0.8413 — 0.5 = 0.3413.

Therefore in the interval {u, 4 + ¢ ) there are 34.13% of all sample elements.
For the interval {u — ka, p + ko>, we have

P=F(u+ ko) — F(u— ko) =2F (k) — 1.

For k=1, F(1) = 0.8413 and P = 0.6826. Therefore, in the interval (y — o, u + ¢
there are 68.26% of all sample elements.

(b) Determination of the probability P for which the sample elements reach higher
values than the limiting element x,,. The expression

P=1—F(xy)

is valid. Since the normalized variables are used, we need to determine the
corresponding uy. For

Xy =4+ 20,

ty = (1 + 20 — W =2
and

P =1-— F(2)=0.02275.

Above the value x,, = u + 20, there are 2.275% of all elements.
(c) For limiting element x,, above which there are 100 x P% elements the relation

P=1—uy
is valid, where
uy = (Xy — Wfo
and
xy=0F Y1 —P)+p

The symbol F ~!() means the quantile function which is inverse to the distribution
function: it is available in statistical tables. For P = 0.01 it is

F(1-0.01)=233
and therefore, above the limiting element
m=2330+pu

there are only 1% of all samples.
Conclusion: For this sort of problem, the normalizing transformation is very useful.
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Problem 3.21 Calibration of a pipette, with large sample size
A pipette of volume 10 ml was calibrated by weighing the water delivered, and 32
measurements were obtained. Determine the point and interval estimates of the real
volume of the pipette.
Data: n = 32, V[ml}: :

9.9820, 9.9656, 9.9940, 9.9877, 9.9865, 9.9755, 9.9820,

99794, 99184, 9.9848, 9.9914, 9.9905, 9.9726, 9.9661,

9.9857, 9.9889, 9.9832, 99923, 99877, 9.9779, 9.9936,

9.9666, 9.9903, 9.9666, 99713, 9.9762, 9.9840, 9.9723,

9.999, 99887, 9.9921. 9.9889
Program: Chemstat: Basic Statistics: Assumptions testing, one sample analysis,
exploratory continuous.
Solution: The point estimates of location, spread and shape are:

X =99810 ml, s* = 2.153 x 1074, g, = —244, §, = 11.17.
Examination of the data leads to the following conclusions:

(1) data are independent of the time, from ¢, = 0.19;

{(2) in the tests of sample skewness and kurtosis, C; = 136.8 reaches a higher value
than the quantile 3 ¢5(2) = 5.99, so the sample distribution is not normal;

(3) because the value x;, =9.9134 ml lies outside the modified external hinges
Vi =994 ml and V{ =10.02 ml, x,, is an outlier and is excluded from the
sample. The estimates of location and shape of the new sample are:

X =9.9827ml, s> =888 x 1075, 4, = —042, g, = 2.22.

After exclusion of two outliers, x;, = 9.9134 and x,, = 9.9656 ml, the resulting sample
is described by

X =99833ml, 52 =8.14 x 1075, g, = —0.44, §, = 2.27.

Classical and robust statistics of the original sample (n = 32) are given in Table
3.16. The classical arithmetic mean is also calculated for the sample after elimination
of one (n = 31) or two (n = 30) outliers.

The robust characteristics, X, 5, X(10) and f, are near the value X for the reduced
sample without the two outliers. Also, the robust confidence interval reaches the same
values as the classical confidence interval for the sample without outliers.

The diagnostics G2 —GS5 of exploratory data analysis exhibit two lowest values
which can be understood as the outliers in the sample (Fig. 3.19). The quantile plot
G1 shows that the assumption of normality is not fulfilled either when using classical
% and s? or robust (median) characteristics in the G1 plot. The sample distribution
is rather skewed to lower values.
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Fig. 3.19—(a) Exploratory data analysis by G2 -GS plots and (b) G1 plot.
Table 3.15—Point and interval estimates of location
Parameter Estimate Estimate 95% confidence interval
fi [mi] ¢ [ml] L, L,
mean X (n = 32) 9.9810 6.73 x 107 9.975 9.986
mean x (n = 31) 9.9827 2.86 x 107° 9.979 9.986
mean X (n = 30) 9.9833 2.71 x 107° 9.980 9.990
median X s 9.9844 6.62 x 107° 9.979 9.987
trimmed mean x (10) 9.9826 355 x10°¢ 9.979 9.987
“biweight” mean fy 9.9831 3.15x 1073 9.980 9.987

Conclusion. Assumption of normality is not correct because of the presence of outliers.
The use of robust estimates is equivalent to excluding outliers from sample. Excluding
outliers decreases the relative error of the pipette volume from 0.026% for the original
data (n = 32) to 0.016% for reduced data (n = 30).

Problem 3.22 Calibration of a pipette, with small sample size

The pipette of a volume 25 ml was calibrated by weighing the water delivered, and
7 measurements were obtained. Determine the point and interval estimates of the
real volume of the pipette. '

Data: n =17, V[ml]:

24.96439, 2497758, 24.96809, 2497409, 24.96880, 24.94759, 24.97119.
Program: Chemstat: Basic statistics: Assumptions testing, one sample analysis,
exploratory continuous.
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Solution: The point estimates of location, spread and shape are
X =249670 ml, s = 9447 x 1075, g, = —1.25, §, = 3.64.
Examination of the data leads to the following conclusions:

(1) the test criterion ¢, = 0.61 shows that the sample elements are independent;

(2) the test criterion C, = 2.64 is lower than the quantile yZ 45(2) = 5.99, so the
sample has a normal distribution;

(3) outside the modified interval hinges V{ = 24.96 ml and V{5 = 24.98 ml is an
outlier value, 24.94759 (Fig. 3.20).

The 95% confidence interval of the mean is
24958 < u < 24976

When the robust “biweight” estimates are calculated, nearly the same values are
obtained

24.960 < p < 24.977.

There are bigger differences between the classical and robust estimates of the values
of the variance of the mean,

sAX)=1349 x 10™5  and  D(j) = 1.307 x 10~5.

6.5 ' a 25.0
y . vy

3.3 25.0

0.0 : 24.9
@ Q X o o 0 X o
<+ w0 1) o o -
N o N

Fig. 3.20—(a) Exploratory data analysis by G2— G5 plots and G1 (b) plot.

Because of the small sample size the technique of Section 3.4.4 is used. The pivot
depth H, = 2, the lower pivot is x ;) = 24.96439 and the upper pivot is x¢, = 24.97409.
From the pivot halfsum P; = 24.9692 ml (3.114), the pivot range R, = 0.0097 ml
(3.115) and from Table 3.10 the quantile ; , o;5(7) = 0.72, the 95% confidence interval
of the mean can be calculated,

249622 < p < 24.9762.

—
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Conclusion; Because the sample is small, the pivot technique is suitable. Then, the
outlier has only a small influence on the estimate of the mean. Since the EDA indicates
presence of one outlier, the robust methods are preferred.

Problem 3.23 Examination of [Na* ], [Ca** ], [Mg** ] and urea in blood
A random sample of 32 dairy cows, taken from a herd of 280, was tested for the
sodium(l), calcium(II), magnesium(Il) and urea content. Find whether the contents
of elements correspond to the relevant norms, ie. 1345 <[Na*] <150 mM,
224 < [Ca®*] <3.0 mM, 0.77 < [Mg?*] < 1.07 mM, and 2.5 < urea < 5.1 mM at
the significance level a = 0.05.
Data: (a) Sample [Na*], mM.
138.5, 1398, 1457, 1349, 1382, 1319, 1429, 1417,
1322, 135.5, 134.7, 1323, 1372, 136.7, 1336, 1369,
139.8, 140.8, 136.6, 1404, 1327, 1364, 139.0, 1423,
142.0, 132.1, 139.0, 1418, 1358, 139.0, 1334, 1388.
(b) Sample [Ca2*], mM.
2.50, 2.56, 2.69, 247, 249, 256, 247, 254, 251,
239, 243, 248, 241, 242, 235 237, 250, 246,
2.35, 245, 252, 242, 245, 246, 249, 238, 246,
2.51, 237, 237, 249, 241.
(c) Sample [Mg2*], mM.
0.715, 0.791, 0.810, 0.754, 0.647, 0.767, 0.775, 0.970,
0.878, 0.814, 0.600, 0.684, 0.718, 0.646, 0.786, 0.982,
0.776, 0.716, 0.810, 0.807, 0.841, 0.783, 0.788, 0.665,
0.869, 0.759, 0.834, 0.710, 0.982, 0.719, 0.749, 0.707,
(d) Sample urea, mM.
5.76, 4.03, 3.66, 4.85, 5.54, 533, 4.46, 6.36, 5.64,
3.14, 441, 499, 429, 465 557, 640, 546, 5.08,
396, 3.99, 545, 499, 7.74, 534, 511, 448, 3.74,
5.29, 5.86, 7.66, 5.69, 7.16.

Program: Chemstat: Basic Statistics: One sample analysis.
Solution: The 95% confidence intervals of the expected values of the arithmetic mean
E (%), of the median E (%, 5), and the 40% trimmed mean E (x(0.4)) are as follows:

(@) Sample Na*: 13627 <E(x)<138.89, 13562<E(%,5)<139.78 and
135.74 < E (x(0.4)) < 139.71.

(b) Sample Ca®>*: 2434 <E(x)<2487, 2429 <E(%,5)<2491 and
2438 < E (x(0.4)) < 2.486.

(c) Sample Mg?**: 0743<E(x)<0.810, 0741 <E(%,5)<0.810 and
0.746 < E (x(0.4)) < 0.802.

(d) Sample urea: 4.796 < E(x) < 5.584, 4765 < E(X,5) < 5635 and
4.816 < E (x(0.4)) < 5.568.

Conclusion: Robust and classical characteristics lead to the same conclusion that the
estimates of content [Na*], [Ca%?*], [Mg?*] and urea correspond to the relevant
norms.
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Problem 3.24 Determination of nicotine by GC
The nicotine content in blood can be determined by gas chromatography down to
concentrations of 1 ng/ml. Test the accuracy and precision of the determination of
an artificial sample containing 10 ng/ml and the sample with 50 ng/ml. Does the
reliability of the determination depend on the concentration?
Data: Sample (A): u = 10 ng/ml, n = 12, « = 0.05:

840, 9.59, 9.38, 9.10, 10.78, 11.41, 994, 10.08, 12.11, 9.10, 9.59, 10.36.

Sample (B): u = 50 ng/ml, n = 10, o = 0.05:

475, 484, 48.8, 484, 46.8, 462, 48.6, 50.6, 455, 46.1.
Program: Chemstat: Basic Statistics: One sample analysis.

Since the samples contain small numbers of measurements, we use the pivot
technique.

For sample (A), H, = 3, P, = 9.94, R, = 1.68, and the 95% confidence interval of
the mean is 9.13 < 4 < 10.75. This interval contains the value 10, so the gas
chromatography technique can be used for determination of a concentration of
10 ng/ml of nicotine in blood.

For sample (B), H, = 3, P, = 474, R, = 2.4 and the 95% confidence interval of
the mean is 45.79 < u < 49.00. This does not contain the true value 50, so the gas
chromatography technique for this concentration of nicotine in blood has a systematic
negative error.

Conclusion: Sample (A) is determined accurately, but sample (B) is determined with
a systematic error.

Problem 3.25 Comparison of two methods for determination of P,0 in fertilizer
The concentration of P,O; in artificial fertilizer was determined by two different
methods, with use of (A) citrate, and (B) sulphuric acid. Do the results of the two
methods come from one common population?

Data: Content of P,O4 [%]:
A: 163, 155, 167, 160, 137, 11.0, 125,
134, 144, 147, 169, 157, 135, 14.0.
B: 16.5, 159, 16.6, 158, 13.3, 11.2, 124,
136, 149, 14.6, 168, 162, 138, 14.3.

Program: Chemstat: Basic Statistics: One sample analysis exploratory continuous.
Solution: To test the distributions of the two samples, exploratory data analysis is
used. Figure 3.21 shows on the Q—Q plot G14 the linear dependence (the straight
line has slope 0.995, intercept —0.041 and r,, = 0.9961). Because the slope of the
Q—Q line is near to one and the intercept to zero, the two samples come from the
same population.

Conclusion: The two methods give the same results.

Problem 3.26 Determination of glucose in blood

The concentration of glucose in blood was determined for 20 persons. Estimate a
convenient parameter of location and test whether it lies in the interval of medical
norm <2.95, 3.90).

\
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13.4

9.8

10.2
13.6
17.0

Fig. 3.21—The empirical quantile —quantile plot G14.

Data: the concentration of glucose, mM, n = 20:

1.53, 294, 3.38, 3.34, 345, 3.51, 3.73, 3.33,

3.62, 345, 424, 285, 3.53, 397, 359, 3.55

3.68, 3.98, 3.57, 5.53.
Program: Chemstat: Basic Statistics: One sample analysis.
Solution: Because the sample of 200 people may include unhealthy persons (i.e. outliers
in a sample), in addition to the arithmetic mean X and its variance D(x), the robust
median X, 5 and its variance D(X, 5) are also used:

% = 3.539 mM, D(x) = 0.0260, X, 5 = 3.540 mM, D(X, ) = 0.0112.

The presence of two outliers has little influence on the parameters of location but
significantly changes the variance of the median in comparison to the variance of
mean. Therefore, the 95% confidence intervals of the mean and of the median differ
significantly,

320 < E (%) < 3.88, 344 < E (%, 5) < 3.63.

In both cases the mean estimate lies in the requested interval.
Conclusion: The average concentration of glucose in the sample corresponds to the
medical norm ¢2.95; 3.90).

Problem 3.27 Examination of the purity of a commercial chemical

Ammonium phosphate is declared by the manufacturer to contain at least 97% of
pure ammonium phosphate. Test whether the chemical really reaches the declared
purity.

4 - """




166 Statistical analysis of univariate data [Ch.3

Data: the content of ammonium phosphate, %, n = 18.
99.7, 972, 979, 978, 98.2, 974, 973, 98,
979, 98.0, 98.1, 984, 987, 97.3, 979, 96.7, 97.0, 98.1.

Program: Chemstat: Basic Statistics: One sample analysis.

19.8
f x)
9.9
0.0

< o

~ ~

) )

Fig. 3.22—Histogram of the content of ammonium phosphate in a commercial reagent.

Solution: If the highest and lowest values are excluded from the data, calculation of
the arithmetic mean corresponds to the 5% trimmed mean x(0.05). To calculate the
mean value and its variance, the Bootstrap method with 400 simulations was used:
Xp =97.7%, 05=01102, B=400 and the 95% confidence interval is
97.1% < E (Xg) < 98.35%. The histogram in Fig. 3.22 shows that the distribution has
longer tails and seems to be bimodal.

Conclusion: Because the 95% confidence interval does not cover the value 97%, the
ammonium phosphate could not have exactly 97% parity. However, it is obvious
that the purity is better than the specified value.

Problem 3.28 Upper limit of the confidence interval of the average content of fluorine
in fertilizer
Fluorine is an undesirable impurity in phosphate fertilizers. Determine the upper
limit of the 95% confidence interval of the average content of fluorine, on the basis
of 20 samples of phosphate fertilizer.
Data: The fluorine content, %, n = 20.

0.16, 0.16, 0.15, 0.13, 0.18, 0.19, 0.13, 0.19,

0.18, 0.14, 029, 0.14, 012, 0.10, 0.16, 0.13,

0.16, 0.16, 0.13, 0.14.

‘ )
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Program: Chemstat: Basic Statistics: One sample analysis.

Solution: Because of heterogeneity of the fertilizer, outliers should be expected. The
confidence intervals of the mean E (k) and median E (%, ), and also the robust
“biweight” estimate E (i) were evaluated:

0.139 < E(x) <0.174,0.134 < E(%, 5) < 0.176 ‘
and
0.138 < E (4y) < 0.163.

Conclusion: Because of one outlier (0.29) the confidence interval of the arithmetic
mean is too broad and the arithmetic mean is biased to higher values. The upper
limit of the confidence interval of average fluorine content is better expressed by the
robust estimate, i.e. 0.16%.

Problem 3.29 Comparison of concentrations of folic acid in two samples

Folic acid can be determined spectrophotometrically from its reaction with 1,2-
naphthoquinone-4-sulphonic acid. Ten determinations were made for each of two
tablets with a declared content of 5 mg. Test whether the concentration of folic acid
in the two tablets is the same.

Data: folic acid found, mg, n = 10

Tablet A: 545, 5.15, 7.71, 555, 4.75, 532, 553, 509, 570, 442
Tablet B: 4.98, 4.84, 4.77, 491 484, 498 491, 521, 467, 521
Program: Chemstat: Basic Statistics: Two sample testing.

Solution: The moment characteristics of tablet (A) and tablet (B) (in the brackets) are:

% = 5.467 (4.932) mg, s* = 0.775 (0.030), §, = 1.665 (0.432),
g, =2.51 (—0.63).

The determination from tablet (A) contains one outlier and the corresponding
distribution is skewed to higher values. Table 3.16 shows the results of tests of the
variance for both tablets, H,: 62 = o vs. H,: 04 # 0p.

Table 3.16—Results of three tests of variances, Hy: 02 = o2 vs. H ;: 62 # o7, = 005

Test
F-test used criterion Quantile Conclusion
Fisher—Snedecor 25.63 4.026 Reject H,,
With correction of 25.63 647.79 Accept H,,
degrees of freedom
Jack-knife test 6.452 4.560 Reject H,,

The conclusion of the F-test with correction of degrees of freedom is influenced
by the skewed distribution but not by outliers.

The test for whether the means for the two tablets are in agreement, Hy: py = g
vs. H : p, # pg, is shown in Table 3.17.

4
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The classical t-test suggests that there is the same content of folic acid in both
tablets, but the robust test indicates that the means do differ significantly.
Conclusion: When one outlier (tablet (A), 7.71) is not excluded from data, both classical
tests, the Fisher-Snedecor F-test and the Student t-test give incorrect results. The
robust test gives true conclusions because the influence of outliers in data is eliminated.

Table 3.17—Comparison of the means: Hy: u, = pg vs. H,: u, # py, & = 0.05

Test

Test used criterion Quantile Conclusion
Student t-test 1.886 2.100 Accept H,
for ai = a;
Student t-test 1.886 2201 Accept H,,

2 2
for o, # oy,
With allowance 2.557 2.201 Reject Hy,
for skewness, t/,
Robust ¢-test 2.585 2.121 Reject H,,
for ai = 0';
Robust t-test 2.508 2.201 Reject H,

2 2
for o, # 0,

Problem 3.30 Pair test for validation of new method
For analytical determination of dinitrocresol in herbicides a polarographic method
(P) is used, but titration (T) is, however, faster and cheaper. Both methods were used
and compared. Test whether the titration method gives the same results as the
polarographic one.
Data: the content, %, n = 8
P: 1860, 27.60, 27.50, 25.00, 24.50, 26.80, 29.50, 26.50
T: 1858, 2737, 27.70, 24.64, 24.10, 26.33, 29.33, 26.63
Program: Chemstat: Basic Statistics: Two sample testing.
Solution: The statistical characteristics of location, spread, and shape for methods P
and T and for differences between pairs of values

di =P, - Tl
are given in Table 3.18.

Table 3.18—Statistical characteristics of samples P and T, and their differences

Sample Sample P Sample T Difference d
characteristic

% 25.75 25.59 0.165
52 10.79 10.79 0.191
0 —1.302 —1.201 -
s 3985 3.709 -
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All three variants of the F-test indicate agreement between the two sample variances

at a significance level of a = 0.05. All variants of the two-sample t-test indicate
agreement between the two sample means. For the null hypothesis of the pair test,
Hy:d=0vs. H,:d #0, the test criterion has the value t, = 2.552, while the quantile
of the Student ¢-test ¢, 4,5(7) = 2.364. Therefore, at the significance level &« = 0.05 the
difference between the pair values is significant.
Conclusion: The variability caused by the different levels of dinitrocresol content
overlaps with the variability of the two methods, P and T, and therefore the simple
t-tests show agreement between the sample means. Use of the differences between
the polarographic and titration measurements allows the variability from the different
levels of dinitrocresol to be eliminated. It can then be shown that the two methods
differ in results.

Problem 3.31 Agreement between two analytical methods

The iodine number of soya bean oil was determined by the Hanu§ method (H) and
by the Wijss method (W). Test whether the two methods yield the same results.
Data: n =8

H: 13990, 139.80, 138.90, 136.40, 139.40, 14090, 139.20, 139.40.

W: 13940, 13990, 140.20, 140.30, 140.60, 140.90, 140.10, 140.30.
Program: Chemstat: Basic Statistics: Two sample testing.

Solution: The statistical characteristics of location, spread, and shape for sample H
and sample W (in brackets) are:

X = 139.24 (140.21), s* = 1.677 (0.201), §, = —1.25 (—0.31),
g, = 1.22 (—=021).

The differences in variances and skewness prove that there is an outlier with low
value in sample H. The test for equality of sample variances is reported in Table 3.19.

Table 3.19—Tests of sample variances, H,: a; = aiv vs. H,: a; # oév, o =0.05

Test
Test used criterion Quantile Conclusion
Fisher-Snedecor 8.33 4.995 Reject H,
With correction for
degrees of freedom 8.33 39.00 Accept H,,
Jack-knife test 2.83 4.857 Accept H,,

To examine the agreement between the sample means, the null hypothesis H,:
My = My 1is tested against the alternative H : u, # py at a = 0.05; the results are
shown in Table 3.20.

d ...
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Conclusion: At the significance level a = 0.05 the classical test leads to the opposite
conclusion from the robust one. The robust test confirms that the differences between
the methods are not negligible, although the variances differ only insignificantly. Tests
modified for non-zero skewness give the same conclusion.

Table 3.20—Results of testing for equality of means H: py = py, vs. H & py # pty, o = 0.05

Test
Test used criterion Quantile Conclusion
Student z-test 2.012 2.145 Accept H,,
for a; = o:V
Student ¢-test 2012 2228 Accept H,,
for "121 # avzv
Test modified for 2.573 2228 Reject H,,
skewness, t'3
Robust t-test 3.533 2179 Reject H,,
for afl = afv
Robust t-test 3.394 2228 Reject H,,

2 2
for 0, # 0y

Problem 3.32 Difference between gravimetric and titrimetric determinations of P,0;
in bone
For the determination of P,O; in calcinated bone meal, gravimetric (G) and titration
(T) techniques were used. Find out whether the methods are significantly different.
Data: amount of P,O,, mg, n =15
Sample G: 40.24, 40.30, 40.15, 40.20, 40.50, 4040, 40.12,

40.12, 39.88, 40.23, 40.24, 40.12, 40.17, 40.11,

40.26.
Sample T: 39.90, 40.22, 39.85, 39.93, 39.70, 40.12, 40.20,

39.62, 40.01, 39.77, 39.79, 39.98, 40.26, 39.77,

40.01.
Program: Chemstat: Basic Statistics: Two sample testing.
Solution: Statistical characteristics of location, spread, and shape for method (G) and
method (T) (in brackets) are:

X = 39.94 (40.203) mg, s? = 0.039 (0.020), §, = 0.146 (—0.027),

g, = —1.05 (0.90).

The results of the test of equality of variance are given in Table 3.21.
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Table 3.21—Results of three tests of variances, H,: aé = oi vs. H aé # ai, o = 0.05

Test Quantile
F-test used criterion o/2 = 0.025 Conclusion
Fisher-Snedecor 1.932 2.989 Accept H,,
With correction of 1.932 2.673 Accept H,,
degrees of freedom
Jack-knife test 0.743 4.221 Accept H,,

Results of the tests for equality of the means of the two methods are given in
Table 3.22.

Table 3.22—Results of the tests for equality of means, Hy: ug = py vs. H,: ug # pg, o = 0.05

Test Quantile

Test used criterion a/2 = 0.025 Conclusion
Student -test ' 4.164 2.049 Reject H,,
for aé = a:

Student ¢-test 4.164 2,052 Reject H,,
for oé #* of_

Modification 4.036 2.052 Reject H,,
for skewness, t;

Robust ¢-test 4.295 2.056 Reject Hy,
for aé = o;

Robust t-test 4215 2.086 Reject H,,

2 2
for o # 01

Conclusion: The two methods should not be considered to give the same results,
regardless of the equality or non-equality of the variances.
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Analysis of variance (ANOVA)

The results of observations vary because of changes in the basic factors (both
qualitative and quantitative) that control the conditions of the chemical experiment,
and also in accidental factors. It is the objective of analysis of variance (ANOVA) to
investigate the effect of the various factors on the variability of data and to determine
which part of the variation in a population is due to systematic reasons (called factors)
and which is due to random effects. ANOVA has been defined as a statistical technique
for analysing measurements that depend on several kinds of effects operating
simultaneously, in order to decide which kind of effects are important and to estimate
the effects.

The profusion of instrumental techniques in analytical chemistry is such that often
more than two possible techniques have to be compared. The techniques to be
examined may be subject to systematic errors. The choice of a technique is called a
controlled factor. Moreover, the results of the analytical determinations are subject
to random errors. The analysis of variance compares both causes of error, with the
purpose of deciding whether or not the controlled factor has a significant effect.

In a chemical laboratory the analysis of variance often serves

(a) to distinguish between sources of variability between laboratories, between
samples and between replicates,

(b) to investigate the influence of human factors instrument factors, methodology,
concentration or time on the results of chemical analysis.

A survey of ANOVA techniques may be found in the literature [1-5]. We limit
ourselves to techniques suitable for evaluation of chemical data.
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4.1 OBJECTIVES OF ANALYSIS OF VARIANCE

Let us consider an example from the chemical laboratory. It is desired to examine
the influence of different methods of sample homogenization on the result of a chemical
analysis. With the use of three different homogenizers Z,, Z, and Z,, three different
samples were prepared and analysed. The observed values are y;;, i =1, 2, 3 and
j=1,2,3, where y;; denotes the observation for the ith homogenizer and jth sample.
The method of homogenization of sample is called a qualitative factor. There are also
quantitative factors, such as, for example, the mean particle size of the homogenized
sample or various physico-chemical parameters.

The individual factor Z exists on different levels Z,, Z,, Z,, which are called
treatments. The treatments are the main sources of variability and may be also be of
qualitative or quantitative nature.

The model of the response in one-factor ANOVA can be written

Vi =W + & 4.1)

where y;; represents the jth observation (j = 1,2, ..., n) for the ith treatment (i = 1,2
..+, k), p; is the true response (mean) at a factor level Z,, and ¢;; is the random error
present in the jth observation for the ith treatment. The mean y; may be divided into
two parts

u=p+a (4.2)

where u represents a general overall mean and «; represents the effect of the ith
treatment Z,. The total number of observations is

n=n,+n,+...+n.

In our example we have k = 3 and n = 9. We will now test the null hypothesis
that there are no differences caused by the method of homogenization, H,:
Uy = p, = py which corresponds to the null hypothesis Hy: o, = o, = a3 = 0. If we
investigate the differences between just three methods of homogenization, we have a
fixed-effect model. If the levels (Z,, Z,, Z,) are random samples from the population
of all possible methods of homogenization, we have a random-effect model.

The types of effects proposed lead to distinctive model assumptions and associated
statistical analysis.

The analysis of variance can be applied in several distinct forms, according to the
structure of the process being investigated. The selection of a particular form usually
constitutes a major difficulty in the practical application of the analysis of variance.

The choice between a fixed- or random-effect model depends on the purpose of the
analysis. If we suppose that three homogenizing machines make three different levels
of particle size, then instead of considering homogenizing machine to be the factor,
we use the mean particle size.

(a) We speak about a fixed-effects model when three homogenizing machines
correspond to three different milling finenesses, and we examine whether these
homogenizing machines affect significantly the results of the chemical analysis.
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(b) We speak about a random-effects model when we test whether the mean particle
size has an influence on the results of the chemical analysis. From a population of
different particle sizes we randomly select three.

The criteria for choosing between the fixed- and random-effects model are:

(a) Factors with fixed effects are usually a type of chemical treatment, a type of
instrument, an analytical method, a type of raw material, etc.
(b) Factors with random effects are laboratories, days, people, animals, etc.

One-way ANOVA deals with the influence of a single factor on a single response
variable. When that one factor has fixed effects, one-way ANOVA (“fixed-effects
one-way ANOVA”) involves comparison of several (two or more) population means.
Each population corresponds to one treatment (factor level). Often, the influence of
more factors is examined and then we speak about a multi-way ANOVA. In this
book, we concentrate on one- and two-way ANOVA only.

An example of two factors could be the milling of samples using three grinding
mills by two chemists. The second factor is here “chemist” with levels L, and L,. The
result of chemical analysis y,;, i=1,2,3;j=1, 2;and k = 1, 2, 3 means the result
for the ith way of milling mode by the jth chemist on the kth sample. The observation
is replicated for a given combination of both factors Z,L, and the corresponding
ANOVA model is expressed by

j*

Vige = Hij + i (4.3)

where y,; is the true, theoretical mean chemical analysis for the combination of factors
Z,L and ¢;; is a random error. The mean y;; can be written as a sum of effects «;
and f; of the factors Z; and L, an overall mean g, and the interaction effect t;; due
to

Hiy=p+ o+ B+ 1; (44)

The term ;; represents the effect of interaction of levels Z; and L. It is used when the
variability of y;; cannot be explained by the additive influence of factors. When the
effects of both factors are fixed or random, we speak about models with fixed or
random effects. It may happen that, e.g., effects of factor L are random while factor
Z has fixed effects. Such models are called model with mixed effects. For data treatment
it is important that at all factor combinations the same number of replicate
measurements is performed.

A combination of levels of individual factors (e.g. Z,L)) is called a cell. When the
number of replicate measurement is the same for each, the experiment is termed a
balanced experiment (or a balanced plan of experiments); for different numbers it is
called an unbalanced experiment.

Treatment of data is easier for balanced experiments. Treatment of data from
unbalanced experiments is more complicated and sometimes the ANOVA assump-
tions (e.g. about normality) are not fulfilled, and this will cause distortion in the
ANOVA results.
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42 ONE-WAY ANOVA

Suppose that some factor A, which we postulate as having some effect on a response
variable y, has k levels. We set up an experiment in which n, observations are made
of the response y at level 4,, n, observations at level A,, and so on, with n; observations
at a given level 4, The levels A; are called treatments, and there are k treatments in
the experimental design. The total number of observations n = f_ n;. At each level
A; there are n; observations y;;, j =1, ..., n. The layout of a one-way ANOVA
experiment with different number of replicates for each treatment is shown in Table 4.1.

Table 4.1-Data layout for one-way ANOVA with an unequal number of replications on each treatment

Factor A levels (treatments) Overall
i 1 2 ... i .. k mean
A, A, . A, .. Ay
Replicate j
1 Y11 Y21 Yix Vit
2 Yiz2 Y22 Yi2 Yi2
n Ying Yan, YVia; Yien,
Mean a J58 cee 4 cee Ay A
Sample size ny n, . n; n, n

Let £; denote the mean of the ith (partial) sample, that is, the mean of observations
at the ith treatment or level

S vy 4.5)

The overall (or grand mean) 4 of the all samples can be defined as

X .1 <
K=1"2L K= N Z Z Yij (4.6)
Equations (4.5) and (4.6) determine the estimates of parameters p; in Eq. (4.1) or p
in Eq. (4.2). To determine an estimate of effect «; the following expression is used:
&= —p _ (4.7)

To avoid identifiability problems the parameters o; are constrained by

Y no; =0 (4.8)
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When the sample size is the same for each treatment (balanced experiment), this
condition simplifies to

ia,. =0 (49)
i=1

The estimator d; corresponds to this constraint. The procedure adopted now
depends on whether fixed-effects or random-effects ANOVA is considered.

4.2.1 Fixed-effects one-way ANOVA

4.2.1.1 Assumptions
In a fixed-effects ANOVA model, all the factor levels being considered are fixed, i.e.
the levels of each factor are the only levels of interest. The “effects” referred to in
such a model represent measures of the influence (i.e., the effect) that different levels
of the factor have on the observed variable. Such measures are often expressed in the
form of differences between a at given level and an overall mean. The ith level
corresponds to the ith population from which the sample of size n; can be selected.
The effect of the ith population is often measured by the amount that the ith population
mean differs from an overall mean.

The assumptions needed for fixed-effects one-way ANOVA may be stated simply
as follows:

(@) Random samples of observations (chemical results, measurements, observations,
etc.) are selected from each of k fixed populations or groups. For the ith level
we have sample y;;, j=1, ..., n,

(b) The model of ANOVA defined by Eq. (4.1) is valid.

(c) The observations are normally distributed with constant variance ¢ in the whole
population, y;; = N(u;, °).

(d) Random errors ¢; are mutually independent random variables normally distri-
buted with a mean equal to zero and variance 62, ¢; = N(0, 6?).

In general, classical ANOVA analysis can be applied if none of the assumptions is
very badly violated. This is true for more complex ANOVA situations as well as for
fixed-effects one-way ANOVA. The term generally used to refer to this property of
broad applicability is called robustness. We say that a procedure is robust with respect
to moderate departures from the basic assumptions.

We must nevertheless be careful to avoid using robustness as an automatic
justification for blindly applying the ANOVA model. Certain facts should be borne
in mind when the use of ANOVA in a given situation is considered. For example,
the normality assumption does not have to be exactly satisfied as long as we are
dealing with relatively large samples (e.g., 20 or more observations from each
population), although the consequences of large deviations from normality are more
severe for random effects than for fixed effects. The assumption of variance
homogeneity can also be mildly violated without serious risk, provided that the
numbers of observations selected from each population are more or less the same,
although, again, the consequences are more severe for random effects.
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Violation of the assumption of independence of the observations, however, can
lead to very serious errors in both the fixed- and random-effects cases. In general, great
care should be taken to ensure that the observations are independent. This concern
arises primarily in studies where repeated observations are recorded on the same
experimental subjects, since very often the level of response of a subject on one
occasion has a decided effect on subsequent responses.

What, then, should be done when one or more of these assumptions are in serious
question? One possibility is for the data to be transformed (e.g., by means of a log,
square root, or other transformation) so that they more closely satisfy the assumptions.

4.2.1.2 Methodology
The null hypothesis that there is no treatment effect, i.e., the hypothesis of equal
population means Hy: u, = p, = ... = p, = u is usually tested first.

A [Bl9H10H9 |12 (8|11 Ish
3 4 | 2 4

8 [6]6]61919(91919]|9MHTM
444

¢ [Z[7[71717171 7171 7]7] 717

Fig. 4.1—Partitioning the sum of squared deviations into members A, B and C, where A are data, B are
treatment means and C is the overall mean: S =A —-C,§, =B —-C, S =A —B.

We begin the analysis by partitioning the sum of squared deviations from the
overall 2 defined by

k n;
Se=Y Y y— (4.10)
i=1 j=1
into two components, one attributable to the identifiable source of variation (factor
A), and denoted by S,; the other representing the variation due to uncontrolled
factors and random errors associated with the response measurement, and denoted
by Sg. Rearrangement of Eq. (4.10) leads to

SC=Z

i=1j

M=

[y — ) + (& — W1* = Sa + Sk (4.11)

1

where
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k
Sa= Y nif — p? (4.12)

i=1

represents the variability berween individual treatments of a given factor A, and
k n
Se= 2 2 vy — @)? 4.13)
i=1j=1

represents the variability within all treatments. A graphical interpretation of the
partitioning of S¢ is shown in Fig. 4.1. Results of an ANOVA procedure are usually
presented in a so-called ANOVA table (Table 4.2)

Table 4.2-ANOVA table for one-way fixed-effects model

Source of Degrees of Mean Expected mean

variation freedom square square

Between

treatments k—1 Stk — 1) )::_‘zln,.af

Sa o2+ ———
k—1

Residual

(within n—k Sp/(n — k) a?

treatments)

Sk

Totals n—1 — —

The last column in Table 4.2 shows the expected mean square. An unbiased estimate
of the variance of errors ¢? is the mean square of residuals defined by

6% = Sp/(n — k) (4.14)

The null hypothesis that the treatments are equal, ie. insignificance of effect;
Hy,:a,=0,i=1,..., k, and the alternative hypothesis is H,: o; #0, i=1, ..., k.
The test is based on the fact that S,/a? has the x> distribution with (k — 1) degrees
of freedom, and quantity Sg/o? has an independent y>-distribution with (n — k) degrees
of freedom. Their ratio has the Fisher-Snedecor F-distribution with (k — 1) and (n — k)
degrees of freedom. The test statistic is calculated by

_ Saln — k)

F =
© Sk —1)

(4.15)

When the null hypothesis H, is valid, the statistic F, has the F-distribution with
(k — 1)and (n — k) degrees of freedom. When F | is greater than the quantile F, _ (k — 1,
n — k), the null hypothesis is rejected, and the effect of factor A4 is taken as significant.

A
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If F,<F, Jk—1, n—k), the effect of factor A should be considered to be
insignificant. Then the total variance ¢2 is related only to the uncontrolled (random)
factor and may serve as an estimate of the replication variance.

In interpreting the results of an ANOVA, it is important to bear in mind that a
very low value of the variance ratio S,/Sg may be related to the fact that some
important uncontrolled factor was not randomized in the course of the experiment.
This may lead to an increased variance within the treatments while leaving the variance
between the treatments unchanged, resulting in a reduced variance ratio. In these
circumstances, the experimental results will not obey the model defined by Eq. (4.1).
If, on the other hand, the inequality F, > F,_(k — 1, n — k) holds, the difference
between the two variances is significant, and so is the effect of factor A.

Problem 4.1 Test of quality of silver nitrate made by various companies

The bottles containing silver nitrate were manufactured by five different companies.
Random samples of silver nitrate taken from the bottles were used for determination
of chlorine in organic samples. From each of the five bottles different numbers of
random samples are taken to prepare stock solutions of AgNO,mn, =n, =6;
n, = ng = 3,n, = 4. Test whether the quality of AgNO; coming from various chemical
companies differs.

Data: The percentages of chlorine in a single organic compound determined by using
five stock solutions of silver nitrate are listed in Table 4.3

Table 4.3—Determination of Cl by various stock solutions of AgNO,

Source of AgNO,

Replicate |4 v, | A v, Vs
1 4.40 4.90 5.55 4.45 5.15
2 4.40 4.95 5.10 5.45 6.25
3 5.20 5.40 5.50 4.65 6.14
4 545 — 5.98 4.40 —
5 5.80 — 5.60 — —
6 5.60 — 5.56 — —

Program: Chemstat: ANOVA-1: One-way.
Solution: The estimates of the individual means /i, the overall mean /i and effects 4; are:

f=52715; f, = 5.1417; p, = 5.083; A, = 5.548; f, = 4.738;
fis = 5.8467; 8, = — 0.1298; &, = — 0.1885; @, = 0.276;
8, = — 0.534; 45 = 0.575.

The sums of squared deviations and variance components are summarized in Table 4.4.

)
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Table 4.4—One-way ANOVA table for quality of silver nitrate

Source of Degrees of Mean square F,
variation freedom

Between

companies 4 0.6999 3.1
Sa=2.7999

Residual

Sg = 3.8322 17 0.2254 —
Totals

Sc = 6.632 21 — —

For significance level « = 0.05 the quantile F 45 (4,17) = 2.96.

Conclusion: Since the experimental value F, is greater than quantile F 45 (4,17), the
null hypothesis Hy: o; = 0,i = 1,..., 5 is rejected, and the quality of AgNO, coming
from different chemical manufacturers significantly differs.

4.2.1.3 Multiple-comparison procedure

Whenever an ANOVA F-test for simultaneous comparison of several population
means is found to be statistically significant, it is of interest to determine which specific
differences there are among the population means. For example, if four means are
being compared (fixed-effects case) and the null hypothesis Hy: i, = pu, = puy = py is
rejected, it is usually desirable to determine which subgroups of means are different
by considering some more specific hypothesis such as Hg, @, = py; Hop: py = Us;
or even Hy,: (1, + 1,)/2 = (u5 + u,)/2, which compares the average effect of popu-
lations 1 and 2 with the average effect of populations 3 and 4. Such specific comparisons
may have been of interest to the investigator before the data were collected, or may
arise in completely exploratory studies only after the data have been examined. In
either event, a seemingly reasonable first approach to making inferences about
differences among the population means would be to make several t-tests, and to
focus on all the tests found to be significant. The justification for all the
Z = ,C, = k(k — 1)/2 tests being applied simultaneously comes from the Bonferroni
inequality. Special quantiles of the t distribution for level 2/2 x Z must then be used.
Testing of differences between population means in ANOVA is called the multiple
comparisons technique. In Scheffe’s multiple comparison procedure the null hypoth-
esis Hy: p; = p; is rejected for all pairs of (i, j) populations for which

4, — ;1 = \/(k —N)xao?>x F,_(k—1, n—k) x [1/n, + 1/n;] (4.16)

where n is the total number of observations, k is the number of means considered,
n; and n; are the sizes of the samples selected from the ith and jth populations
(treatments), respectively, 67 is the estimate of variance calculated by Eq. (4.14).
Equation (4.16) is used for all pairs of indices (i, j). In some cases, only selected linear
constraints can be proved.

_ i .
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In general, a linear contrast is defined to be any linear function of the population
means, say

K
L= cu (4.17)
i=1

with known coefficients c; such that

M=

k
¢;=0and ¥ >0 (4.18a,b)
i=1

i=1

The contrast estimate is defined by

M=

L=Ycp (4.19)

i=1

When all the observations come from a normal distribution N(u,, o2), the associated

null hypothesis H,: L = 0 may be tested against the alternative H,: L # 0 by using
the test criterion

e

[6’2 zk: c?/ni]

i=1

F, = (4.20)

If the null hypothesis H,, is valid, the test criterion F, has a Fisher-Snedecor
distribution with 1 and (n — k) degrees of freedom. The null hypothesis is rejected
when F| reaches a value higher than quantile F,_ (1,n — k).

Problem 4.2 Differences in quality of AgNO; from two suppliers

For the data from Problem 5.1 test whether the difference between u, and y, is
statistically significant. Is the silver nitrate from supplier No. 4 of better quality than
that from supplier No. 2?

Data: Problem 4.1

Program: Chemstat: ANOVA — 1: One-way.

Solution: To test for a difference between p, and y,, the linear contrast with coefficients
c,=c3=c5=0; ¢c,=1, ¢, = —1 may be calculated. The estimate of contrast
L=, — ji, = 0.345. From Eq. (4.20), F, = 0.119/(0.2254(1/4 + 1/3)) = 0.905. Be-
cause the quantile F 45 (1,17) = 4.451 is greater than F|, the difference between u,
and pu, i1s not statistically significant.

Conclusion: The difference between the quality of silver nitrate from suppliers 4 and
2 is not statistically significant.

4.2.1.4 Regression model

The procedure of analysis of variance is applicable only when the observations are
independent, the errors ¢;; have the normal distribution N(0, 0?), with constant variance
2. Before use of the ANOVA procedure, all the assumptions should be examined.
For this, it is advantageous to convert the ANOVA model into a linear regression

model and apply regression diagnostics (from Chapter 6, Vol. 2).
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Most ANOVA procedures can also be considered in a regression analysis setting;
this can be done by defining appropriate dummy variables in a regression model.
The ANOVA model, Eq. (4.1), may be expressed as the linear regression model

Vij = MWy + 1w, o+ + & ' 4.21)
where the w; are dummy variables which take the following values:

1 for effect i
i 10 otherwise

The means y,, y,, ..., i are understood as the regression parameters. If all the
assumptions about errors are valid, the parameters estimates £, can be calculated by
the least-squares method—i.e. by minimizing

k

k n;
Ulp) = Z Z(J’u
i=1 j=1

=1

— Y w)? 4.22)
i=1

Analytical minimizing of U(u) leads to the system of equations:
W g i=1,...,k (4.23)
Since w; = 1 only for i = j the solution of Eq. (4.23) has the simple form

Zyij

n;

A

A (424)

Chapter 6 (Vol. 2) explains the important role played by the diagonal elements H;;
of the projection matrix H in analysis of residuals and leverage points,

(1/n)d,J7 0 0
H= 0 (1/n,)d,J3 0
0 0 (1/n)3Jx

where J; is a column unit vector of size (n; x 1). Matrix H consists of blocks of size
(n; x n;) with values 1/n,.

For the same number of observations (replicates) of each treatment (balanced
experiments) all the diagonal elements H;; have the same magnitude. It means that
estimates /i; have constant variance.

For different numbers of observation of each treatment, the variances

D) = a%/n, (4.26)
are not constant. Similarly, the variances of the residuals

D) = o*(1 — 1/n) 4.27)
also are not constant. Residuals ¢; in ANOVA models are expressed as

éi=yii— M (4.28)

A
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For very different numbers of replicates of the treatments (unbalanced experiments)
the residuals will have nonconstant variance even in cases when the errors have
constant variance.

From the theory of regression models (Chapter 6, Vol. 2) it is evident that for
extreme points, the diagonal elements of the projection matrix become larger than
2k/n. This means that for small sample sizes there is a danger that levels with a
particularly small number of observations will have a strong influence on the results
of the statistical analysis.

Problem 4.3 Investigation of the influence of individual suppliers of silver nitrate on
ANOVA result

Examine the influence of the individual suppliers of silver nitrate in Problem 4.1
especially for small sample sizes, and test whether any supplier can be taken as an
extreme.

Data: As for Problem 4.1

Solution: For samples from the first and third supplier the diagonal elements of the
projection matrix 1/n; = 1/6 = 0.16, from the second and the fifth, 1/n, = 1/3 = 0.33
and from the fourth 1/n; = 1/4 = 0.25. The critical value is 2 x 5/22 = 0.4545.
Conclusion: Since all diagonal elements of projection matrix H;;, i = 1, ..., 5 have
values under the critical limit, all samples can be considered as not to be leverages.

4.2.1.5 Checking for data normality
To check the data normality, the rankit plot (Chapter 2) may be used. Examination
of standardized residuals is also helpful (see Chapter 6, Vol. 2)

R €ij

esi e
61— 1/n

where ¢;; are residuals, ¢ is the estimate of the standard deviation and #; is the number
of observations for a treatment. The standardized residuals, in a classical analysis of
variance, exhibit approximately a normal distribution with zero mean and unit
variance &,; ~ N(0,62). If the errors are normally distributed, ¢;; & N(0, o), the rankit
plot of the standardized residuals is linear, with zero intercept and unit slope.

Problem 4.4 Check of data normality

Check whether the data from Problem 4.1 have a normal distribution, with the use
of a rankit plot G12 for standardized residuals é;.

Data: Problem 4.1 ‘

Program: Chemstat: ANOVA-1: One-way.

Solution: The rankit plot is shown in Fig. 4.2

Conclusion: The rankit plot proves that the data have an approximately normal
distribution.
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Fig. 42—The rankit plot G12 for standardized residuals from Problem 4.4.

When data do not belong to the normal distribution, some transformation
(logarithm, square-root, or other functions) can often be applied. In many practical
cases, data are skewed to higher values. Then the logarithmic transformation

y¥=1nQ2y+ () (4.30)
is suitable. The value C is selected such that

(1) the distribution of residuals is symmetrical with kurtosis near to 3,
(2) a rankit plot of standardized residuals is linear.

In ANOVA models the outliers play an important role (as in regression). Outliers
may be detected by Jack-knife residuals é,;; which are defined by

n—k—1

n—k—é
For normally distributed ‘data, these residuals have approximately the Student
distribution with (n — k — 1) degrees of freedom. Roughly, if &7, ; > 10, the given value
y;; is taken as an outlier. Other diagnostics for finding outliers, described in Chapter

6, may be applied also.

A

€3ij = €sij

Problem 4.5 Detection of outliers in data

Test whether the value 5.15 in the 1st sample from the fifth supplier in Problem 4.1
is an outlier.

Data: As for Problem 4.1

Solution: The residual is

85, = ys; — fls = 5.15 — 5.8467 = — 0.6967

and corresponding standardized residual is

R S
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éss; = — 0.6967/,/0.2254(1 — 1/3) = —1.7973.

The Jack-knife residual is

b5y = — 17973 /(22 — 6)/22 — 5 — 1.7197%) = — 1.932.

Conclusion: Because é]5, = 3.74 is smaller than 10, the value y, is not an outlier.

4.2.1.6 Checking for homoscedasticity

The assumption of homoscedasticity (i.e. constant variance) may be tested by use of
the same diagnostics as for the linear regression model. For non-constant numbers
of observations on treatments, the heteroscedasticity of classical residuals (Eq. (4.27)
should be considered. For a sufficient number of observations on a treatment, in
addition to the mean fi, a treatment variance s? can also be estimated. A test of
homoscedasticity may be carried out on the basis of a plot of s; vs. i, If a random
pattern of points results, the homoscedasticity in different treatments is accepted. If
s; is related to 4; by a monotonic function s =f,(4), the data might be transformed
to stabilize the variance. A suitable transformation can be determined from

du
= 3
9(y) [zm) (4.32)

Problem 4.6 Determination of the transformation for stabilizing a variance

It was found that a plot of s; vs. ; is linear. Determine a convenient transformation
for stabilizing the variance.

Solution: By using Eq. (4.32) for f,(1) ~ a x p, the differential equation will be

g(y) = a
u

y
with solution g(y) = a x 1n y. Thus, the optimum transformation will be a logarithmic
one, Y?} = 1n (yij)'
Conclusion: When the dependence of s; on 4; is monotonic, a convenient transform-
ation can easily be found. Such a transformation improves the normality of the data
too.

4.2.2. The random-effects model for one-way ANOVA

A random-effect factor is a factor which has levels that may be regarded as a sample
from some large population of levels, whereas a fixed-effect factor is one which has
levels that are the only levels of interest. The distinction is important in any ANOVA,
since different tests of significance are required for different configurations of random-
and fixed-effect factors. For now, it is perhaps useful to give some examples of random
and fixed effects factors:

(@) “Subjects” is usually considered to be a random-effects factor, since we ordinarily
wish to infer from the subjects used, to a population of potential subjects.

4
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(b) “Observers” is a random-effects factor often considered in the examination of
the effect of different observers on the response variable of interest.

(¢} “Days”, “weeks”, and so on are usually considered as random factors in
investigation of the effect of time on a response variable observed for different
time periods. We usually use many levels for such temporal factors to represent
a large number of time periods.

(d) “Sex” is always a fixed-effects factor, since its two levels include all possible
levels of interest.

(e) “Location™ (e.g., cities, plants, laboratories) may be fixed- or random-effects
factors, depending on whether only specific sites are of interest or whether a
larger geographical universe is to be considered.

(f) “Treatments”, “drugs”, “chemicals”, “tests” and so on, are usually considered
as fixed factors, but they may be considered random if their levels are
representative of a much large group of possible levels.

In the random-effects model, the effect o, is considered as a random variable. For
the random-effects model, it is assumed that

(a) «; are mutually independent random variables with normal distribution N(0, a3);

(b) ¢;; are mutually independent random variables having normal distribution N(0,
a.);

(c) random variables «; are independent of random variables ;. The purpose of
ANOVA is to test the differences of theoretical effects «; — «; or the variances
o% and ¢7. In some cases, the overall mean u or means y; = p + o, for individual
treatments are estimated.

For estimates of variances o3 and ¢ a residual sum of squares Sz and a sum of
squares S, explained by effects are used. Both quantities are calculated as for the
fixed-effects model (Table 4.2).

The variances ¢ and o} are calculated from

S
62 ="k (4.33)

° n—k

and

& = n(k — 1[Sa/(k — 1") — Sg/(n — k)] (4.34)

The estimate 62 must be non-negative, i.e. 65 = max (0, 63). Estimates f, 62 and ¢},
have some useful statistical properties. Provided that the assumptions about errors
¢;;and effects a; are valid, they have from all possible unbiased estimates the minimum
variance. The variances 62 and 6% may be estimated with the use of a maximum
likelihood or some other method[5].

The requirement of a zero mean for all «; is similar in philosophy to the requirement
that Z¥_ ,«; = 0 for the fixed-effects model. When the ANOVA random model applies,
we assume that the average effect of treatments o, is 0 over the entire population of
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all treatments «. That is, we assume that u; = 0. Because we have required the treatment
effects to average out to 0 over the entire population of possible effects, there is only
one way to assess whether there are any significant treatment effects at all, and this
involves consideration of a3. If there is no variability (i.e., 62 = 0), all treatment effects
must be 0. If there is variability (i.e., o5 > 0), there are some non-zero effects in the
population of treatment effects. Thus, our null hypothesis of no treatment effects
should be stated as H,: 0% = 0. This hypothesis is therefore analogous to the null
hypothesis used in the fixed-effects case, although it happens to be stated in terms of
a population variance rather than in terms of population means. The F-test criterion
is stated for the random-effects model in exactly the same way as that used for the
fixed-effects model,

_Sa (=K
TS k=1

(4.35)

If the null hypothesis is valid, this F, statistic has the Fisher-Snedecor distribution
with (k — 1) and (n — k) degrees of freedom.

When the means y; are estimated, the procedure is the same as in the fixed-effects
model [5]. For an estimate of an overall mean u in balanced experiments, the
arithmetic mean £ is used. The variance of 2 can be estimated from the equation

Sa

= T Do (436)

6%
where n* is number of observations, which should be the same for all treatments.
For a significance test of the overall mean , the test statistic t = /6, may be used.
This statistic has, for a valid null hypothesis H,: u = 0, the Student dlstrlbutlon with
(k — 1) degrees of freedom.

For unbalanced experiments, in addition to the arithmetic mean

| -
M-

ﬁN = .ﬁi

i=1

the weighted arithmetic mean

Y (4.37)

1

"

S |-
le

ﬁw=

i

is also computed. The corresponding variances of fiy and fy, are

1 X o’
D(fy) —2}: f[n +oA:| (4.38)
and

1 k
LINES D) [ +aA] (4.39)

i=1

4
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In the numerical calculation of ¢ and ¢? their estimates are substituted, and from
both of these, the mean value taken is the one for which the variance has the lower
value.

Problem 4.7 Evaluation of quality of AGNO,

Use the data of Problem 4.1, but suppose that instead of 5 bottles of silver nitrate
from known suppliers, five bottles randomly selected from stores were used. Test the
quality of AgNO; available in the stores.

Data: As for Problem 4.1

Program: Chemstat: ANOVA-1: One-way.

Solution: The residual variance o2 = 0.2254 from Problem 4.1 is substituted into Eq.
(4.34)

22 x 4[0.6999 — 0.2254]
227 — 106

Since the test statistic F, = 3.10 computed from Eq. (4.35) is higher than the quantile
of the Fisher—Snedecor distribution at a significance level & = 0.05, F 45 (4, 17) = 2.9,
the null hypothesis H,:a; = 0 is rejected.

Conclusion: The variability of the quality of silver nitrate in bottles in the stores is
significant. The fixed-effects model thus gives a different answer from the random-
effects model in interpretation of results.

=0.1104

2
Op =

In random-effects models, the assumption of normality may be violated for variables
e;; and also for o, Normality may be checked by the rankit plots for residuals. Rankit
plots can also be drawn for means f; or 4, although the results are not absolutely
correct[5].

Like the fixed-effects models, the random-effects models can have the normality of
data improved by use of a suitable transformation, but variance estimation can be
a problem in the transformed scale. When the assumption of normality is violated,
the Jack-knife technique (Chapter 3) can be used for estimation of the variance oa
and testing its significance. For detection of outliers and heteroscedasticity, the same
technique as for the fixed-effects model is adopted.

43 TWO-WAY ANOVA

In the previous section we explained the simplest kind of ANOVA problem, that
involving a single factor. We now focus on the two-factor case, which is generally
referred to as two-way ANOVA. This extension is by no means trivial. We shall
describe how the two-factor situation may be classified according to the pattern of
the data.

4.3.1 Two-way data patterns

Several different types of data patterns for two-way ANOVA are illustrated in Table
4.5. Each of these tables describes a two-factor study with three levels of factor B
(the “column” factor) and four levels of factor A (the “row” factor). The combination
of level 4; and B; is called a cell. The ys in each table correspond to individual

JS——
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e — R AT
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observations on a single dependent variable y. The number of ys in a given cell is
denoted by n,; for the ith level of factor 4 and the jth level of factor B. The marginal
total for the ith row is denoted by n,. and for the jth column by n;. The total number
of observations is denoted by n.

Table 4.5—Some two-way data patterns for a 4 x 3 table

Factor B Factor B
y vy yyyy yyyy yyyy
Factor A y y oy Factor A yyyy yyyy yyyy
y yy yyyy yyyy yyyy
y y vy yyyy yyyy yyyy
(a) Single observation per cell (n;; = 1) (b) Equal number of replicates per
(balanced case) cell (n; = 4) (balanced case)
Factor B Factor B
yyyy yy yyy| n.=9 yyyy yy yyy| np= 9
Factor A yyyy vy vy | n. =9 yyyy vy yyy n, =18
yyyy vy yyy| na =9 yyyy ¥y vy ‘
=9 , W vy
yyyy yy yyy | na. Factor A yyyy yy yyy
n,=16n,=8n;=12 yyyy vy ywy| m =27
yyyy o yy yyy
LRl T
yyyy yy yyy
n,=32n,=16n,=24n=72
(c) Equal replications by column, proportional (d) Proportional row and column
replications by row (n;; = n ;/4) replications (n;; = n; .n ;/n)
(unbalanced case) (unbalanced case)
Factor B
yy yyy o yyyyyy [ mo=11
=9
Factor A yyy yyyy o yy n;,
y vy o yyyy |y =8
yyyyy ¥y n, = 8
n,=11 n,=12 ny=13n;=36

(e) Nonsystematic replications (unbalanced case)

The simplest two-factor pattern (Table 4.5a), arises when there is a single observation
in each cell (i.e., n;; = 1 for all i and j). A second type of pattern (Table 4.5b) occurs
when there are equal numbers of observations in each cell. Here, n;; = 4 for all i and
j. The common property of the last three patterns is that all cells do not have the
same number of observations. Unequal cell replications often arise in observational

4
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studies in which the levels of certain effects are determined after, rather than before,
the data are collected.

For the pattern in Table 4.5¢c, cells in the same column have the same number of
observations, whereas cells in the same row are in the ratio 4:2:3. For this table each
of the four cell frequencies in the jth column is equal to the same fraction of the
corresponding total column frequency (i.e., n;; = n;/4 in this case). Note, for example,
that n,/4 = 16/4, which is the number of observations in any cell in column 1.

For Table 4.5d the cells in a given column are in the ratio 1:2:3:2, whereas the
cells in a given row are in the ratio 4:2:3. This pattern results because n;; is determined
asn;; = n; x n_;/n,which means that any cell frequency can be obtained by multiplying
the corresponding row and column marginal frequencies together and then dividing
by the total number of observations. Thus, for cell (1,2) in Table 4.5d, we have
ny. X n,/n=916)/72 =2, which equals n,,. Similarly, for cell @4, 3),
ng X ns/n = 18(24)/72 = 6, which equals n,,.

There is no mathematical rule for describing the pattern of cell frequencies in Table
4.5e, and so we say that such a pattern is nonsystematic.

4.3.2 Formulation of various two-way ANOVA models

We shall consider the case in which we must set up an experiment to study the effects
of two factors 4 and B on a response variable y. Factor 4 has N levels «,, a,, ...,
oy, whereas factor B has M levels 8, B, ..., By For each combination of levels
(2;8;), we measure the response y;; by carrying out n,; observations. The total number
of observations is n = I, Zj‘il n;;. The model of the response to each treatment
may be written

y,-jk=,u+0(i +ﬂ}+ Tij+8i (4.40)

kg
where u represents an overall mean or a common effect, o, represents the row effect
on the ith level of factor A i=1, 2, ..., N), B; represents the column effects on the
Jjthlevel of factor B(j = 1, 2,..., M) and t,; represents the effect due to the interaction
of two factors, A and B.

The interaction term t;; is the deviation of the mean of observations in the (ij)th
set from the sum of the first three terms in the model defined by Eq. (4.40), and Eij
(k=1,2,...,n;) represents the error term.

The simplest model of interaction of rows with columns is the Tukey model of
interaction defined by

where C is a constant. More complicated models of interaction are the row-linear
interaction model expressed by

T =7 X B; x Cg (4.42)
or the column-linear interaction model expressed by

T = 5]. x a; x Cg (4.43)
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The extended model is the additive-multiplicative interaction model expressed by
7, =0; X 7; X Cy (4.44)

These expressions contain, in addition to the column and row constants ¢; and 7y,
also the general constants Cy, Cx and Cy,.

Interactions of second and higher orders also exist, and these can express rather
complicated structures in data. Analysis of such non-linear interaction models may
be found in the literature[10].

We limit ourselves to the simplest (Tukey) model of interaction Eq. (4.41). Since
this model contains only one parameter C, it is called the model with one degree of
freedom for non-additivity. This model expresses approximately the interaction effects
in quadratic models for which:

ﬂl] X (# + ai+ﬁj)2

After rearrangement of this equation, the interaction term is of the type 2a,8; Use
of the Tukey model of interaction is suitable for cases when each cell contains just
one observation.

4.3.3 Fixed-effects two-way ANOVA

This type of two-way screening is the most frequently used. It allows evaluation of
the effect of two factors on the results of a chemical analysis. Two- way ANOVA
problems can be separated into three groups:

(1) models with a single observation per cell
(2) balanced models
(3) unbalanced models.

For each model, a different computational procedure is required.

4.3.3.1 Models with a single observation per cell

In these models the each cell contains only one observation, and the model is described
by Eq. (4.40). The errors ¢;; are assumed to be independent identically distributed
random variables with zero mean and constant variance. In testing, it is assumed
that the error distribution is normal. In the ANOVA model, there are the following
constraints

N M N M
Yo, =0, Y B;=0; Y1,;,=0; }1;,=0 (4.45)
i=1 j=1 i=1 j=1

For pure additive effect of individual factors, 7;; =0 foralli=1,..., Nand j=1,

., M. The estimates of parameters u, ;, and f; are in this case calculated from
1 N M
P N 4.46
A NxMi;j;y‘, (4.46)
1 M
% = M Z Yij — H (4.47)
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~ 1 X .
ﬂj = N i=zlyij —H (4.48)
For residuals

éij =Jij — A—a; — ﬁj (4.49)

When Eq. (4.40) is considered as the special linear regression model, the diagonal
elements H;; of a projection matrix H have the same value [7]

N+M-1
= 4.50
Y (450
Off-diagonal elements are not zero, so an outlier in one cell affects the estimates of
parameters for all cells.

To determine the interaction we use the fact that

7= E(yy) —u—o;— B; (4.51a)
Then, the estimate of interaction is given approximately by
T R & 4.51)

By using Eq. (4.51), the Tukey model of interaction [Eq. (4.41)] may be identified. If
the plot of &; vs. o‘ciﬁj is linear, the Tukey model of interaction is accepted. The
parameter C is calculated from the slope of this straight line

C= [i % é; x &; x B,:I/[i Ai 87 x sz] (4.52)

The slightly modified plot ¢;; vs. d; x B /i is called the non-additivity graph. If this
plot exhibits a non-random trend, interactions probably exist.

The sums of squares of ANOVA model for a Tukey model of interaction are given
in Table 4.5. The quantity Sy is the sum of squared deviations corresponding to the
Tukey interaction [3].

Sﬁ[i %yi,-xo‘ciw?,]z/[i § &?xﬁf] (4.53)

and the symbol S,; means a residual sum of squares for the case without interaction

Mz

N
Sap = Z (yij —f—8— ﬁj)z 4.54)
i=1 j=1

The corresponding mean square M,y

_ SAB
Mg = N=D M=0) (4.54a)

represents an unbiased estimate of the variance 2.




Sec. 4.3] Two-way ANOVA 193

Table 4.6—Two-way ANOVA model with interaction of Tukey type

Sum of Degrees of Mean Test
squares for freedom square criterion F
Factor A
N
S,=MY & N-1 M, =5,/N—1) Fy=M,/M,,
i=1
Factor B
M
SB=NZ/3; M—1 My = Sp/(M — 1) Fy = My/M,y

i=1

Interaction (Tukey)

St =[Eq.(4.53)] 1 Mi=8; Fr= M /Mg
Residuals
Sk =S-S5 NxM—-N-M M=5/NxM-N-M —
Totals
N M
Se=Y Y@—-y) NxN-—1 — —

i=1j=1

Statistical tests based on the Fisher—Snedecor F-criterion may be performed. The
null hypothesis H: “Tukey interaction is not significant” is tested by the F; criterion
from Table 4.6. If the null hypothesis H, is valid, F; has the Fisher-Snedecor
F-distribution with 1 and (N x M — N — M) degrees of freedom. When this hypoth-
esis is not rejected, a test of the null hypothesis H,: o; = 0,i =1, ..., N (the effects
of rows or factor A are not significant) using the statistic F,, or a test of the null
hypothesis Hy: ; =0, j=1, ..., M (the effects of columns or factor B are not
significant) using the statistic F; may be made. If the null hypothesis H, is valid, the
F , statistic has the Fisher-Snedecor F-distribution with (N — 1)and (N — 1) (M — 1)
degrees of freedom. Fy has the same distribution with (M — 1) and (N — 1) (M — 1)
degrees of freedom.

If Fy is higher than corresponding quantile of the Fisher-Snedecor distribution,
the effect of Tukey interaction is significant.

Problem 4.8 Determination of water content in solvents, in various laboratories

In three samples of solvent A;, A, and A,, the content of water was determined in
four laboratories B,, B,, B; and B,. Test whether there are significant differences
between the water contents of the three samples and in the results coming from the
four laboratories.

Data: N=3, M =4
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Table 4.7—Water content, %, in solvent found by various laboratories

Laboratory
Sample
B, B, B, B,
A, 1.35 .13 1.06 0.98
A, 1.40 1.23 1.26 1.22
A, 1.49 1.46 1.40 1.35

Program: Chemstat: ANOVA-2P: Two-way, One Observation Per Cell.
Solution: 1t is found that i = 1.277; 4, = — 0.147; 4, = 0; 45 = 0.1475; B, = 0.1358;
B, = 0.0042; B, = — 0.0375 and B, = — 0.0942. The slope estimate from Eq. (4.52)
is C = — 3.532. Figure 4.3 shows a non-additivity graph with a slightly significant
trend.

The sum of square deviations corresponding to Tukey interaction is S; = 0.0156.
The sum of square is S,5 = 0.02215 and M, = 0.003692. The results are summarized
in the ANOVA Table 4.8.

Table 48—ANOVA table of water content in different solvents determined by different laboratories

Sum of Degrees of Mean Test
squares for freedom square criterion F
Samples A

S, =0.174 2 0.087 19.64
Laboratories B

Sp = 0.0862 3 0.0287 6.49
Interaction (Tukey)

Sr =0.0156 1 0.0156 3.522
Residuals

Sg = 0.0222 5 0.0044 —
Totals

Sc=0.2824 11 0.0257 —

The quantiles of the Fisher-Snedecor distribution are Fg 45 (1,5) = 6.61; F; o5
(2,5) = 5.79 and F 45 (3,5) = 5.41.
Conclusion: The interaction effect is not significant and the additive model of ANOVA
can be used: sample effect and laboratory effect are significant. There are non-random
difference between laboratory results and samples of solvent.

In some cases it is convenient to apply the power transformation

(yij+Q)A_1
. A
Yi= {In (v, + Q) for 4 =0

for 1 #0
(4.55)
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Fig. 4.3—Non-additivity graph for water content in different solvents.

where Q is a constant selected to make (y;; + Q) >0 and 4 is a parameter of
transformation. Details about the power transformation are given in Chapter 2. In
ANOVA, the power transformation can be used for eliminating non-additivity. The
parameter C is estimated from Eq. (4.52) (it is equal to the slope of the regression
straight line divided by /i in a non-additivity graph). The value of A may then be
evaluated from the equation

A=1—-axC (4.56)

In practice, 2 is rounded to the nearest number from the following series: ..., — 1.0;
—0.5; —0.3;0;0.3;0.5; 1; 1.5; 2; ... For the estimate of variance 4*(2) the following
expression is used [11]

A2 M
6*() = XN XM X Spy (4.57)

N M
N-DM-1)Y Y &p;

i=1 j=1

For a first guess, transformations in the range 1 + 8(2) are acceptable.

Table 4.6 can be also used for ANOVA without interaction when S; = 0. Since
each observation y;; affects parameters in all cells and a projection matrix is not
diagonal, the classical analysis of residuals by Eq. (4.49) can lead to wrong conclusions.
The non-random trend on a rankit plot indicates an interaction or non-normality.
Detection of outliers cannot be performed by residuals é;;.

For identification of outliers, so-called “proper tetrads” Tj.,, are reccommended
[8]. These are given by

'Ej:eg=yij_yej_yiy+yeg i#ej#yg (4.58)
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Instead of residuals, medians Q,; of all tetrads are calculated which contain
observations y;. Medians Q,; are plotted in rankit graphs.

Another technique for identification of outliers is a calculation of robust estimates
of parameters «; and f;, and consequently also robust residuals. A suitable robust
technique here is the median-polish procedure [9] which is a nonparametric technique
corresponding to a regression, and which minimizes the absolute deviations. The
median polish is very simple iterative technique, involving the successive subtraction
of row and column medians from the data values. The procedure will remove row
and column effects to create a new polished table containing only the residuals. In
the resulting table of residuals each row and each column has zero median. Also,
centring of row and column effects is carried out, so that their medians are equal to zero.

Problem 4.9 Median-polish procedure for data of water content in various solvents
To demonstrate the median-polish procedure, calculate one iteration for the data of
water content in various solvents from Problem 4.6.

Data: As for Problem 4.6

Solution:

Data Median

1.35 1.13 1.06 0.98 1.095

1.40 1.23 1.26 1.22 1.245

1.49 1.46 1.40 1.35 1.430
after subtraction of row medians Median

0.255 0.035 —0.035 — 1.115 1.095

0.155 —0.015 0.015 —0.025 1.245

0.060 0.030 —0.030 — 0.080 1.430

Median 0.155 0.030 —0.030 —0.080 1.245
after subtraction of column medians Median
0.100 0.005 —0.005 —0.035 —0.150
0.000 —0.045 0.045 0.055 0.000
—0.095 0.000 0.000 0.000 0.185
Median 0.155 0.030 — 0.030 —0.080 1.245

Although in the table of residuals, all the column and row medians are not zero,
it is possible to make a first guess of parameter estimates:

fi=1245; 4, = — 0.150; &, = 0.0; &, = 0.185; f, = 0.155;




Sec. 4.3] Two-way ANOVA 197

B, = 0.030; B, = — 0.030; B, = — 0.080.

Conclusion: Comparison of estimates of parameters made from one iteration of the
median-polish procedure shows that they are quite close to the estimates found by
the classical procedure in Problem 4.6. In practice, usually three or five iterations of
the median-polish procedure are used.

In the case of more complicated interactions, a matrix of residuals é;; is formed,
E(N x M). Then, the matrix E'E is decomposed into eigenvalues and eigenvectors.
From these quantities the parameters 6; and y; are estimated. More details may be
found in [10].

4.3.3.2 Balanced models

These models contain n;; = n* observations in each cell. The ANOVA model is
expressed by Eq. (4.3) or (4.4). An estimate of parameter y;; is represented by the
arithmetic mean

R 1 ¢
Hij = kgly ijk (4.59)

For estimation of other parameters, the following expressions are used

1 N M
A=5 i; j;u.-,- (4.60)
1 M
& =-7 2 My — A (4.61)
P
. 1 X
Bi=x X fy—i (4.62)

Residuals are given by

b =Yix—0L—8—B; (4.63)
In this case as in Eq. (4.51a), an estimate of interaction is defined

ty=fy— i — b, — B, (4.64)

Notice that this expression differs from Eq. (4.51) by the fact that instead of the
variable y;; the mean f;; is used. For a test of non-additivity of Tukey interaction, the
plot £;; vs. & x f; can be adopted. A random pattern in this graph indicates additive
effects of the two factors. The sums of squares for this type of ANOVA model are
given in Table 4.9.

4
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Table 4.9—Two-way ANOVA table for a balanced model

Sum of Degrees of Mean Test
squares for freedom square F-criterion
Factor A
N S M
Sy=n*xM Y 4 N-1 M,=—2 F,=-*A
A=n X i;} i AN -1 A M,
Factor B )

* 3 a2 My
Sg=n xNj;Bj M-1 Mg + = FB:VR
Interaction AB

* i i £2 (N—1)M—1) M Sas F Mas
=n 15 — — =— = —
=T BON-DM -1 My
Residuals
N M n* SR
R—EZZ(M A)* M x N@* —1) Mk=m —
Totals
N M n*

SC_ZZZ yajk_li)z M x N x n*—1 _ o
k

i

The corresponding expected values of mean squares are

N
n*x MY of
E(MA)=O'2+m=O'2+n*XMO'i
M
n*xMZﬁf
E(MB)zaz+m=62+n*XNG§
N M
ADIDIH
E(M,p) = 0* + =l =067 +n* x o3y

(N — 1M — 1)o*

The expected value E(My) = 6* shows that the variance M is an unbiased estimate
¢ of an error variance. Variances a3, og and o4, correspond to the effects of rows,
columns and interaction. These expressions are used also in calculation of estimates
of variance of factors and interaction. Then instead of mean values E(.), the mean
squares, and instead of variance ¢?, the residual variance 6% (cf. Problem 4.10) are
substituted. It is important to note that the mean squares are not estimates of the
corresponding variances.

Statistical criteria F,p, Fy and F, defined in the ANOVA Table 4.9 are used to
test whether the interaction effects, column effects and row effects are significant. To
test a null hypothesis Hy: 7,; =0,i=1,..., Nand j=1, ..., M, the test criterion
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F,p is used; if H, is valid, this has the Fisher-Snedecor distribution with (N — 1)
(M — 1)and M x N(n* — 1) degrees of freedom. To test the significance of row effects
(factor A), the null hypothesis H, is a; =0, i =1, ..., N. When H, is valid, the test
criterion F, has the Fisher-Snedecor distribution with (N — 1) and M x N(n* — 1)
degrees of freedom. For column effects (factor B), the null hypothesis H, is ;= 0,
j=1,..., M. When H, is valid, the test criterion Fy has the Fisher-Snedecor
distribution with (M — 1) and M x N(n* — 1) degrees of freedom. The unbiased
estimator of variance is here My.

For balanced models, the diagonal elements H; of a projection matrix H are
constant.

It may be concluded that the two models, single-observation-per-cell (I) and
balanced (II) differ only in replacement of quantities.

An advantage of all balanced models is mutual orthogonality of the individual
terms of the ANOVA model, so that the individual partial sums of squares in Table
4.9 and 4.6 may be added. This may be exploited for simultaneous testing of several
hypotheses.

Problem 4.10 Derivation of a test criterion for examining the independence of factor B
Let us suppose that Table 4.9 is available and we wish to test whether the results
depend on a factor B. That is, we test the validity of the two hypotheses, Hg,: 7;; =0
and H,,: B; = 0, simultaneously.

Solution: Since partial sums of squares may be added, we can calculate the sum of
squares resulting from factor B simply as

Spg = Sg + Sap
The corresponding number of degrees of freedom N(M — 1) is the sum of degrees
of freedom (M — 1) and (N — 1)(M — 1), so that the mean square is
Mpy = Spp/[N(M — 1)].
The test criterion
Fpg = Mpg/My
has the Fisher-Snedecor distribution with N(M — 1) and M x N(n* — 1) degrees of
freedom, if the partial hypotheses H,, and H,, are valid.
Conclusion: It is possible to test another simultaneous hypotheses, similarly. That is,

is the variability of y due to interaction only, which corresponds to H,: o; = 0 and
Hgy,: B;=0.

With the use of the procedure shown in Problem 4.9 the validity of various ANOVA
submodels may be tested, from the simplest

Vi = B+ Eij
over all partial models (containing only some of the parameters «, f and 1) to the
total analysis expressed by Egs. (4.3) and (4.4). Summation of sums of squares is
recommended also in cases when the influence of some factors or interactions is

proved to be not significant. Then, a corresponding sum of squares is added to the
residual one, and corresponding terms are omitted.
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Problem 4.11 Finding the residual sum of squares for a two-way layout with insignificant
interaction

Suppose that Table 4.9 is available, and that the Fisher—Snedecor test has proved
that the interaction effect is not significant and the null hypothesis Hy: 7;; = 0 has
been accepted. Calculated the corrected residual sum of squares without forming a
new ANOVA table.

Solution: The sum of squares Sg is combined with the sum of squares S,g, and the
corresponding number of degrees of freedom is found. The corrected residual sum of
squares is

Sy =Sg+ S
and the corrected mean square is
Sk

AG:MXMM—U+W—MM—D

In the Fisher—Snedecor F-test, My is used in the denominator of the F-criterion,
and the corresponding degrees of freedom are corrected.
Conclusion: The orthogonality of parameters permits use of the various partial
ANOVA models without having to calculate new estimates and an ANOVA table.

Problem 4.12 Precision of chromatographic determination of diethyleneglycol in
ethyleneglycol

Three laboratory technicians A,, A, and A; can work on three chromatographs B,,
B, and B; and determine diethylene glycol (DEG) in ethylene glycol. Each technician
made two determinations with each chromatograph. Besides ANOVA, estimate how
much of the variance corresponds to the instrument (the instrumental error) and how
much to the technician (the error of the experimenter).

Data: N = 3, M = 3, n* = 2. Data for percentage of DEG found in ethylene glycol
are given in Table 4.10

Table 4.10—Concentration of DEG [%] measured twice by three technicians A;, A, and A, on three
instruments B, B, and B,

Technician Instrument
B, B, B,
0.110 0.101 0.108
A, 0.116 0.102 0.109
0.112 0.115 0.111
A, 0.111 0.106 0.109
0.114 0.107 0.113
A, 0.112 0.109 0.110 -
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Program: Chemstat: ANOVA-2B: Two-way balanced.

Solution: The ANOVA table is shown in Table 4.11. For the significance level & = 0.05
the quantiles are F o5 (2,9) = 4.26 and F o5 (4,9) = 3.63. From F criteria in Table
4.11, it is evident that the effects of factor A and interaction AB are separately not
significant. Let us test whether technicians have an influence on the determination
of DEG. Two null hypotheses are formulated, H,,: «; = 0 and H,,: 7;; = 0. The
corresponding mean square is

Spa =(S, + Sap)/2+4) =163 x 1075
and the test criterion
pa = 1.63 x 107°/7.83 x 1076 = 2.09.

Since the corresponding quantile F 45 (6, 9) = 3.373 is higher than the criterion Fp,,
the technicians have no significant influence on the determination of DEG and the
ANOVA model is formulated by the equation

yuk ”+ ﬂ +8uk

Let us test the significance of factor B with H,: f; = 0. In addition, to avoid
construction of a new ANOVA table, the sums S, + S, will be added to the residual
sum of squares Si. The mean square will then be

. Sp+S\+ S 1688 x10°°

- - — 112 x 1075
R =" 0+ 4+9 15 x 10

Table 411—ANOVA table for DEG determination

Sum of Degrees of Mean Test
squares freedom square criterion F

Technicians (A)
S,=381x10"° 2 1.906 x 10~° 2433

Instruments (B)
Sy =1.027 x 1074 2 5139 x 103 6.560

Interaction (AB)

Sap =602 x 1075 4 1.506 x 1073 1.922
Residual

Sp=705x10"% 9 7.833 x 107° —
Totals

Sc=2716 x 107* 17 — —
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The test criterion Fy is
Fy= Mg/M} =458

and the corresponding quantile F, o5 (3, 15) = 3.68 is lower. Thus, the null hypothesis
H, is rejected, and the influence of the instrument on the determination of DEG has
been shown to be significant at significance level a = 0.05.

The expected value of a mean square is given by

E(My) = 62 + 603,
and the estimate of a2 is ¢2. The estimate of instrumental error may be calculated from
6t = (My— 6%)/6 = 6.68 x 107°.

Conclusion : Tt has been shown that the precision of determination of DEG is affected
only by the instrument used. The variability caused by technicians and other random
effects is 62 = 1.12 x 1073, and the variability caused by instruments (instrumental
error) is 64 = 6.68 x 107°.

4.3.3.3 Unbalanced models
For unbalanced models, there are n; observations in the (ijjth cell. When an
experiment is poorly organized, so that differences in n;; values are in tens, the ANOVA
is rather complicated. Parameters of Egs. (4.3) and (4.4) are not orthogonal, and the
partitioning of the sum of squares is ambiguous. The analysis of variance is performed
with the use of programs for linear regression, with models (4.3) and (4.4) considered
as special regression models with dummy variables taking only the values O or 1.
For practical calculations in chemometrics, an approximate partitioning of overall
sum of squares is used. This begins with a calculation of means:

1 m
=— Y ik (4.65)

i
ij =
Ny =1

for the cells. From these values the residual sum of squares is estimated
Sg = . Z Z (yijk - ﬁij)z (4.66)
For calculation of other components of the partitioned overall sum of squares, the

estimates of means fi;; are used, with the assumption that they have been estimated
from an equivalent number of observations n¥ defined by

, 1 N M -1
ng = I:N M Z Y (l/nij)jl (4.67)

i=1 j=1

Analysis of variance is done by the same technique as for balanced models (Table
4.8), and individual sums are defined by

N
Sy=n¥x MY (4 — py (4.68)

i=1

I
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with (N — 1) degrees of freedom
M
Sp=nfxN Y (4—py (4.69)
j=1
with (M — 1) degrees of freedom, and

N M
Sap = n¥ Z Z (G — f; — 0, + p)? (4.70)

i=1 j=1
with (N — 1) (M — 1) degrees of freedom. In these expressions, the following notation
is used

I N 1
ﬁizﬁjglﬂu, ﬂj=NZ“ij> /i=Nle_

A
Hij

i
Mz

ji=1
The sum S, + Sy + S, + Sg is not here exactly equal to S¢, but differences are
relatively small. Tests for row, column and interaction effects are made as previously
for balanced models.

When there are several replicates in individual cells, for each cell the sample variance
sizj may be estimated, and a plot s,-zj vs. fi;; used to check for any variance on the mean
(heteroscedasticity).

4.3.4 Mixed effects two-way ANOVA
Suppose that some factor A corresponds to fixed effects and another factor B to
random effects. The factor B is usually considered as the noisy factor, and it is not
usually tested. The ANOVA model is defined by Egs. (4.3) and (4.4). For fixed effects
the constraints are o; = 0,i = 1,..., N. For random variables 8 and ¢, it is assumed
that

(@) B; are mutually independent random variables with the normal distribution
N(Q, ag);

(b) &;, are mutually independent random variables with the normal distribution
N(O, 62);

(c) the random variables f; are independent of the random variables ¢;,.

Here is an example of the elucidation of an interaction. Some authors consider
that there are random mutually independent variables with the normal distribution
N(0,035). We will consider that 7;; are independent of B; and identically distributed
variables, so that their variance is equal to [5]

D(r;) = (1 — 1/N)o}g 4.71)

For equal cell numbers n;; = n*, to analyse a mixed-effects model the ANOVA Table
4.8 may be used. The null hypotheses concerning nonsignificance of interaction,
H,: 055 = 0, and nonsignificance of factor B, H,: o2 = 0, are tested with the use of
test criteria F,5 and Fy from Table 4.8. For a test of significance of fixed effects of
factor A, another test criterion is used [5]

Fop = MA/MAB 4.72)



204 Analysis of variance (ANOVA) [Ch. 4

If the null hypothesis H,: «; = 0 is valid, the test statistic Fp, has the Fisher-Snedecor
distribution with (N — 1) and (N — 1)(M — 1) degrees of freedom. If there is no
interaction, the test criterion F, from Table 4.8 may be used. This procedure can
also be modified for cases where the effects of factor A are random and the effects
of factor B fixed.

Problem 4.13 Influence of the instrument of determination of DEG

Consider the same task as in Problem 4.12, with the difference that three technicians
were chosen randomly from a team of laboratory staff. Factor A now has random
effects and factor B fixed. By doing ANOVA for this mixed-factors model, examine
the influence of the type of chromatograph.

Solution: In Problem 4.12 it was estimated that My=5.139 x 10”° and
M 5 = 1.506 x 107°. The test criterion Fp, (4.72) is now written as

Fpp = My/M g = 3412

The corresponding quantile F,, 45 (2,4) = 6.944 is higher than this Fg value. Therefore,
the null hypothesis H,: f; = 0 is rejected and the type of chromatograph does have
a significant effect on the determination of DEG.

Conclusion: The ANOVA result demonstrates that a small change in the assumptions
about an experiment (here the random selection of technicians) leads to a change in
the results of ANOVA.

4.3.5 Random-effects two-way ANOVA

In this case, the effects of both factors are random. The ANOVA model can be defined
by Egs. (4.3) and (4.4). The random components of the model, «;, f;, 7;; and ¢, are
characterized by following properties:

(a) «; are mutually independent random variables with the normal distribution
N(©0,03);

(b) B, are mutually independent random variables with the normal distribution
N(O.op);

(c) 1, are mutually independent random variables with the normal distribution
N(O,O'[Z\B);

(d) ¢ are mutually independent random variables with the normal distribution
N@©,62);

(e) all these random variables are independent of one another. For interaction t;;
the estimates £,; are dependent on &; and f;. For the whole population it is
assumed that the interactions are independent for this model [5].

The primary goal of ANOVA here is to find the estimates of the variance components
02, 05, 0ap and o and test them. We will limit the discussion to balanced models
with n* replication per cell. To find the estimates of the variance components, the
statistics from Table 4.8 can be adopted. The following expressions are used for the
estimates of the partial variances
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6% = %‘;—th (4.73)
42 = Mn - "1‘44 AB (4.74)
62y = Mo — Me 4.75)

n*
and ¢ = My
The mean squares M,, My and M, are defined in Table 4.8.

For testing the significance of the individual variance components, the F-tests are
used as follows:

(@) For a test of the null hypothesis H, oi:z =0, the test criterion F is
MAB
My
If the null hypothesis H,, is valid, the statistic F,, has a Fisher-Snedecor distribution
with (N — 1) (M — 1) and N x M(n* — 1) degrees of freedom.

(b) For a test of the null hypothesis H,: 65 = 0 the test criterion F is

M,
MAB
If the null hypothesis H, is valid the statistic Fg, has a Fisher-Snedecor distribution
with (N — 1) and (N — 1) (M — 1) degrees of freedom.

(c) For a test of the null hypothesis H,: of =0 the test criterion F is
My
MAB
If the null hypothesis is valid the statistic Fgy has a Fisher-Snedecor distribution
with (M — 1) and (N — 1}(M — 1) degrees of freedom.

When the estimates of parameters are interesting, the estimates A;; and ji defined

for fixed-factors models can be applied. The estimate of variance of parameter fi is
defined by[5]

OA_Z= MA
A NxMxn*

4.77)

Feap =

(4.78)

Fea =

Fpp = (4.79)

(4.80)

Some alternative procedures for estimating the variance components are discussed
in the literature[3-5].

Problem 4.14 Factors affecting the chromatographic determination of DEG

Consider the data of Problem 4.10, with the difference that both technicians and
instruments were chosen randomly. Moreover, in the laboratory there are more than
three technicians and instruments. This represents a random-effects model, and we
want to find the effect of the variances of the individual sources on the variability of
the final results.

3
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Solution: A test of the null hypothesis H,: o3 = 0 yields the same result as in Problem
4.13. To test the null hypothesis H,: os = 0 the criterion is Fp, = 1.264. The
corresponding quantile F,, o5 (2,4) = 6.944 is higher, so that the variance o3 cannot
be considered significantly different from zero. For the null hypothesis Hy: g5 = 0
in Problem 4.10 it was found that F,p = Fg,5 = 1.93, which is lower than the
corresponding quantile F, 45(4,9) = 3.63, so the null hypothesis H, cannot be rejected.
The estimate of variance corresponding to instruments is

op = (Mg — M,p)/6=06x107°.
Conclusion: The variance of any partial source of variance, 0%, op and o4p, cannot

be considered to be significantly different from zero, so the result of determination
of DEG is loaded by random effects only.

44 SUMMARY

The first step of any ANOVA procedure is to recognize, on the basis of the data
layout, whether the model is a fixed-, mixed- or random-effects one. For all three
models the hypotheses to be tested must be specified, and the parameters to be
estimated formulated. It is useful to know whether interaction is likely. The general
procedure of ANOVA involves the following steps:

(1) Estimate the parameters of the ANOVA model.

(2) Test the significance of model and construct submodels or models with
fixed-effects.

(3) Express the variance components for the random-effects model and test their
significance.

(4) Test the assumptions of normality, homogeneity of variance and outliers.
Residuals other than the classical ones may be used (Chapter 6 in Vol. 2).

(5) Interpret the ANOVA results with reference to data and assumptions.

4.5 ADDITIONAL SOLVED PROBLEMS

Problem 4.15 Effect of type of penicillin on Bacillus subtilis

An effect of four types of penicillin on growth of Bacillus subtilis was examined. Factor
A (the type of penicillin) has 4 levels and at each level 5 replicated experiments was
carried out. Test whether the effects of all the penicillins is the same.

Data: N=4,n,=n,=n,=n,=>5

Replication Type of penicillin
4, A, Ay A,
1 10.6 7.3 8.2 7.5
2 8.5 9.1 7.7 6.6
3 9.8 8.4 8.0 5.1
4 8.3 8.8 7.2 7.1
5 8.1 7.6 6.4 6.7

3.0+

0.2+4

r

-2.61
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Fig. 44—Rankit plot for Jack-knife residuals Fig. 4.5—Heteroscedasticity graph.

Program: Chemstat: ANOVA-1: One-way
Solution: The estimates of the ANOVA model parameters were found to be

fa =185, =9.06; i, =824; fi; = 7.50 and i, = 6.60.
and the estimates of effects
&, =121;4, =0.39; 4, = —0.35; 4, = — 1.25.
The diagonal elements of the projection matrix are
Hy, =H,,=H3;3; =H, =02
Since the quantile F, 45 (3,16) = 3.24 is lower than F = 7.04, the null hypothesis

H,: o; = 0 is rejected and the effect of penicillin type is significant. Figure 4.4 shows
a rankit plot for Jack-knife residuals and Fig. 4.5 a plot of s; vs. ;

Table 4.12—ANOVA table for the effect of penicillin on Bacillus subtilis

Sum of Degrees of Mean Test
squares for freedom square criterion F
Type of penicillin (A) 3 5.502 7.04

S, = 16.506

Residual 16 0.782 e

Sg = 12.504 :

Totals 19 — —

S, =29.01
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In the analysis of Jack-knife residuals, the point y,, = 10.6 is indicated as the
extreme (é,, = 2.16). The Scheffe method of multiple comparison causes the null
hypothesis Hy: u;, = p, to be rejected because |4, — fi,] = 2.46 is higher than the
right-hand side of Eq. (4.16) which is equal to 1.741. For the small sample size, the
systematic heteroscedasticity cannot be accepted.

Conclusion: The type of penicillin has a significant effect on growth of Bacillus subtilis.

Problems 4.16 Effect of purity and mineralization on determination of organically bound
nitrogen

The effect of purity of organic compound (factor A) and conditions of Kjeldahl
digestion (factor B) on organic nitrogen found, were studied. Five bottles of a single
organic compound from five different producers, and five methods of digestion were
used, and the nitrogen content was determined. Examine the significance of the
variances of the two parameters.

Data: N=M=5n=1

Bottle Digestion
B, B, B, B, B,
1 127 162 155 124 169
2 166 156 140 95 147
3 136 123 125 88 166
4 182 136 115 97 157
5 133 127 117 98 169

Program: Chemstat: ANOVA-2P: One observation per cell
Solution: The ANOVA model is formulated as the fixed-effects model with a single
observation per cell. We will suppose that no interaction between bottle factors exists.

Table 4.13—ANOVA table for a two-way fixed-effects model with a single observation per cell

Sum of Degrees of Mean Test
squares freedom square criterion F
Factor A

S, =13828 4 3457 1.184
Factor B

Sp = 10 700.8 4 2675.2 9.165
Residual

Sg = 43784 16 291.9 —
Totals

Sc = 16462 24 — —




Sec. 4.5] Additional solved problems 209

Because the relevant quantile, F,, o5 (4,16) = 3.01, the null hypothesis H,: o, = 0
is accepted but the null hypothesis Hy: ;=0 is rejected. Figure 4.6 shows the
non-additivity plot.
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Fig. 4.6—The non-additivity plot.

Conclusion: The assumption of additivity of factors is approximately fulfilled. The
determination of organically bound nitrogen is affected significantly by the digestion
but not by the source of the reagents.

Problem 4.17 Effect of two factors on yield of chemical reaction

Test whether factor A and factor B affect the yield of a chemical reaction. Two levels
of factor A were randomly chosen, 4, and 4,, and three randomly chosen levels of
factor B, i.e., B,, B, and B,.

Factor A Factor B
B, B, B,
213 223 23.8
A, 20.9 21.6 237
20.4 21.0 22,6
12.7 12.0 14.5
A, 14.9 14.2 16.7
12.9 12.1 14.5
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For each combination of factors, three replicates of the chemical reaction were made,
and the yield in [%] was determined.
Data: N=2, M =3, n=3
Program: Chemstat: ANOVA-2B Balanced experiments
Solution: The two-way random-effects ANOVA model is assumed.
To test the null hypothesis H,: o = 0, the test criterion is given by Eq. (4.77), ie.

Feap = 0.85/0.95 = 0.894.

The corresponding quantile F, o5 (2,12) = 3.89 is higher, so the null hypothesis H,
cannot be rejected.

Table 4.14—ANOVA table

Sum of Degrees of Mean Test
squares freedom square criterion F
Factor A

S, =296.87 1 296.87 31213
Factor B

S, =17.78 2 8.89 9.35
Interaction AB

Sap = 1.69 2 0.84 0.89
Residual

S, =1141 12 0.95 —
Totals

Sc = 32775 17 — —

To test the null hypothesis H: o% = 0, the test criterion is given by Eq. (4.78), i.e.
Fga = 296.87/0.85 = 349.26

so the null hypothesis H, must be rejected for o = 0.05. To test the null hypothesis
H,: oz = 0 the test criterion is (Eq. 4.79):

Fyp = 8.89/0.85 = 10.16

and the corresponding quantile Fy o5 (2,2) = 19.00, so the null hypothesis H, cannot
be rejected at o = 0.05.

Conclusion: The yield of the chemical reaction is affected only by factor A. From the
ANOVA table it is evident that assumption of a fixed-effects model would make
factor B also significant. Therefore, the properties and quality of the selected factors
must be exactly specified.

N
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